Supporting Information for

2,2'-Bipyridyl Formation from 2-Arylpyridines through Bimetallic Diyttrium Intermediate

Yu Shibata, Haruki Nagae, Shiki Sumiya, Raphaël Rochat, Hayato Tsurugi,*

and Kazushi Mashima*

Department of Chemistry, Graduate School of Engineering Science, Osaka University, and CREST, JST, Toyonaka, Osaka 560-8531, Japan

General: All manipulations involving air- and moisture-sensitive organometallic compounds were performed under argon using the standard Schlenk technique or an argon-filled glovebox. ArNHCH₂CH₂NHAr (Ar = $2,6^{-i}$ Pr₂C₆H₃), ^{S1} Y(CH₂SiMe₃)₃(THF)₂, ^{S2} $Y(ArNCH_2CH_2NAr)(CH_2SiMe_3)_3(THF)_2$ (1),^{S3} 2-(4-methylphenyl)pyridine (2b), and 2-phenylpyridine- d_5^{S4} were prepared according to the literature procedure. Other pyridine derivatives were purchased and distilled over CaH₂. Anhydrous pentane, hexane, toluene, and THF were purchased from Kanto Chemical and further purified by passage through activated alumina columns under positive argon pressure as described by Grubbs et al.^{S5} Benzene, $(Me_3Si)_2O$, benzene- d_6 , toluene- d_8 , and THF- d_8 were dried over CaH₂ and stored in glove box. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were measured on a BRUKER AVANCEIII-400 spectrometer. Assignment of ¹H and ¹³C{¹H} NMR peaks for some of the complexes was facilitated by 2D ¹H-¹H COSY, 2D ¹H-¹H NOESY, 2D ¹H-¹³C HMQC, and 2D ¹H-¹³C HMBC spectra. Elemental analyses were performed on a Perkin-Elmer 2400 microanalyzer at the Faculty of Engineering Science, Osaka University.

Preparation of Diyttrium Complex Bridged by 6,6'-diphenyl-2,2'-bipyridyl (4a):

A solution of 2-phenylpyridine (**2a**, 11.0 mg, 0.072 mmol) in benzene (0.5 mL) was added to a solution of **1** (50.0 mg, 0.072 mmol) in benzene (0.5 mL) by pipet. The color of the solution turned to green with green-colored powders. The solution was standing for 26 days, and large green crystals were precipitated. After decantation and washing with benzene (1 mL x 2) and pentane (1 mL), dark-green powders of **4a** were obtained quantitatively (51.6 mg, 0.0364 mmol). mp: 116–120 °C (dec.). The dark-green powders were insoluble in non-polar solvents such as C₆D₆ and C₆D₅CD₃. Anal Calcd for (C₈₂H₁₀₆N₆O₂Y₂)·(C₆H₆): C, 72.21; H, 7.71; N, 5.74. Found: C, 72.56; H, 7.82; N, 5.50.

Preparation of 4b:

Complex **4b** was obtained quantitatively (52 mg, 0.036 mmol), following similar procedure to the synthesis of **4a**: mp: 116–120 °C (dec.). Anal Calcd for $(C_{84}H_{110}N_6O_2Y_2)\cdot(C_6H_6)$: C, 72.46; H, 7.84; N, 5.63. Found: C, 72.75; H, 7.79; N, 5.32.

Preparation of 4c:

A solution of 2-(4-methoxyphenyl)pyridine (**2c**, 13.0 mg, 0.072 mmol) in benzene (0.5 mL) was added to a solution of **1** (50.0 mg, 0.072 mmol) in benzene (0.5 mL) by pipet in an Ar-filled glovebox. The reaction mixture was heated to 50 °C for 68 h to become green suspension. After decantation and washing with benzene (1 mL x 4) and pentane (1 mL), dark-green powders of **4c** were obtained in 36% yield (18.8 mg, 1.29 x 10^{-2} mmol). mp: 118–125 °C (dec.). Anal. Calcd. for (C₈₂H₁₀₆N₆O₂Y₂)·(C₆H₆)₂: C, 71.98; H, 7.68; N, 5.25. Found: C, 71.60; H, 7.70; N, 5.49.

Preparation of (ArNCH₂CH₂NAr)Y(2-pyridylphenyl)(THF)₂ (3a):

A solution of 2-phenylpyridine (**2a**, 22.3 mg, 0.144 mmol) in THF (1 mL) was added to a solution of complex **1** (100 mg, 0.144 mmol) in THF (1 mL) at room temperature by pipet in an Ar-filled glovebox, and the reaction mixture was stirred for 216 h. All of the solvent

