
A SNN-Walktrap: Motivation and Overview

SNN-Walktrap is the workhorse of our algorithm. SNN can be broken down into three steps (Main
Paper: Figure 1 , red box):

Step a : Construct SNN Network Construction of shared-nearest-neighbor is the corner
stone of SNN-Cliq [Xu and Su (2015)], the method that BiSNN-Walk expands on. SNN network
defines the notion of “distance” between two nodes within the context of a local neighborhood as
opposed to a distance quantified by an global measure (e.g Euclidean distance). This localization
is desirable for high dimensional data, where the high dimensionality renders global measures like
Euclidean norm less useful as a proxy for distance [Aggarwal et al. (2001)]. Please find an overview
of the construction of a SNN network and the rationale behind its use in Appendix C.

Step b : Walktrap Clustering After a network is constructed using SNN, we use Walktrap
[Pons and Latapy (2005)] to perform cell clustering. The Walktrap algorithm is an agglomerative
hierarchical clustering scheme akin to a complete-linkage hierarchical clustering. The distance be-
tween node i and node j is related to the difference in the behaviors of two random walks starting at
the two nodes. A very important feature of Walktrap is that one does not need specify a priori the
number of clusters. Cutting threshold of the tree is set automatically and is related to the distance
measure. The intuitiveness of the cutting threshold was a major reason for choosing Walktrap as
our clustering algorithm. Please refer to Appendix D for an overview of the algorithm.

Step c : Select Candidate Cluster Walktrap, being a clustering algorithm, will identify
several cell clusters; our purpose here, however, is to find the best one. To define “best”, we use
a heuristic involving three common clustering metrics: conductance, transitivity, and the Jaccard
score. Please refer to Appendix H for details.

1

B Finding Characteristic Genes

B.1 Selecting Characteristic Genes Selection

Let C denote a cluster, and Q denote the quantile matrix, i.e Q is a g × n matrix such that
Qij = quantile of gene i’s expression level for cell j. Quantizing the raw expression level is a form
of normalization that makes the expression across cells more comparable. Define the contrast of
gene i on cluster C as

zi,C = median (Qij : j ∈ C)− 75thQuantile (Qij : j /∈ C) (1)

We call gene i “characteristic to cluster C” if zi,C > 0. In other words, the characteristic genes are
those that are generally more highly expressed in C than the rest of the cells. The characteristic
genes will be ranked according to their contrast—genes with higher contrast are more represen-

tative of the cluster. We could, of course, replace 75thQuantile with Median and the Max in
equation (1), but our concern is that the median would result in too liberal a list for genes to be
called cluster-specific “characteristic genes”, while the max would return too conservative a list and

would thus remove potentially useful clustering information; 75thQuantile, therefore, was chosen
as compromise.

B.2 On Using Characteristic Genes for Subsequent Analysis

As noted in the flowchart (Main Paper: Figure 1, 3), the selected genes will be used to subset
the gene expression matrix, which will be fed into the SNN-Walktrap procedure. The rationale
behind using only the characteristic genes as our next input is to rid of impurities in the cluster.
Assuming our initial cluster mostly contains cells of one state, then it’s reasonable to believe that
the characteristic genes associated with this cluster will most likely be most relevant to that state.
Thus we will see these cells forming a tighter group in a SNN network constructed using only the
characteristic genes, thus removing cells of a foreign state. Main Paper: Figure 2 demonstrates this
”purification” step at work.

2

C Construction of SNN Network

Let’s demonstrate the edge-weight calculation using a simple example. Let X be a 2 × 8 matrix,
i.e we have 2 genes and 8 cells with fabricated gene expressions, shown in Figure 1.

X =

[
0 0 0.25 0.25 1.5 1.75 1.5 1.75
0 0.25 0.25 0 1.5 1.5 1.75 1.75

]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
.0

0
.4

0
.8

1
.2

Gene 1 Expression

G
e

n
e

 2
 E

x
p

re
s
s
io

n

a b

c d

e f

g

h

Appendix Figure 1

Figure 1: Positions of cells in
gene expression space. This shows
the relative positions of the cells in
the gene expression space in our
example. It is apparent that our
cells should be grouped into two
clusters {a, b, c, d} and {e, f, g, h}.

Let’s calculate the edge weight between a and b. First find the list of neighbors ranked in order
of proximity (using Euclidean distance), in this case a’s neighborhood is {a, b, c, d, e, h, g, f} and
that of b is {b, a, c, d, e, h, g, f}. Then define an integer k so that we only look at the top k neighbors
in each list (this is why sometimes shared-nearest-neighbor is also called the k-nearest-neighbor).
Let k = 3, then the neighbor list we actually use are {a, b, c} for a and {b, a, c} for b. Searching
through the pair of listings, we find the highest positions of their common neighbors, in this case,
a, who is ranked 0 in a’s neighborhood and 1 in b’s (or b, who is ranked 1 in a’s neighborhood
and 0 in b’s). Note that even though c is a common neighbor, it is ranked lower than the other
common neighbors (i.e a and b) in the list, so it is not used to calculate proximity. The average
rank of the highest common neighbor in this case is 0+1

2 = 0.5, and the edge weight is therefore
k − 0.5 = 3 − 0.5 = 2.5. Take another example, suppose we want to create an edge between a
and e, with k = 3, then the corresponding neighborhood lists are {a, b, c} and {e, h, g}. Since no
common neighbor exists, the an edge will not be drawn between a and e in the final graph. Using
the procedure described above, Figure 2 shows the networks create using SNN constructor with
k = 2 and k = 3, respectively.

