The enigma of the near-symmetry of proteins: Domain swapping

Maayan Bonjack-Shterengartz David Avnir

Institute of Chemistry and the Lise Meitner Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Supporting Information

S1 Fig. Visual explanation of the probability calculation for the question 'what is the probability that *at least x* amino-acids out of the *d* most distorted amino-acids appear in a given *h*-length-segment?'. The assumptions: (a) N = 7, namely, a dimeric protein composed of two subunits, each of 7-amino acids (a row of circles). (b) h = 3. The length of the hinge region is 3 amino acids and it placed as a sequence of at locations 2,3,4 (indicated by the bar); (c) d = h = 3. There is a list of the 3 most distorted amino-acids are located in the hinge. There are $\binom{N}{d} = 35$ ways of placing the 3 most-distorted amino-acids in the set of 7 amino-acids; in each of these ways, the hinge region contains 0-3 amino acids out of the 3 most distorted amino-acids (r = 0,1,2,3).

$$r = 3$$

$$r = 2$$

$$r = 2$$

$$r = 1$$

$$r = 1$$

$$r = 1$$

4 ways to choose 1 amino acid to be the most-distorted one out of the rest of the polypeptide chain

When r = 2 there are 12 ways:

$$\binom{h}{r} \cdot \binom{N-h}{d-r} = \binom{3}{2} \cdot \binom{7-3}{3-2}$$