evaporated under reduced pressure, and the residue was washed with (Me₃Si)₂O (1 mL x 5). By drying the formed precipitates in vacuo, yellow powders of **3a** were obtained in 98% yield (107 mg, 0.141 mmol). mp: 72–76 °C (dec.). ¹H NMR (400 MHz, THF-*d*₈, 30 °C) δ 8.26 (d, ³*J*_{H-H} = 6.5 Hz, 1H, H¹¹ of *Ph*Py), 8.20 (d, ³*J*_{H-H} = 4.6 Hz, 1H, H² of Ph*Py*), 8.02 (d, ³*J*_{H-H} = 8.3 Hz, 1H, H⁸ of *Ph*Py), 7.77 (d, ³*J*_{H-H} = 7.7 Hz, 1H, H⁵ of Ph*Py*), 7.74 (t, ³*J*_{H-H} = 7.7 Hz, 1H, H⁴ of Ph*Py*), 7.69–7.12 (m, 3H, H¹⁰, H⁹, and H³ of PhPy), 6.83 (d, ³*J*_{H-H} = 7.5 Hz, 4H, *m*-H of 2,6-^{*i*}Pr₂C₆*H₃*), 6.65 (t, ³*J*_{H-H} = 7.5 Hz, 2H, *p*-H of 2,6-^{*i*}Pr₂C₆*H₃*), 4.09 (sept, ³*J*_{H-H} = 6.8 Hz, 4H, *CH*(CH₃)₂), 3.78 (s, 4H, N-CH₂), 3.61 (m, 8H, THF), 1.77 (q, ³*J*_{H-H} = 3.2 Hz, 8H, THF), 1.04 (d, ³*J*_{H-H} = 6.8 Hz, 24H, CH(*CH*₃)₂). ¹³C NMR (100 MHz, THF-*d*₈, 30 °C) δ 190.3 (d, ¹*J*_{Y-C} = 48.8 Hz, Y-C), 165.0 (C⁶ of Ph*Py*), 156.5 (*ipso*-C of 2,6-^{*i*}Pr₂C₆*H₃*), 146.8 (C² of Ph*Py*), 125.8 (C¹⁰ of *Ph*Py), 123.4 (C⁹ of *Ph*Py), 122.2 (C⁸ of *Ph*Py), 121.2 (*m*-C of 2,6-^{*i*}Pr₂C₆H₃), 119.4 (C³ of Ph*Py*), 118.9 (*p*-C of 2,6-^{*i*}Pr₂C₆*H₃*), 118.7 (C⁵ of Ph*Py*), 66.3 (THF), 59.6 (N-CH₂), 26.5 (*C*H(CH₃)₂), 24.4 (CH(*C*H₃)₂), 23.4 (THF). Anal. Calcd. for C₄₅H₆₀N₃O₂Y: C, 70.75; H, 7.92; N, 5.50. Found: C, 70.38; H, 8.17; N, 5.68.

Preparation of (ArNCH2CH2NAr)Y(2-pyridyl-4-MeOC6H3)(THF)2 (3c):

Complex **1** (50.2 mg, 0.0720 mmol) and 2-(4-methoxyphenyl)pyridine (**2c**, 13.3 mg, 0.0718 mmol) were dissolved in benzene (0.5 mL) in an Ar-filled glovebox. The reaction mixture was stirred at room

temperature for 3 h. After evaporating the solvent and washing with pentane (1 mL x 2), yellow powders of **3c** were obtained in 83% yield (47.7 mg, 0.0601 mmol). mp: 91–96 °C (dec.). ¹H NMR (400 MHz, C₆D₆, 30 °C) δ 8.09 (brs, 1H, H² of Ar*py*), 7.79-7.65 (m, 2H, H¹¹ and H⁸ of *Arpy*), 7.49 (d, ³*J*_{H-H} = 8.3 Hz, 1H, H⁵ of Ar*py*), 7.22 (d, ³*J*_{H-H} = 7.5 Hz, 4H, *m*-H of 2,6-^{*i*}Pr₂C₆H₃), 7.10 (d, ³*J*_{H-H} = 7.5 Hz, 2H, *p*-H of 2,6-^{*i*}Pr₂C₆H₃), 7.01 (m, 1H, H⁴ of Ar*py*), 6.82 (d, ³*J*_{H-H} = 8.3 Hz, 1H, H⁹ of *Arpy*), 6.39 (t, ³*J*_{H-H} = 6.2 Hz, 1H, H³ of Ar*py*), 4.26-4.10 (m, 8H, N-CH₂ and CH(CH₃)₂), 3.61 (s, 3H, OCH₃), 3.40 (brs, 8H, THF), 1.30 (d, ³*J*_{H-H} = 6.7 Hz, 24H, CH(C*H*₃)₂), 1.09 (brs, 8H, THF). ¹³C NMR (100 MHz, C₆D₆, 30 °C) δ 194.1 (d, ¹*J*_{Y-C} = 46.8 Hz, Y-C¹²), 166.0 (d, ²*J*_{Y-C} = 2.4 Hz, C⁶ of Ar*Py*), 159.7 (d, ²*J*_{Y-C} = 1.3 Hz, C⁷ of *Arpy*), 156.8 (*ipso*-C of 2,6-^{*i*}Pr₂C₆H₃), 119.2 (C³ and C⁵ of A*rpy*), 121.3 (*p*-C of 2,6-^{*i*}Pr₂C₆H₃), 119.2 (C³ and C⁵ of A*rpy*), 111.8 (C⁹ of *Arpy*), 69.8 (THF), 60.7 (N-CH₂), 54.6 (OCH₃), 28.3 (CH(CH₃)₂), 25.0 (THF). Anal. Calcd for C₄₆H₆₂N₃O₃Y₂: C, 69.59; H, 7.87; N, 5.29. Found: C, 69.30; H, 7.96; N, 5.63.