In general, let n be the number of genes and m be the number of cells, then the n ×m gene
expression represents m points in Rn, the algorithm constructs a network with nodes being cells
and edge weights between two cells being pseudo-measure of their proximity in Rn. Let c denote
a cell, define a positive integer k to be the neighborhood size such that Vk (c) is an ordered list of
k cells who are c’s closest neighbor measured in Euclidean distance, with the first element of Vk(c)
being the closest to c. Define rankk(a, c) to be the position of cell a in Vk(c). Then the weight of
the edge between cells a and c is defined as

w (a, c) ,

{
max

{
k − rankk(b,a)+rankk(b,c)

2

}
if c ∈ V (a) ∪ V (c)

0 o.w

3

k = 2

a

c

e

f

g

b

d

h

k = 3

a

b

c

e

f

g

d

h

Appendix Figure 2

Figure 2: Constructed SNN net-
work using example gene expres-
sion matrix with k = 2 (left) and
k = 3 (right). Notice that the k =
3 network contains more edges, be-
cause lower k will yield a more
sparse network by construction.

In short, the closer two nodes are to their shared neighbor, the more weight will be assigned to
the edge that connects them. In BiSNN-Walk k is hard-coded to be dlog (n)e. This is because
BiSNN-Walk contains a self-correcting scheme, so it does not require a refined selection of k, and
we found that dlog (n)e is reasonable under most scenarios.

We chose to construct SNN instead of directly using similarity matrices for two reasons. First,
in SNN networks, the notion of “distance” between two nodes is established in the context of a
local neighborhood instead of quantified by an absolute measure, such as the Euclidean distance.
This localization of distance is especially desirable for high dimensional data, where the absolute
distance measure like Euclidean distance becomes less and less useful for gauging proximity with
higher dimensions [Aggarwal et al. (2001)]. Secondly, the edge weights between two nodes in an
SNN network implicitly carries information about the similarity between the two neighborhoods of
the two nodes, whereas in a similarity matrix, the similarity score between two cells only carries in-
formation about the two nodes themselves. Through its edge construction, SNN creates a filter that
condenses informative neighborhood characteristics, which are otherwise lost in similarity matrices.

4

D Walktrap Clustering

Walktrap Clustering was proposed by Pascal Pons and Matthieu Latapy in [Pons and Latapy (2005)].
The method uses an agglomerative hierarchical clustering to cluster the the nodes, and the paper
also suggests a method of cutting the resulting tree. Notation here will follow the paper as closely
as possible.

Let G (V,E) be an undirected graph with vertices V and edges E, where |V | = n, and |E| = m.
Let A be the adjacency or weight matrix, and D = diag (d1, ..., dn) is the n × n diagonal ma-
trix containing the corresponding degree (sum of weights if graph is weighted) of each node.

P = [Pij] =
[
Aij
di

]
be the corresponding n× n transition matrix.

The most important piece of any hierarchical clustering algorithm is the definition of distance
between nodes. Here the distance between nodes is defined as

Definition 1. The distance between node i and j is

rij (t) =

√√√√√ n∑
k=1

(
[P t]ik − [P t]jk

)2
dk

(2)

= ‖D−
1
2
[
P t
]
i· −D

− 1
2
[
P t
]
j· ‖ (3)

where t is some predefined time.

Since [
P t
]
ij

= P (a walk starting at node i will end up at j at time t)

The vector
[
P t
]
i· can be thought of a visiting “profile” of a walk starting at i, at time t, then if i

and j share many neighbors, then their visiting profile should be similar, thus the corresponding
distance rij (t) should be small. The D−

1
2 factor is just a normalizing factor that down weights the

effect of nodes with large degrees, whom, by the nature of the transition matrix, will be visited
more no matter the starting position .

rij (t) is closely associated with the spectral properties of the transition matrix P . Let {λα : 1 ≤ α ≤ n}
and {vα : 1 ≤ α ≤ n} be the eigenvalues and eigenvectors of P , then

r2ij (t) =

n∑
α=1

λ2tα (vα (i)− vα (j))2

where vα (i) is the ith element of the vector vα.

Since rij (t) is the “distance” between node i and j only at time t, it’s a better idea to examine
at the entire history of the walk over all t, which leads to the generalized distance r̂ij , which defined
as

5

Definition 2. Let {ck : k = 1, ...,∞, ck ≥ 0 ∀k,
∑
ck = 1} be a set of predefined weights. Let P̂i· =∑∞

k=1 ckP
k
i· , The generalized distance

r̂2ij =
n∑

α=1

f2 (λα) (vα (i)− vα (j))2 (4)

= ‖D−
1
2 P̂i· −D−

1
2 P̂j·‖ (5)

where f (x) =
∑∞

k=1 ckx
k is a power series function dictated by {ck}.

Example 1. If we consider the continuous parallel of the random walk defined by P , i.e in the
continuous random walk, the probability of a walk starting in node i and ending up in node j after
time t is [

e(P−I)t
]
ij

Then the associated generalized distance with this transition matrix is

r̂2ij =

n∑
α=1

e2t(λα−1) (vα (i)− vα (j))2

with ck = tk

k! e
−t.

Since computing r̂2ij exactly require us to know all the eigenvectors, it is entirely possible when

P is small, but becomes quite expensive when P is large
(
O
(
n3
))

, so in most cases we will use

the form [] and approximate P̂i·. To approximate
∑∞

k=1 ckP
k
i· notice that since

∑
j

[
P k
]
ij

= 1 and[
P k
]
ij
≥ 0 ∀i, j, and

∑
k ck =

∑
k
tk

k! e
−t = 1, then for any ε > 0, there exists an integer r such that

‖
∑∞

k=r+1 ckP
k
i·‖ < ε by Cauchy-Schwartz. We can approximate P̂i· with

∑r
k=1 ckP

k
i· with some

predefined r.