Preparation of (ArNCH₂CH₂NAr)Y(2-pyridyl-4-CF₃C₆H₃)(THF)₂ (3d):

Complex **3d** was obtained in 83% yield (49.5 mg, 0.0595 mmol), following similar procedure to the synthesis of **3c**. mp: 94-99 °C (dec.). ¹H NMR (400 MHz, C₆D₆, 30 °C) δ 8.56 (s, 1H, H¹¹ of *Ar*py), 8.33 (d, ³*J*_{H-H} = 4.8 Hz, 1H, H² of Ar*py*), 7.51 (d, ³*J*_{H-H} = 8.3 Hz, 1H,

H⁸ of *Arpy*), 7.50 (d, ${}^{3}J_{\text{H-H}} = 8.3$ Hz, 1H, H⁹ of *Arpy*), 7.44 (d, ${}^{3}J_{\text{H-H}} = 8.2$ Hz, 1H, H⁵ of Ar*py*), 7.18 (d, ${}^{3}J_{\text{H-H}} = 7.5$ Hz, 4H, *m*-H of 2,6-*i*Pr₂C₆*H*₃), 7.11-7.02 (m, 3H, *p*-H of 2,6-*i*Pr₂C₆*H*₃ and H⁴ of Ar*py*), 6.49 (t, ${}^{3}J_{\text{H-H}} = 6.3$ Hz, 1H, H³ of Ar*py*), 4.13 (m, 8H, N-CH₂ and C*H*(CH₃)₂), 3.37 (t, ${}^{3}J_{\text{H-H}} = 6.1$ Hz, 8H, THF), 1.27 (d, ${}^{3}J_{\text{H-H}} = 6.8$ Hz, 24 H, CH(C*H*₃)₂), 1.08 (m, 8H, THF). ¹³C NMR (100 MHz, C₆D₆, 30 °C) δ 191.7 (d, ${}^{1}J_{\text{Y-C}} = 45.3$ Hz, Y-C¹²), 164.5 (d, ${}^{2}J_{\text{Y-C}}$

= 2.4 Hz, C⁶ of Arpy), 156.6 (d, ${}^{2}J_{Y-C}$ = 2.9 Hz, *ipso*-C of 2,6- ${}^{i}Pr_{2}C_{6}H_{3}$), 149.2 (C⁷ of Arpy), 148.4 (C² of Arpy), 144.9 (*o*-C of 2,6- ${}^{i}Pr_{2}C_{6}H_{3}$), 139.1 (C⁴ of Arpy), 135.2 (d, ${}^{3}J_{C-F}$ = 3.3 Hz, C² of Arpy), 126.5 (q, ${}^{1}J_{C-F}$ = 273.0 Hz, CF₃), 123.3 (C⁸ of Arpy), 123.3 (*m*-C of 2,6- ${}^{i}Pr_{2}C_{6}H_{3}$), 122.3 (d, ${}^{2}J_{C-F}$ = 3.9 Hz, C⁹ of Arpy), 121.5 (*p*-C of 2,6- ${}^{i}Pr_{2}C_{6}H_{3}$), 121.2 (C³ of Arpy), 120.2 (C⁵ of Arpy), 70.0 (THF), 60.6 (N-CH₂), 28.3 (CH(CH₃)₂), 25.5 (CH(CH₃)₂), 24.9 (THF). ${}^{13}C$ NMR signal of *ipso*-C of CF₃ is not able to determine because their signal is overlapped with the signal of *C*₆D₅H. Anal. Calcd for C₄₆H₅₉F₃N₃O₂Y: C, 66.41; H, 7.15; N, 5.05. Found: C, 66.45; H, 7.51; N, 5.34.

Preparation of (ArNCH₂CH₂NAr)Y(κ-(*C***¹⁰,***N***)-benzo[***h***]quinolinyl)(THF)₂ (3d):**

Complex **3d** was obtained quantitatively (59.5 mg, 0.0755 mmol), following similar procedure to the synthesis of **3c**. mp: 95-100 °C (dec.). ¹H NMR (400 MHz, C₆D₆, 30 °C) δ 8.56 (dd, ³*J*_{H-H} = 4.9, 1.4 Hz, 1H, H²), 8.51 (d, ³*J*_{H-H} = 6.0 Hz, 1H, H⁹), 7.71–7.58 (m, 3H, H⁴, H⁷,

and H⁸), 7.69 (d, ${}^{3}J_{\text{H-H}} = 8.8$ Hz, 1H, H⁶), 7.22 (d, ${}^{3}J_{\text{H-H}} = 8.8$ Hz, 1H, H⁵), 7.19 (d, ${}^{3}J_{\text{H-H}} = 7.8$ Hz, 4H, *m*-H of 2,6-^{*i*}Pr₂C₆H₃), 7.08 (t, ${}^{3}J_{\text{H-H}} = 7.5$ Hz, 2H, *o*-H of 2,6-^{*i*}Pr₂C₆H₃), 6.83 (dd, ${}^{3}J_{\text{H-H}} = 7.9$, 4.9 Hz, 1H, H³), 4.23 (s, 4H, N-CH₂), 4.22 (t, ${}^{3}J_{\text{H-H}} = 6.8$ Hz, 4H, CH(CH₃)₂), 3.42 (s, 8H, THF), 1.20 (d, ${}^{3}J_{\text{H-H}} = 6.8$ Hz, 24H, CH(CH₃)₂), 1.08 (s, 8H, THF). ¹³C NMR (100 MHz, C₆D₆, 30 °C): δ 189.1 (d, ${}^{1}J_{\text{Y-C}} = 47.7$ Hz, Y-C¹⁰), 156.9 (*ipso*-C of 2,6-^{*i*}Pr₂C₆H₃), 154.8 (C^{10b}), 146.9 (C²), 145.1 (*o*-C of 2,6-^{*i*}Pr₂C₆H₃), 138.2 (C⁴), 137.9 (C⁹), 133.6 (C^{6a}), 131.4 (C⁶), 128.4 (C^{10a}), 127.8 (C⁸), 127.3 (C^{4a}), 124.8 (C⁷), 123.3 (*m*-H of 2,6-^{*i*}Pr₂C₆H₃), 122.3 (C⁵), 121.3 (*p*-H of 2,6-^{*i*}Pr₂C₆H₃), 119.6 (C³), 69.7 (THF), 60.8 (N-CH₂), 28.3 (CH(CH₃)₂), 25.5 (CH(CH₃)₂), 25.1(THF). Anal. Calcd for C₇₁H₆₀N₃O₂Y: C, 71.65; H, 7.68; N, 5.33. Found: C, 71.43; H, 7.82; N, 5.07.

Preparation of Bis(µ,κ–(C,N)-pyridyl)diyttrium Complex 6a:

A solution of pyridine (**5a**, 11.3 mg, 0.143 mmol) in benzene (1 mL) was added to a solution of **1** (100 mg, 0.144 mmol) in benzene (1 mL) by pipet in an Ar-filled glovebox. The reaction mixture was stand for 48 h at room temperature to form yellow precipitates. After decantation and washing with pentane (1 mL x 5), yellow powders of **6a** were obtained in 43% yield (38 mg, 0.031 mmol). mp: 79–82 °C (dec.). ¹H NMR (400 MHz, C₆D₆, 30 °C) δ 9.18 (d, ³*J*_{H-H} = 7.4 Hz, 2H, 3-H of Py), 8.81 (d, ³*J*_{H-H} = 5.0 Hz, 2H, 6-H of Py), 7.46 (t, ³*J*_{H-H} = 7.4 Hz, 2H, 4-H of Py), 6.99–6.86 (m, 12H, 2,6-^{*i*}Pr₂C₆*H*₃), 6.80 (t, ³*J*_{H-H} = 7.4 Hz, 2H, 5-H of Py), 4.12 (brs, 8H, N-CH₂), 3.94 (sept, ³*J*_{H-H} = 6.8 Hz, 8H, C*H*(CH₃)₂), 2.88 (brs, 8H, α -THF), 1.13 (d, ³*J*_{H-H} = 6.8 Hz, 48H, CH(C*H*₃)₂), 0.68 (brs, 8H, β -THF). Anal. Calcd. for C₇₀H₉₈N₆O₂Y₂: C, 68.17; H, 8.01; N, 6.81. Found: C, 68.12; H, 8.00; N, 7.16.

Complexes **6b-6d** were prepared according to the similar procedure to **6a**.

Complex **6b** was obtained in 38% yield (34.2 mg, 0.0271 mmol). mp: 82–86 °C (dec.). ¹H NMR (400 MHz, C₆D₆, 30 °C) δ 9.11 (s, 2H, 3-H of 4-MePy), 8.73 (d, ³J_{H-H} = 5.0 Hz, 2H, 6-H of 4-MePy), 7.04 – 6.80 (m, 12H, 2,6-^{*i*}Pr₂C₆H₃), 6.75 (d, ³J_{H-H} = 5.0 Hz, 2H, 5-H of 4-MePy), 4.13 (brs, 8H, CH₂), 4.00 (sept, ³J_{H-H} = 6.4 Hz, 8H, CH(CH₃)₂), 2.78 (brs, 8H, α -THF), 2.31 (s, 6H, 4-*Me*Py), 1.16 (br, 48H, CH(CH₃)₂), 0.61 (brs, 8H, β -THF). Anal. Calcd. for C₇₂H₁₀₂N₆O₂Y₂: C, 68.55; H, 8.15; N, 6.66. Found: C, 68.41; H, 8.49; N, 6.69.

Complex **6c** was obtained in 66% yield (58.8 mg, 0.0424 mmol). mp: 92–96 °C (dec.). ¹H NMR (400 MHz, C₆D₆, 30 °C) δ 9.68 (s, 2H, 3-H of Py), 8.90 (s br, 2H, 6-H of Py), 7.97 (d, ³*J* = 6.6 Hz, 4H, *o*-H of *Ph*Py), 7.36 (t, ³*J* = 7.3 Hz, 4H, *m*-H of *Ph*Py), 7.27-7.18 (m, 4H, 5-H of Py and *p*-H of *Ph*Py), 7.02-6.83 (m, 12H, 2,6-^{*i*}Pr₂C₆H₃), 4.60-3.80 (m, 16H, C*H*(CH₃)₂ and N-CH₂), 2.90 (brs, 8H, α -THF), 1.6-0.9 (br, 48H, CH(CH₃)₂), 0.63 (brs, 8H, β -THF). Anal. Calcd. for C₈₂H₁₀₆N₆O₂Y₂: C, 71.08; H, 7.71; N, 6.07. Found: C, 70.86; H, 7.42; N, 5.70.