So far we only talked about node-to-node distance, in order for the distance to be used in a
heirarchical setting, we’ll need to extend this notion to cluster-cluster and cluster-node setting. Let
C be a cluster, the average probability of a walk starting at any of the members in C to reach node
j is

P̂Cj =
1

|C|
∑
i∈C

P̂ij

then the corresponding generalized distance between two clusters is

r̂C1C2 = ‖D−
1
2 P̂C1· −D−

1
2 P̂C2·‖

Therefore, to build the tree, we will start with every node being its own cluster, call this clustering
P1. And in the next step, like the regular hierarchical clustering, we will merge two of the clusters
(nodes) in P1 to obtain the next clustering P2. For each step k clusters from the clustering Pk−1,
and all nodes will be merged into a single cluster by step n− 1, which will be the root of the tree.

At each step we will merge clusters by minimizing the following quantity

σk =
1

n

∑
C∈Pk

∑
i∈C

r̂2iC

6

Which is the average squared distance of a node to the cluster it belongs to. Minimizing this

quantity directly at each step is computationally intensive, and requiring O
(
|Pk|2

)
computation

time for each k, instead we try to find, let C1, C2 ∈ Pk, and C3 = C1 ∪ C2, then

∆σ (C1, C2) =
1

n

∑
i∈C3

r̂iC3 −
∑
i∈C1

r̂iC1 −
∑
i∈C2

r̂iC2


Which relates to r̂2C1C2

like

∆σ (C1, C2) =
1

n

|C1| |C2|
|C1|+ |C2|

r̂C1C2

So as long as we know r̂C1C2 , ∆σ (C1, C2) can be calculated in linear time.

To cut the tree, we use the quantity

ηk =
∆σk

∆σk−1
=
σk+1 − σk
σk − σk−1

Intuitively, the idea is that when two very distant communities are merged, we would see a large
∆σ, so the the preferable cluserting Pk should contain distant clusters so that further merging of
Pk+1 would greatly increase σk, but previous clustering Pk−1 still contain similar clusters such that
Pk−1 to Pk does not increase σk significantly, that is, we cut the tree at k = argmaxkηk.

7

E Adjusted Rand Index

The Rand index is developed by William M. Rand for the purpose of quantifying the agreement
between two clustering results in his seminal paper “Objective criteria for the evaluation of cluster-
ing methods” [Rand (1971)]. The method assumes that the clusters do not overlap, i.e each item
belongs to only one cluster. In our case, let U = {U1, ..., UM} and V = {V1, ..., VN} be two sets of
clusters on cells 1, ..., n. Define the following quantities, as mentioned in the main text,

a = pairs belong to the same cluster in U as well as V (6)

b = pairs belong to the same cluster in U but different clusters in V (7)

c = pairs belong to different clusters in U but the same cluster in V (8)

d = pairs belong to different clusters in U as well as V (9)

a is a set of nodes, but if there is no confusion we will also use a to denote its cardinality. The
Rand index of the clustering U, V is

RI (U, V) =
a+ d

a+ b+ c+ d
=

a+ d(
n
2

)
The Rand Index is bounded between [0, 1]. Suppose we break down the cluster memberships in a
different way as shown in Table 1.

V1 V2 · · · VN total

U1 n11 n12 · · · n1N n1·
U2 n21 n22 · · · n2N n2·
...

...
. . .

...
...

UM nM1 nM2 · · · nMN nM ·
total n·1 n·2 · · · n···N n

Table 1: Contingency table showing the break-down of membership assignment of node-pairs. Here
nij = number of nodes that are simultaneously assigned to clusters Ui and Vj .

Table 1 allows us to easily calculate a few important quantities, e.g(
nij
2

)
= total number of possible node pairs that are assigned to Ui and Vj(

ni·
2

)
= total number of possible node pairs that are assigned to Ui(

n
2

)
= total number of possible node pairs

8

Using these quantities we can calculate the probability of a node pair belonging to a+ d:

a+ d =


(
n
2

)
︸ ︷︷ ︸
total #
pairs

−

 M∑
i=1

(
ni·
2

)
+

N∑
i=1

(
n·j
2

)
−

M∑
i=1

N∑
j=1

(
nij
2

)
︸ ︷︷ ︸

total # pairs clustered together in at least one of the partitions

︸ ︷︷ ︸
total # pairs that are clustered into different clusters in both partitions

+

M∑
i=1

N∑
j=1

(
nij
2

)
︸ ︷︷ ︸

total # pairs that were clustered
to the same cluster in both partitions

=

(
n
2

)
+ 2

M∑
i=1

N∑
j=1

(
nij
2

)
−

[
M∑
i=1

(
ni·
2

)
+

N∑
i=1

(
n·j
2

)]

One issue with the Rand Index is that, suppose T = {Tl, l = 1...L} is the ground truth partition,
then RI (U, T) and RI (V, T) are not comparable, that is, even if RI (U, T) > RI (V, T) it is
no necessarily the case that U is a better partition than V with respect to T because there is
no consistent baseline measure. In other words, comparing RI (U, T) and RI (V, T) is akin to
comparing realizations of X ∼ N

(
µx, σ

2
)

and Y ∼ N
(
µy, σ

2
)

without actually knowing what µx
and µy are. This fact severely limits the usefulness of the Rand Index; therefore, Hubert and Arabie
proposed to frame the problem in terms of a hypergeometric model [Hubert and Arabie (1985)],
in which we assume that the number of elements in ni·’s and n·j ’s are fixed, and Nij ’s are random
variables. Then, the probability of a node pair to belong to Ui and Vj is

E


(
Nij

2

)
(
n
2

)
 =

(
ni·
2

)
(
n
2

)
(
n·j
2

)
(
n
2

) (10)

Thus

E

[(
Nij

2

)]
=

(
ni·
2

)(
n·j
2

)
(
n
2

)

9

Then, with some simple algebra

E [RI (U, V)] =

E

[(
n
2

)
+ 2

∑M
i=1

∑N
j=1

(
Nij

2

)
−
[∑M

i=1

(
ni·
2

)
+
∑N

i=1

(
n·j
2

)]]
(
n
2

) (11)

= 1 + 2
M∑
i=1

N∑
j=1

(
ni·
2

)(
n·j
2

)
(
n
2

)2 −

 M∑
i=1

(
ni·
2

)
(
n
2

) +
N∑
i=1

(
n·j
2

)
(
n
2

)
 (12)

Using the chance-corrected form of an index: index−E[index]
max[index]−E[index] and noting Rand Index is boudned

above by 1, then

ARI (U, V) =
RI (U, V)− E [RI (U, V)]

1− E [RI (U, V)]
(13)

=

∑M
i=1

∑N
j=1

(
nij
2

)
−

∑M
i=1

 ni·
2

∑N
j=1

 n·j
2


 n

2



1
2

[∑M
i=1

(
ni·
2

)
+
∑N

i=1

(
n·j
2

)]
−

∑M
i=1

 ni·
2

∑N
j=1

 n·j
2


 n

2



(14)

10

F Irreducible Discovery Rate

One of the most pertinent question in high throughput sequencing is whether the signal we see in the
data are real, or true positives. For instance, suppose we were to conduct a Chip-seq experiment to
find binding sites (peaks) of a transcription factor, suppose we were to repeat the experiment under
identical settings many times, the peaks that show up as significant across experiments would be
considered “reproducible”. In practice, however, we usually an experiment is only replicated twice
due to budget and time constraints, and irreproducible discovery rate was introduced to quantify
the “reproducibility” of the signals in the replicate experiments. Other measures of reproducibility
also exist before the introduction of IDR, the most prominent of which include Spearman’s corre-
lation and rank correlation; however, the idea that set IDR apart from its predecessors is that it
makes a lot more sense to measure reproducibility using the signals that are actually reproducible;
in other words, one should not use the entire experiment to measure reproducibility of replicate
experiments. Also, there was a lack of measure that quantify local reproducibility, i.e using the
previous Chip-seq example, it is also worthwhile to know the reproducibility of individual peaks.

The main idea of IDR is that it separates the pairs into two groups (remember, we have two repli-
cates of every experiment, thus the data is a n× 2 matrix, i.e n pairs), a reproducible group, and a
non-reproducible group. Let (xi,1, xi,2) denote the pair of observations, assume (xi,1, xi,2) ∼ F 1 (·, ·)
if the pair belongs to the reproducible group, ∼ F 0 (·, ·) otherwise. Suppose the proportion of
genuine signals is π1 and that of spurrious signals is π0 = 1 − π1, then (xi,1, xi,2) ∼ F (·, ·) =
π1F

1 (·, ·) + π0F
0 (·, ·). Let F1 (·) ≡ marginal distribution of the first coordinate, and F2 (·) simi-

larly defined.

Now let’s define the dependence structure within each group. Let (zi,1, zi,2) ∼ BN
((

µ
µ

)
,

(
ρσ2 σ2

σ2 ρσ2

))
,

µ1 > 0, ρ > 0 if the pair are drawn from the genuine group, otherwise (zi,1, zi,2) ∼ SBN . Here ρ
gauges the overall reproducibility between two experiments, and is the notion of IDR we use in our
study. Let G denote the marginal distributions of zi,j , then

G (·) =
π1
σ

Φ

(
· − µ
σ

)
+ π0Φ (·)

In our model, (zi,1, zi,2) are the unobserved latent variables that induces (xi,1, xi,2) according
to the following relationship

xi,1 = F−11 (G (zi,1)) (15)

with xi,2 similarly defined. In other words, the drawing of (zi,1, zi,2) (thus G) gives (xi,1, xi,2)
their dependence structure, while F dictates the actual value they will take. In the paper, this is
called the copula mixture model.

According to equation [](), (zi,1, zi,2) =
(
G−1 (F1 (xi,1)) , G

−1 (F2 (xi,2))
)
. Assume all pairs are

independent and identically distributed, i.e they are all induced by their respective i.i.d (zi,1, zi,2)’s,
then the semi-parameterized likelihood function is parameterized by θ = (π1, µ, ρ, σ) and (F1, F2)

11

and can be written as

L (θ) =
n∏
i=1

[π0h0
(
G−1 (F1 (xi,1)) , G

−1 (F2 (xi,2))
)

+ (16)

π1h1
(
G−1 (F1 (xi,1)) , G

−1 (F2 (xi,2))
)
] (17)

Where h1 is the density of BN

((
µ1
µ1

)
,

(
ρσ2 σ2

σ2 ρσ2

))
and h0 is the density of SBN.

EM algorithm is used to fit L (θ) using the following steps []:

1. First compute the marginal empirical distribution F̂1 (xi,1) =
ri,1
n , where ri,1 = rank of xi,1 in expriment 1.

F̂2 (xi,2) similarly defined.

2. Let ui,1 ≡ n−1
n F̂1 (xi,1) be the empirical quantile of xi,1. The factor n−1

n is applied to avoid
unboundedness of G−1 at 1. Obtain ui,2 with similar fashion

3. Initialize θ, denote it θ(0) =
(
π
(0)
1 , ρ(0), µ(0), σ(0)

)
4. Compute pseudo data zi,1 = G−1 (ui,1), and zi,2.