Complex **6d** was obtained in 39% yield (36.3 mg, 0.0281 mmol). mp: 98–103 °C (dec.). ¹H NMR (400 MHz, Toluene- d_8 , -60 °C) δ 8.95 (d, ³J = 5.0 Hz, 2H, 6-H of Py), 6.99-6.94 (m, 12H, 2,6-^{*i*}Pr₂C₆H₃), 6.74 (m, 2H, 5-H of Py), 6.25 (d, ³J = 8.4 Hz, 2H, 4-H of Py), 4.39-4.00 (m, 16H, N-CH₂ and CH(CH₃)₂), 3.88 (s, 6H, O-CH₃), 2.48 (brs, 8H, α -THF), 1.44 (br d, ³J = 5.9 Hz, 12H, CH(CH₃)₂), 1.34 (brd, ³J = 5.9 Hz, 12H, CH(CH₃)₂), 0.87 (brd, ³J = 5.9 Hz, 12H, CH(CH₃)₂), 0.70 (brd, ³J = 5.9 Hz, 12H, CH(CH₃)₂), 0.56-0.30 (m, 8H, β -THF). Anal. Calcd for C₇₂H₁₀₁N₆O₄Y₂: C, 66.91; H, 7.88; N, 6.50. Found: C, 67.16; H, 8.22; N, 6.80.

Preparation of κ–(C,N)-pyridylyttrium Complex 7e:

A solution of 3,5-lutidine (5e, 3.0 mg, 0.028 mmol) in C_6D_6 (0.5 mL) was added to 1 (20.0 mg, 0.0287 mmol) in C₆D₆ (0.5 mL) by pipet in an Ar-filled glovebox. The reaction mixture was heated to 60 °C for 24 h to quantitatively form 7e. Isolation as powder form is difficult due to the high solubility of 7e in any organic solvents. Complex 7e was characterized by ¹H and ¹³C NMR spectra. ¹H NMR (400 MHz, C₆D₆, 30 °C) δ 7.97 (s, 1H, 6-H of 3,5-Me₂Py), 7.21 (d, ${}^{3}J_{H-H} = 7.5$ Hz, 4H, m-H of 2,6- ${}^{i}Pr_{2}C_{6}H_{3}$), 7.10 (t, ${}^{3}J_{H-H} = 7.5$ Hz, 2H, p-H of 2,6-^{*i*}Pr₂C₆H₃), 6.88 (s, 1H, 4-H of 3,5-Me₂Py), 4.24 (sept, ${}^{3}J_{H-H} = 6.9$ Hz, 4H, CH(CH₃)₂), 4.17 (brs, 4H, NCH₂), 3.48 (brs, 8H, α-THF), 2.65 (s, 3H, 3-Me of 3,5-Me₂Py), 1.91 (s, 3H, 5-Me of 3,5-Me₂Py), 1.37 (d, ${}^{3}J_{H-H} = 6.9$ Hz, 24H, CH(CH₃)₂), 1.24 (brs, 8H, β -THF). ${}^{13}C$ NMR (100 MHz, C₆D₆, 30 °C) δ 219.6 (d, ¹J_{Y-C} = 35.2 Hz, Y-C), 157.1 (d, ²J_{Y-C} = 2.8 Hz, *ipso-*C of 2,6-^{*i*}Pr₂C₆H₃), 145.0 (*o*-C of 2,6-^{*i*}Pr₂C₆H₃), 142.4 (6-C of 3,5-Me₂Py), 140.0 (d, ${}^{2}J_{Y-C} = 2.0$ Hz, 3-C of 3,5-Me₂Py), 133.3 (d, ${}^{3}J_{Y-C} = 1.3$ Hz, 4-C of 3,5-Me₂Py), 129.9 (5-C of 3,5-Me₂Py), 123.2 (*m*-C of 2,6⁻ⁱPr₂C₆H₃), 120.9 (*p*-C of 2,6⁻ⁱPr₂C₆H₃), 69.0 (α -THF), 61.0 (N-CH₂), 28.4 (CH(CH₃)₂), 25.7 (CH(CH₃)₂), 25.5 (β-THF), 23.8 (3-Me of 3,5-Me₂Py), 18.1 (5-Me of 3,5-Me₂Py). Due to the high solubility of the product, we could not isolate in powder form. The ¹H and ¹³C NMR spectra were shown in Figure S4.