5. Apply EM algorithm on the likelihood function of the augmented dataset Yi = (zi,Ki), where
zi = (zi,1, zi,2) and the latent variable

Ki =

{
1 zi ∈ reproducible group

0 o.w

The corresponding likelihood is

l (θ) ≡
n∑
i=1

{Ki (log π1 + log h1 (zi)) + (1−Ki) (log π0 + log h0 (zi))}

For the Expectation step, we need to find the expectation of l (θ):

Q
(
θ|θ(0)

)
= EK|Z,θ(0) l (θ) (18)

=
n∑
i=1

{
EK|Z,θ(0) [Ki] (log π1 + log h1 (zi)) +

[
1− EK|Z,θ(0) (Ki)

]
(log π0 + log h0 (zi))

}
(19)

where

EK|Z,θ(0) [Ki] = P
(
Ki = 1|zi, θ(0)

)
(20)

=
P
(
Ki = 1, zi|θ(0)

)
P
(
zi|θ(0)

) (21)

=
π
(0)
1 h1 (zi)

π
(0)
1 h1 (zi) +

(
1− π(0)1

)
h0 (zi)

(22)

For the Maximization step, we need to maximize Q
(
θ|θ(0)

)
which involves fairly straightfor-

ward calculus steps. After convergence, set the resulting θ as θ(1).

12

6. If convergence criterion is not met, e.g ‖θ(0) − θ(1)‖ < ε for some predefined ε, set θ(1) 7→ θ(0)

and return to step 4.

13

10 20 30 40 50

0
1

2
3

4

Simulated Entropy Curves

Number of Bins

E
n
tr

o
p
y

Std Dev

0.02
0.06
0.1
0.14
0.18

Figure 3

Figure 3: Entropy curves from toy
simulation. We generate a similar-
ity matrix for 10 clusters where the
within-cluster similarity is randomly
drawn from N (0.7, σ2), and out-of-
cluster similarity is randomly drawn
from N (0.3, σ2). Each curve represents
a different value of σ, varying from 0.02
to 0.18. As one can see, entropy in-
crease monotonically with σ across all
numbers of bins.

G Exploration of Entropy Measure via Simulation and Real Data

To explore the behavior of the entropy curves, we did a toy simulation where we generated 10
clusters, with size of each cluster uniformly chosen between 4 and 20. We assume the similarity
(correlation) within a cluster is N

(
0.7, σ2

)
, and similarity between cluster is N

(
0.3, σ2

)
, where σ

varies from 0.02 to 0.18. As one can see from the resulting curves in Figure 3, the curves line up
according to σ, with the curve corresponding to σ = 0.18 having the highest entropy while the curve
corresponding to σ = 0.02 having the lowest. When we applied this measure to real data sets, we
found it can either help yield the best result among different choices of initial similarity matrices or
generate results that are quite comparable to the best result available (See Table 2 for more details).

In real data set, however, using entropy to choose initial matrix does not necessarily produce
the highest quality final clusters. For instance, for Human Embryo data set, we should choose
Spearman correlation as our similarity matrix (Figure 4), but Table 2 shows us that Euclidean
matrix produces the best final result. This, however, should not detract from the idea of using
entropy as a measure of clustering potential. First, the entropy based measure is used to select a
good starting point for the algorithm, but a good starting point does not guarantee best result.
Second, even though entropy-selected matrix does not yield the best result, they are often quite
comparable to the best result available (Table 2). Therefore, we believe entropy-based measure of
clustering-potential is a promising direction, and its theoretical properties will be explored in depth
in a future paper.

14

Figure 4: Entropy curves of initial similarity matrices from the three scRNA-Seq data sets

Mouse

1.5

2.0

2.5

3.0

3.5

Human Embryo

1.5

2.0

2.5

3.0

3.5

Human Cancer

1.5

2.0

2.5

3.0

3.5

IDR

Euclidean

Pearson

Spearman

10 20 30 40 50

Number of bins

E
n
tr

o
p
y

Figure 4

15

Table 2: Comparison between ARIs of final clusters using BiSNN-Walk with four different initial
similarity matrices

Mouse Embryo Human Embryo Human Cancer

IDR 0.472 (310/317) 0.600 (124/124) 0.883 (83/86)

Euclidean 0.447 (314/317) 0.798 (124/124) 0.873 (82/86)

Pearson 0.481 (297/317) 0.677 (124/124) 0.834 (70/86)

Spearman 0.467 (307/317) 0.776 (124/124) 0.880 (86/86)
Number in parentheses is (number of cells clustered / total number of cells)

Bold font indicates the matrix with lowest entropy

H Selecting the Best Cell Cluster using Transitivity, Conduc-
tance, and Jaccard Score

H.1 Selection Heuristic

Here we present how to select the “best” cell cluster among ones identified by SNN-Walktrap using
transitivity, conductance, and the Jaccard score. Please find the mathematical definition of the
measures in the Definition (Section H.2) section below. We may encounter two situations here:

1. When the inner loop is first called (at the very beginning of the algorithm or by the outer
loop), we need to initialize a candidate cluster. We select a single candidate from the Walk-
trap clusters according to two well-known network clustering measures: conductance and
transitivity. Conductance measures how well separated a cluster is from rest of the network,
and transitivity measures the connectedness of nodes within a cluster. To select a single one
from the Walktrap clusters, we first rank them with respect to conductivity, and break ties
using transitivity.

2. On subsequent iterations of the inner loop, when there already exists a candidate cluster,
we want to improve upon the existing one. We calculate the Jaccard score of each Walktrap
cluster with the candidate cluster as a measure of agreement, and select the Walktrap cluster
of the highest agreement with the candidate cluster as the new candidate. However, if all
Walktrap clusters that overlaps with the original cluster are of sizes 2 or less, then we will
stop improving upon the old candidate cluster and choose a new initial cluster from the
Walktrap clusters using conductance and transitivity as described previously. The rationale
behind this heuristic is that Walktrap will sometimes return clusters of the same transitivity
and conductance (e.g isolated perfect cliques), so the Jaccard measure serves as another tie
breaker as well as ensuring a sense of continuity among the iterations’ candidate clusters.

H.2 Mathematical Definition of Transitivity and Conductance

Let G (V,E) denote a network, with V = {vi : i = 1, ..., n} denoting a set of nodes and E =
{ei,j ∈ R+ : i, j = 1, ..., n} denote a set of edges. Let C denote a cluster, and let S (C) = {ei,j : vi ∈ C, vj /∈ C}
be the edges that are connected to outside the cluster, and I (C) = {ei,j : vi, vj ∈ C} be the edges

16

that are connected within the cluster, then conductance is defined as

conductance (C) =
|S (C)|

min {|I (C)| , |I (V \C)|}

=
of edges connected to other clusters

min {# of edges in the cluster, # of edges outside the cluster}

Conductance is bounded below by 0, where zero-conductance implies cluster C is isolated from rest
of the network, i.e lower conductivity indicates a better isolated cluster. Note if the cluster is the
entire node set, C = V , then we force conductance (C) = conductance (V) = 0.

Transitivity, or clustering coefficient, is easier described in words

transitivity (C) =
3×# of triangles in the cluster

of connected triplet of vertices, or V shapes

=
of triangles in the cluster

of total possible triangles if all nodes are connected

Transitivity is bounded between [0,1], where 0 means all members of the cluster are isolated points,
and 1 indicates a perfect clique.

17

I scRNA-Seq Data Sets

Mouse Embryonic Cells. The size of the gene expression matrix is 41, 128 genes × 317 cells. All
mouse embryonic cells are crossed between CAST female mated to C57 male cell lines. Embryonic
cells were collected during 10 developmental stages from zygote to blastocysts. Somatic cells (liver
and fibroblast) are also collected. For consistency’s sake, somatic cells are obtained from either
C57 x CAST or CAST x C57 offsprings. See Main Paper: Table 2 for details. Cells are sequence
using either Smart-seq or Smart-seq2 technology [Deng et al. (2014)]. This data set will be here on
referred to as “mouse”.

Human Embryonic Cells. The size of the gene expression matrix is 60, 483 genes× 124 cells. In
this work, Yan et al [Yan et al. (2013)] investigates the genetic markers involved in the derivation
of human embryonic stem cells (hESC) by examining the development of human embryo through
its developmental stages. 124 embryonic cells were obtained from in-vitro fertilization patients.
Patients are aged controlled to be within 25-35 years old with mean age of 30. The cells were
categorized into into 8 categories, details show in Main Paper: Table 3. The sequencing technology
introduced and used in this study is called “single cell RNA-Seq”. This dataset will here on be
referred to as “human embryo”.

Human Cancer Cells The size of the gene expression matrix is 60, 483 genes × 86 cells. In
this work the sequencing technique “Smart-seq” was introduced by Ramskold et al. [Ramsköld
et al. (2012)] and applied to various low frequency cancer cells such as circulating tumor cells or
somatic cells that are difficult to obtain in mass quantities, such as brain cells. A total of 86 hu-
man cells are reported by the study1, details about cell species are listed in Main Paper: Table 4.
Though the study contains both cancer cells and various somatic cells, we will dub this data set
“human cancer” for short.

1The study also contained 2 white blood cells, but the sequencing quality was extremely poor, and is confirmed
by the author to be unusable through email correspondence. The study also contained reports on mouse cells, but
are not used in our data because they cannot be compared directly to human cells.

18

J Comparison with Selected Algorithms

J.1 Introduction

We applied four popular biclustering algorithm to compare our method with, they are Plaid
[Lazzeroni and Owen (2002)], Cheng & Church [Cheng and Church (2000)], Xmotifs [Voggenre-
iter et al. (2012)], and BiMax [Madeira and Oliveira (2004)]. We also applied a recently published
clustering algorithm, GiniClust [Jiang et al. (2016)], designed to handle scRNA-Seq data.

Plaid, Cheng & Church. Plaid and CC are frequently used as benchmarks. Both Plaid and
CC assumes that gene expression can be expressed in an additive fashion of the form µ + ai + bj ,
where µ is the background constant, ai/bj are row/column specific constants, respectively. The µ,
ai, and bj are treated as parameters in the Plaid model whereas they are set as row, column and
overall means in CC. The chosen bicluster would have expression values that fall most consistent
around ai, bj , and µ. For Plaid model, after a bicluster is found, its values are then subtracted, and
the residual expression matrix is used to find the subsequent biclusters. For CC, after a bicluster
is found, random gene expression values are used to replace that of the true bicluster, and the
resulting scrambled “gene expression matrix” is then used for subsequent runs.

BiMax. Devised as a benchmark algorithm, BiMax is the simplest of the benchmarks. It
operates on binary matrices, and uses a divide and conquer approach to find all maximal completely
bipartite graphs (maximal submatrices containing all 1s).

Xmotifs. For any random cell cluster C we define a gene's expression on the cells in C as
interesting or not interesting, which is called a gene's state on C. We call a gene-cell bicluster
(G,C) an Xmotif if for every cell in C, all of the genes in G are in the same state. Further more, an
Xmotif is maximal if every genes not in the Xmotif has less than β (some user defined percentage)
states in common with genes in G. The algorithm randomly generates a user-defined number of
seed-Xmotifs and attempt to grow them into maximal Xmotifs.

GiniClust. We first use a modified Gini index to isolate genes of interest. The submatrix with
rows being the selected genes and columns being the cells are then passed to the clustering algo-
rithm DBSCAN to obtain cell clusters. Therefore the algorithm will return cell clusters, but only
one cluster of genes, so it’s in fact more an algorithm for clustering than biclustering.

J.2 Results

From Figures 5, 6, and 7, Plaid obtained the best cell clusters compared to the other three biclus-
tering algorithms; however, it did not have the sensitivity to obtain clusters nearly as homogenous
as the ones BiSNN-Walk discovered.