Preparation of (ArNCH₂CH₂NAr)Y(CH₂SiMe₂Py)(THF)₂ (8f):

A solution of pyridine (5a, 10.9 mg, 0.0721 mmol) in benzene (0.5 mL) was added to a solution of 1 (50.2 mg, 0.0720 mmol) in benzene (0.5 mL) by pipet in an Ar-filled glovebox. The reaction mixture was stand for 24 h at room temperature, and then all the solvent was evaporated. After washing with (Me₃Si)₂O (1 mL x 5), drying the remaining solid in vacuo to give yellow powders of 8f in 69% yield (37 mg, 0.049 mmol). mp: 111-113 °C (dec.). ¹H NMR (400 MHz, C₆D₆, 30 °C) δ 7.97 (d, ³J_{H-H} = 5.2 Hz, 1H, 6-H of Py), 7.20-7.17 (m, 5H, *m*-H of 2,6-*i*Pr₂C₆H₃ and 3-H of Py), 7.10 (t, ${}^{3}J_{H-H} = 7.5$ Hz, 2H, *p*-H of 2,6-*i*Pr₂C₆H₃), 6.83 (dt, ${}^{3}J_{\text{H-H}} = 7.6 \text{ Hz}, {}^{4}J_{\text{H-H}} = 1.4 \text{ Hz}, 1\text{H}, 4\text{-H of } P_{\text{V}}), 6.39\text{-}6.34 \text{ (m, 1H, 5-H of Py)}, 4.20 \text{ (sept, } {}^{3}J_{\text{H-H}}$ = 6.9 Hz, 4H, CH(CH₃)₂), 4.10 (s, 4H, NCH₂), 3.50 (brs, 8H, α -THF), 1.36 (d, ³J_{H-H} = 6.9 Hz, 24H, CH(CH₃)₂), 1.17 (brs, 8H, β-THF), 0.29 (s, 6H, SiMe₂). ¹³C NMR (100 MHz, C₆D₆, 30 °C) δ 179.0 (d, ²*J*_{Y-C} = 1.8 Hz, 2-C of Py), 156.2 (d, ²*J*_{Y-C} = 2.7 Hz, *ipso*-C of 2,6-^{*i*}Pr₂C₆H₃), 148.8 (6-C of Py), 145.5 (o-C of 2,6-^{*i*}Pr₂C₆H₃), 136.2 (4-C of Py), 130.6 (5-C of Py), 123.7 $(m-C \text{ of } 2,6^{-i}\Pr_2C_6H_3)$, 122.3 (3-C of Py), 121.8 (*p*-C of 2,6^{-i}\Pr_2C_6H_3), 69.7 (α -THF), 60.8 (N-CH₂), 28.7 (*C*H(CH₃)₂), 26.0 (CH(*C*H₃)₂), 25.5 (β-THF), 18.1 (d, ${}^{1}J_{Y-C} = 37.2$ Hz, Y-C), 3.06 (SiMe₂). Anal. Calcd for C₄₂H₆₄N₃O₂SiY: C, 66.38; H, 8.49; N, 5.53. Found: C, 66.35; H, 8.54; N, 5.69.

Deuterium Labeling Experiment:

Diyttrium complex **3a**-*d*₈,*d*₉,*d*₁₀ (100 mg, 0.0702 mmol) was suspended in C₆H₆ (2 mL), and CCl₄ (13.0 mg, 0.087 mmol, 1.2 equiv) was added to quench the reaction mixture. After heating the reaction mixture for 24 h at 60 °C, deuterated 6,6'-diphenyl-2,2'-bipyridyl was isolated by silica-gel column chromatography. ¹H NMR (400 MHz, C₆D₆, 30 °C) δ 8.61 (d, ³*J*_{H-H} = 7.2 Hz, 2H, 3-H of Py), 8.18 (s, 1.4H, *o*-Ph), 7.92 (t, ³*J*_{H-H} = 7.2 Hz, 2H, 4H of Py), 7.79 (d, ³*J*_{H-H} = 7.2 Hz, 2H, 5-H of Py). The ¹H NMR of the isolated product was shown in Figure S5.

X-ray Crystallographic Studies

Single crystals of **3e**, **4a-c**, **6a**, **6c**, and **6d** were obtained from the corresponding saturated solution. Suitable crystals were mounted on a CryoLoop (Hampton Research Corp.) with a layer of light mineral oil and placed in a nitrogen stream at 113 K. Crystal data and structure refinement parameters were summarized in Table S3.

The structures of all these complexes were solved by a direct method (SIR92^{S6} or SHELXS-97^{S7}) and refined on F^2 by full-matrix least-squares methods, using SHELXL-97. Non-hydrogen atoms were anisotropically refined. H-atoms were included in the refinement on calculated positions riding on their carrier atoms. The function minimized was $[\Sigma w(Fo^2 - Fc^2)^2]$ ($w = 1 / [\sigma^2 (Fo^2) + (aP)^2 + bP]$), where $P = (Max(Fo^2, 0) + 2Fc^2) / 3$ with $\sigma^2(Fo^2)$ from counting statistics. The function *R*1 and *wR*2 were $(\Sigma ||Fo| - |Fc||) / \Sigma |Fo|$ and $[\Sigma w(Fo^2 - Fc^2)^2 / \Sigma w(Fo^4)]^{1/2}$, respectively. The ORTEP-3 program^{S8} was used to draw each molecule.

Figure S1. ORTEP drawing of complexes **3e** with 30% thermal ellipsoid. All hydrogen atoms and packing solvent molecules are omitted for clarity. Selected bond lengths (Å) and angles (°): Y - N1, 2.631(6); Y - N2, 2.272(6); Y - N3, 2.290(6); Y - C12, 2.497(7); Y - O1, 2.448(5); Y - O2, 2.443(5); N2 - Y - N3, 77.5(2); O1 - Y - O2, 84.95(18).