The failure of the four biclustering algorithms stems from requiring inputs, i.e a gene exhibits
high expression and one exhibiting zero expression is equally informative. For RNAseq data, for
a given cell the majority of the genes will exhibit zero expression, the biclustering algorithms in
consideration thus were not designed to process this kind of input. Another failure point for these
algorithm is the fact that they all consider both overlapping cell and gene clusters, though this for-
mulation is more general, it also works to the disadvantage to the algorithms because they cannot
take advantage of the simpler cluster structure of the RNAseq data. We’d be remiss if we did not

19

mention that the algorithm may need expert tuning to achieve maximum performance.

From Figure 8, we see that BiSNN-Walk clusters are cleaner. The reason, as mentioned in the
main paper, is because GiniClust is designed to find smaller tight-knit clusters of rare cancer cells
rather than general purpose biclustering.

20

References

Aggarwal, C. C., Hinneburg, A. and Keim, D. A. 2001., On the surprising behavior of distance
metrics in high dimensional space, Springer.

Cheng, Y. and Church, G. M. 2000., Biclustering of expression data., in ‘Ismb’, Vol. 8, pp. 93–103.

Deng, Q., Ramsköld, D., Reinius, B. and Sandberg, R. 2014., ‘Single-cell rna-seq reveals dynamic,
random monoallelic gene expression in mammalian cells’, Science 343(6167), 193–196.

Hubert, L. and Arabie, P. 1985., ‘Comparing partitions’, Journal of classification 2(1), 193–218.

Jiang, L., Chen, H., Pinello, L. and Yuan, G.-C. 2016., ‘Giniclust: detecting rare cell types from
single-cell gene expression data with gini index’, Genome Biology 17(1), 144.

Lazzeroni, L. and Owen, A. 2002., ‘Plaid models for gene expression data’, Statistica sinica pp. 61–
86.

Madeira, S. C. and Oliveira, A. L. 2004., ‘Biclustering algorithms for biological data analysis: a sur-
vey’, IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 1(1), 24–
45.

Pons, P. and Latapy, M. 2005., Computing communities in large networks using random walks, in
‘Computer and Information Sciences-ISCIS 2005’, Springer, pp. 284–293.

Ramsköld, D., Luo, S., Wang, Y.-C., Li, R., Deng, Q., Faridani, O. R., Daniels, G. A., Khrebtukova,
I., Loring, J. F., Laurent, L. C. et al. 2012., ‘Full-length mrna-seq from single-cell levels of rna
and individual circulating tumor cells’, Nature biotechnology 30(8), 777–782.

Rand, W. M. 1971., ‘Objective criteria for the evaluation of clustering methods’, Journal of the
American Statistical association 66(336), 846–850.

Voggenreiter, O., Bleuler, S., Gruissem, W. et al. 2012., ‘Exact biclustering algorithm for the
analysis of large gene expression data sets.’, BMC Bioinformatics 13(S-18), A10.

Xu, C. and Su, Z. 2015., ‘Identification of cell types from single-cell transcriptomes using a novel
clustering method’, Bioinformatics p. btv088.

Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., Liu, P., Lian, Y., Zheng, X., Yan, J. et al.
2013., ‘Single-cell rna-seq profiling of human preimplantation embryos and embryonic stem cells’,
Nature structural & molecular biology 20(9), 1131–1139.

21

Figure 5: Cell-clusters found by selected biclustering algorithm compared to ground truth for the
mouse dataset. x-axis are the cell-clusters found by indicated algorithm, ordered roughly by
developmental stage. y-axis is ground truth ordered by developmental stage. The value in each
grid represents the percentage of ground truth cluster that is in each cell cluster.

zy

2.e

2

2.m

2.l

4

8

16

bl.e

bl.m

bl.l

liver

fib

0 5 10

BiMax

G
ro

u
n

d
 T

ru
th value

Mouse

zy

2.e

2

2.m

2.l

4

8

16

bl.e

bl.m

bl.l

liver

fib

0 5 10

Cheng & Church

G
ro

u
n

d
 T

ru
th valu

Mouse

zy

2.e

2

2.m

2.l

4

8

16

bl.e

bl.m

bl.l

liver

fib

2 4 6 8

Plaid

G
ro

u
n

d
 T

ru
th value

Mouse

zy

2.e

2

2.m

2.l

4

8

16

bl.e

bl.m

bl.l

liver

fib

0.
5

1.
0

1.
5

2.
0

2.
5

xMotifs

G
ro

u
n

d
 T

ru
th valu

Mouse

zy

2.e

2

2.m

2.l

4

8

16

bl.e

bl.m

bl.l

liver

fib

Zy
& 2

e
2 2m 2l 4 8

8
16 16 Bl.e

Bl.e
+B

l.m
(1

)

Bl.e
+B

l.m
(2

)

Bl.m
+B

l.l

liv
er

(1
)

liv
er

(2
)

fib

BiSNN�Walk

G
ro

u
n

d
 T

ru
th va

Mouse

0.00

0.25

0.50

0.75

1.00
value

Percentage of

Ground Truth found

100%
75%
50%
25%
0%

Mouse

Figure 5

22

Figure 6: Cell-clusters found by selected biclustering algorithm compared to ground truth for the
human embryo dataset. x-axis are the cell-clusters found by indicated algorithm, ordered roughly
by developmental stage. y-axis is ground truth ordered by developmental stage. The value in each
grid represents the percentage of ground truth cluster that is in each cell cluster.