Figure S2. ORTEP drawing of complexes **4b** (left) and **4c** (right) with 30% thermal ellipsoid. All hydrogen atoms and packing solvent molecules are omitted for clarity.

complex	4 a	4b	4c
Y—N1	2.344(5)	2.335(3)	2.333(2)
Y—C1	2.746(5)	2.755(4)	2.771(2)
Y—C1*	2.857(5)	2.860(4)	2.888(2)
Y—C2*	2.661(5)	2.669(4) ^a	2.686(3)
N1—C1	1.424(6)	1.420(4)	1.429(3)
C1—C2	1.476(7)	1.465(5)	1.470(4)
C1—C1*	1.396(10)	1.418(7)	1.392(5)
Y—N2	2.194(4)	2.205(3)	2.213(2)
Y—N3	2.192(5)	2.200(3)	2.183(2)
N1—Y—C2*	70.68(16)	70.63(11)	70.14(8)
N2—Y—N3	80.78(17)	79.80(11)	80.60(8)
Dihedral angle between			
N1-Y-C2* and N1-	109.6	110.0	110.9
C1–C1*–C2* planes			
^a Y—C2			

Table S1. Selected geometries (bond lengths (Å) and angles (deg)) of complexes 4a-c.

Figure S3. ORTEP drawing of complex **6c** (left) and **6d** (right) with 30% thermal ellipsoid. All hydrogen atoms and packing solvent molecules are omitted for clarity.

complex	6a	6с	6d	
Y—N1	2.328(4)	2.352(5)	2.366(5)	
Y—C1	2.681(5)	2.735(6) ^{a)}	2.850(7) ^{a)}	
Y—C1*	2.560(5)	2.588(6) ^{b)}	2.685(7) ^{b)}	
N1—C1	1.380(6)	1.379(7)	1.376(8)	
Y—N2	2.216(4)	2.237(5)	2.239(6)	
Y—N3	2.219(4)	2.210(5)	2.252(5)	
Y—O1(THF)	2.422(3)	2.419(4)	-	
Y—01*	-	-	2.504(5)	
Y—O2(THF)	-	-	2.404(5)	
1)				-

Table S2. Selected geometries (bond lengths (Å) and angles (deg)) of complexes 6a, 6c, and 6d.

^{a)} Y—C1* ^{b)} Y—C1

compound	3e	4a
empirical formula	$C_{47}H_{62}N_3O_2Y$	$C_{82}H_{108}N_6O_2Y_2{\cdot}2(C_6H_6)$
formula weight	789.93	1543.78
crystal system	monoclinic	monoclinic
space group	<i>P</i> 2 ₁ / <i>n</i> (#14)	<i>P</i> 2 ₁ / <i>n</i> (#14)
<i>a</i> , Å	12.902(11)	13.160(7)
b, Å	21.925(16)	16.367(8)
<i>c</i> , Å	16.088(13)	19.701(10)
α , deg.	-	-
β , deg.	106.222(7)	103.837(4)
γ, deg.	-	-
$V, Å^3$	4370(6)	4120(4)
Ζ	4	2
$D_{\text{calcd}}, \text{g/cm}^3$	1.201	1.244
μ [Mo-K α], mm ⁻¹	1.375	1.453
crystal size, mm ³	0.30×0.20×0.05	0.28×0.26×0.23
<i>Т</i> , К	113(2)	113(2)
θ range for data collection, deg.	3.23 to 27.23	3.01 to 26.00
no. of reflections measured	36919	35619
unique data (R _{int})	8565 (0.1279)	8083 (0.1303)
data / restraints / parameters	8565 / 0 / 486	8083 / 12 / 471
$R1 (I > 2.0\sigma(I))^{a}$	0.1188	0.0948
$wR2 (I > 2.0\sigma(I))^{b}$	0.2648	0.1451
R1 (all data) ^{a)}	0.1641	0.1412
wR2 (all data) ^{b)}	0.3028	0.1664
GOF on F^2	1.111	1.127
Δρ, e Å ⁻³	1.87, -0. 95	0.51, -0.495

 Table S3.
 Crystal Data and Data Collection Parameters for 3e, 4a-c, 6a, 6c, and 6d.^{a) b)}

compound	4b	4c
empirical formula	$C_{84}H_{110}N_6O_2Y_2 \cdot 2(C_7H_8)$	$C_{84}H_{110}N_6O_4Y_2\cdot 2(C_7H_8)$
formula weight	1599.88	1631.94
crystal system	monoclinic	monoclinic
space group	<i>P</i> 2 ₁ / <i>n</i> (#14)	<i>P</i> 2 ₁ / <i>n</i> (#14)
<i>a</i> , Å	13.324(6)	13.2137(9)
b, Å	16.849(7)	17.8164(9)
<i>c</i> , Å	19.590(8)	18.8346(12)
α , deg.	-	-
β , deg.	104.350(5)	102.372(3)
γ, deg.	-	-
V, Å ³	4261(3)	4331.1(5)
Ζ	2	2
D_{calcd} , g/cm ³	1.247	1.251
μ [Mo-K α], mm ⁻¹	1.4095	1.3896
crystal size, mm ³	0.32×0.29×0.06	0.47×0.38×0.10
<i>Т</i> , К	113(2)	113(2)
θ range for data collection, deg.	3.16 to 27.49	3.11 to 27.47
no. of reflections measured	40751	41389
unique data (R _{int})	9727 (0.0782)	9871 (0.0598)
data / restraints / parameters	9727 / 0 / 487	9871 / 0 / 496
$R1 (I > 2.0\sigma(I))^{a}$	0.0661	0.0498
$wR2 (I > 2.0\sigma(I))^{b}$	0.1386	0.1025
R1 (all data) ^{a)}	0.1024	0.0681
wR2 (all data) ^{b)}	0.1626	0.1130
GOF on F^2	1.061	1.093
Δρ, e Å ⁻³	1.45, -0.75	0.78, -0.79

 Table S3 (continued).
 Crystal Data and Data Collection Parameters for 3e, 4a-c, 6a, 6c, and 6d.^{a) b)}

compound	6a	6c
empirical formula	$C_{70}H_{100}N_6O_2Y_2$	$C_{82}H_{106}N_6O_2Y_2{\cdot}2(C_6H_6)$
formula weight	1235.38	1543.83
crystal system	monoclinic	monoclinic
space group	<i>C</i> 2/ <i>c</i> (#15)	<i>P</i> 2 ₁ / <i>n</i> (#14)
<i>a</i> , Å	16.313(7)	15.639(7)
b, Å	20.362(9)	17.514(8)
<i>c</i> , Å	20.231(9)	16.240(8)
α , deg.	-	-
β , deg.	92.019(4)	104.711(4)
γ, deg.	-	-
V, Å ³	6716(5)	4302(3)
Ζ	4	2
$D_{\text{calcd}}, \text{g/cm}^3$	1.222	1.192
μ [Mo-K α], mm ⁻¹	1.766	1.3935
crystal size, mm ³	0.20×0.08×0.08	0.21×0.17×0.10
<i>Т</i> , К	113(2)	113(2)
θ range for data collection, deg.	3.15 to 26.00	3.13 to 27.47
no. of reflections measured	29121	35630
unique data (R _{int})	6581 (0.1065)	7992 (0.1016)
data / restraints / parameters	6581 / 0 / 369	7992 / 0 / 501
$R1 (I > 2.0\sigma(I))^{a}$	0.0784	0.1176
$wR2 (I > 2.0\sigma(I))^{b}$	0.1337	0.1838
R1 (all data) ^{a)}	0.1091	0.1348
wR2 (all data) ^{b)}	0.1492	0.1930
GOF on F^2	1.109	1.290
Δρ, e Å ⁻³	1.214, -0.568	0.75, -0.69

 Table S3 (continued).
 Crystal Data and Data Collection Parameters for 3e, 4a-c, 6a, 6c, and 6d.^{a) b)}

compound	6d
empirical formula	$C_{72}H_{104}N_6O_4Y_2$
formula weight	1295.46
crystal system	monoclinic
space group	<i>P</i> 2 ₁ / <i>n</i> (#14)
<i>a</i> , Å	13.492(12)
<i>b</i> , Å	13.673(12)
<i>c</i> , Å	19.029(18)
α , deg.	-
β , deg.	101.334(9)
γ, deg.	-
$V, Å^3$	3442(5)
Ζ	2
$D_{\text{calcd}}, \text{g/cm}^3$	1.250
μ [Mo-K α], mm ⁻¹	1.7304
crystal size, mm ³	0.17×0.15×0.05
<i>Т</i> , К	113(2)
θ range for data collection, deg.	3.17 to 27.48
no. of reflections measured	27295
unique data (R _{int})	6063 (0.1436)
data / restraints / parameters	6060 / 0 / 379
$R1 \ (I > 2.0\sigma(I))^{a)}$	0.0914
$wR2 \ (I > 2.0\sigma(I))^{b)}$	0.1563
R1 (all data) ^{a)}	0.1414
wR2 (all data) ^{b)}	0.1837
GOF on F^2	1.063
Δρ, e Å ⁻³	1.51, -0.64

 Table S3 (continued).
 Crystal Data and Data Collection Parameters for 3e, 4a-c, 6a, 6c, and 6d.^{a) b)}

Figure S4. ¹H NMR (top) and ¹³C NMR (bottomo) spectra of **7e**.

Figure S5. ¹H NMR spectrum of deuterated 6,6'-diphenyl-2,2'-bipyridyl.

References

- S1) Abrams, M. B.; Scott, B. L.; Baker, R. T. Organometallics 2000, 19, 4944.
- S2) Mazzeo, M.; Lamberti, M.; D'Auria, I.; Milione, S.; Peters, J. C.; Pellecchia, C. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 1374.
- S3) Eppinger, J.; Nikolaides, K. R.; Zhang-Presse, M.; Riederer, F. A.; Rabe, G. W.; Rheingold, A. L. Organometallics 2008, 27, 736.
- S4) Kozhushkov, S. I.; Yufit, D. S.; Ackermann, L. Org. Lett. 2008, 10, 3409.
- S5) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics **1996**, 15, 1518.
- S6) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Polidori, G. J. Appl. Cryst. 1994, 27, 435.
- S7) Sheldrich, G. M. Acta Cryst. 2008, A64, 112.
- S8) Farrugia, L. J. J. Appl. Cryst. 1999, 32, 837.