0.00

0.25

0.50

0.75

1.00
value

Percentage of

Ground Truth found

100%
75%
50%
25%
0%

Human Embryo

ES_p0

hESC_passage

Oocyte

Zygote

2�cell

4�cell_embryo

8�cell_embryo

Morulae

Late_blastocyst

2.
5

5.
0

7.
5

BiMax

G
ro

u
n
d
 T

ru
th value

Human Embryo

ES_p0

hESC_passage

Oocyte

Zygote

2�cell

4�cell_embryo

8�cell_embryo

Morulae

Late_blastocyst

2.
5

5.
0

7.
5

Cheng & Church

G
ro

u
n
d
 T

ru
th value

Human Embryo

ES_p0

hESC_passage

Oocyte

Zygote

2�cell

4�cell_embryo

8�cell_embryo

Morulae

Late_blastocyst

0.
0

2.
5

5.
0

7.
5

10
.0

Plaid

G
ro

u
n
d
 T

ru
th value

Human Embryo

ES_p0

hESC_passage

Oocyte

Zygote

2�cell

4�cell_embryo

8�cell_embryo

Morulae

Late_blastocyst

2.
5

5.
0

7.
5

xMotifs

G
ro

u
n
d
 T

ru
th value

Human Embryo

ES_p0

hESC_passage

Oocyte

Zygote

2�cell

4�cell_embryo

8�cell_embryo

Morulae

Late_blastocyst

hE
SC

O
cy

+Z
yg

+2

4
8

(1
)

8
(2

)

8
(3

)

M
or

ul
ae

(1
)

M
or

ul
ae

(2
)

Bla
st
oc

ys
t (

1)

Bla
st
oc

ys
t (

2)

BiSNN�Walk

G
ro

u
n
d
 T

ru
th value

Human Embryo

Figure 6

23

Figure 7: Cell-clusters found by selected biclustering algorithm compared to ground truth for the
human cancer dataset. x-axis are the cell-clusters found by indicated algorithm, y-axis is ground
truth. The value in each grid represents the percentage of ground truth cluster that is in each cell
cluster.

0.00

0.25

0.50

0.75

1.00
value

Percentage of

Ground Truth found

100%
75%
50%
25%
0%

Human Cancer

ref_RNA

hESC

brain

LNCaP

LNCaP_HTC

PC3

T24

melanoma

melanocyte

UACC

SKMEL5

0 3 6 9 12

BiMax

G
ro

u
n
d
 T

ru
th value

Human Cancer

ref_RNA

hESC

brain

LNCaP

LNCaP_HTC

PC3

T24

melanoma

melanocyte

UACC

SKMEL5

0 3 6 9 12

Cheng & Church

G
ro

u
n
d
 T

ru
th valu

Human Cancer

ref_RNA

hESC

brain

LNCaP

LNCaP_HTC

PC3

T24

melanoma

melanocyte

UACC

SKMEL5

2 4 6 8

Plaid

G
ro

u
n
d
 T

ru
th value

Human Cancer

ref_RNA

hESC

brain

LNCaP

LNCaP_HTC

PC3

T24

melanoma

melanocyte

UACC

SKMEL5

0 3 6 9 12

xMotifs

G
ro

u
n
d
 T

ru
th valu

Human Cancer

ref_RNA

hESC

brain

LNCaP

LNCaP_HTC

PC3

T24

melanoma

melanocyte

UACC

SKMEL5

R
ef

 R
N
A

hE
SC

Bra
in

Pro
st
at

e

Bla
dd

er

M
el
an

om
a

C
TC

M
el
an

om
a

C
L

M
el
an

oc
yt
e

BiSNN�Walk

G
ro

u
n
d
 T

ru
th value

Human Cancer

Figure 7

24

Figure 8: Heatmap of BiSNN-Walk (left) and GiniClust (rigth) cell clusters plotted against ground
truth. x-axis are the cell-clusters found by indicated algorithm, y-axis is ground truth. The value
in each grid represents the percentage of ground truth cluster that is in each cell cluster.

zy

2.e

2

2.m

2.l

4

8

16

bl.e

bl.m

bl.l

liver

fib

Zy
& 2

e
2 2m 2l 4 8

8
16 16 Bl.e

Bl.e
+B

l.m
(1

)

Bl.e
+B

l.m
(2

)

Bl.m
+B

l.l

liv
er

(1
)

liv
er

(2
)

fib

BiSNN�Walk

G
ro

u
n

d
 T

ru
th value

Mouse
Mouse

zy

2.e

2

2.m

2.l

4

8

16

bl.e

bl.m

bl.l

liver

fib

2 4 6

GiniClust
G

ro
u

n
d

 T
ru

th

Mouse

ES_p0

hESC_passage

Oocyte

Zygote

2�cell

4�cell_embryo

8�cell_embryo

Morulae

Late_blastocyst

1 2 3 4

GiniClust

G
ro

u
n

d
 T

ru
th

Human Embryo

ES_p0

hESC_passage

Oocyte

Zygote

2�cell

4�cell_embryo

8�cell_embryo

Morulae

Late_blastocyst

hE
SC

O
cy

+Z
yg

+2

4
8

(1
)

8
(2

)

8
(3

)

M
or

ul
ae

(1
)

M
or

ul
ae

(2
)

Bla
st
oc

ys
t (

1)

Bla
st
oc

ys
t (

2)

BiSNN�Walk

G
ro

u
n
d
 T

ru
th value

Human Embryo
Human Embryo

Human Cancer

ref_RNA

hESC

brain

LNCaP

LNCaP_HTC

PC3

T24

melanoma

melanocyte

UACC

SKMEL5

2 4 6 8

GiniClust

G
ro

u
n
d
 T

ru
th

Human Cancer

ref_RNA

hESC

brain

LNCaP

LNCaP_HTC

PC3

T24

melanoma

melanocyte

UACC

SKMEL5

R
ef

 R
N
A

hE
SC

Bra
in

Pro
st
at

e

Bla
dd

er

M
el
an

om
a

C
TC

M
el
an

om
a

C
L

M
el
an

oc
yt
e

BiSNN�Walk

G
ro

u
n

d
 T

ru
th v

Human Cancer

Figure 8

25

