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1) Branching	process	models	
	
A	 branching	 process	 is	 composed	 of	 a	 sequence	 of	 stochastic	 events	where	 the	 result	 of	 each	 one	

becomes	the	input	for	the	following	step.	For	example,	here	the	number	of	human	passengers	on	board	
aircraft	is	distributed	as	a	Poisson	random	variable	with	parameter	lhumans.	Given	the	stochastic	outcome	
of	this	first	step	–the	number	of	human	passengers	on	the	aircraft–	the	second	step	determines	how	many	
of	the	passengers	are	infected	if	each	one	of	them	has	an	independent	probability	of	being	infected	𝑝"#.	
These	stochastic	events	can	be	described	and	analyzed	via	their	probability	generating	functions	[1,	2].	
The	probability	generating	function	for	the	number	of	traveling	human	passengers	on	the	aircraft	is:	

𝑔%# 𝑠 = 𝑒𝑥𝑝 𝜆# 𝑠 − 1 .	
	
The	probability	generating	function	describing	the	infection	of	a	single	human	individual	is:	

𝑔"# 𝑠 = 1 − 𝑝"# + 𝑝"# ∙ 𝑠.	
	
The	probability	generating	 function	of	 the	composite	process	 (the	total	number	of	 infected	traveling	

humans)	is:	
𝑔"%# 𝑠 = 𝑔%# 𝑔"# 𝑠 = 𝑒𝑥𝑝	 𝑝"#𝜆# 𝑠 − 1 .	

	
Probability	generating	functions,	𝑔(𝑠),	have	the	property	that	𝑔(0)	is	the	probability	that	there	are	no	

offspring	of	the	process	and,	thus,	1-𝑔(0)	is	the	probability	that	there	is	at	least	one	offspring.	A	composite	
probability	generating	function	can	do	the	same	for	an	extended	process	that	 includes	any	number	of	
stochastic	steps.	Hence,	the	probability	of	having	at	least	one	infected	human	on	board	the	aircraft	is:	

1 − 𝑔"%# 0 = 1 − 𝑒𝑥𝑝	 −𝑝"#𝜆# .	
	
Tables	A	and	B	show	the	generating	functions	for	the	steps	leading	to	pathogen	introduction	via	infected	

mosquitoes	and	 infected	human	travelers,	respectively,	as	well	as	the	generating	functions	for	the	full	
chain	 in	each	 instance.	Given	 these	 composite	 functions	 for	pathogen	 introduction,	 the	probability	of	
having	at	least	one	infected	human	at	destination	due	to	an	infected	onboard	mosquito	is:	

1 − 𝑔%3 𝑔ℑ 𝑔3# 0 .	
	
While	the	analogous	introduction	probability	via	an	infected	human	traveler	is	

1 − 𝑔%# 𝑔"# 𝑔#3 𝑔3# 0 .	
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Table	A:	Generating	functions	for	each	of	the	step	of	introduction	via	mosquitoes	on	aircraft.	

	
Table	B:	Generating	functions	for	each	of	the	step	of	introduction	via	human	travelers.	

	
	

2) Parameter	distribution	estimation	
	
For	 each	 parameter,	 we	 estimated	 a	 distribution	 representing	 variability	 and	 uncertainty.	 Here	 we	

describe	how	we	estimated	each	distribution	from	available	data	and	provide	those	distributions.	
	
Plasmodium	falciparum	transmission	
	
Prevalence	of	P.	falciparum	in	humans.	For	the	parasite	rate	distribution	around	the	globe,	we	performed	

an	optimization	over	the	two	parameters	of	a	Beta	distribution	in	order	to	minimize:	
	

	
	
where	q1,	q3	and	µ	are	the	values	for	first	and	third	quantiles	and	mean,	respectively,	as	reported	by	

Guerra	et	al.	[3]	and	𝑞6,	𝑞7,	and	𝜇	are	the	estimated	values	from	the	Beta	distribution.	
	
Mosquito	Mortality	(µ).	The	mosquito	mortality	rate	per	gonotrophic	cycle	is		

	

	
	

 

Error = q1 - ˆ q 1 + q3 - ˆ q 3 + µ - ˆ µ 

 

µgc =
1-M
u

Step	 Distribution	 Generating	Function	
Number	of	Mosquitoes	

Onboard	aircraft	
Poisson	 𝑔%3(𝑠) = 𝑒𝑥𝑝	9𝜆3(𝑠 − 1):	

	
Infection	of	Individual	

Mosquito	
Bernoulli	 𝑔ℑ(𝑠) = 1 − 𝑝ℑ + 𝑝ℑ ∙ 𝑠	

	
Transmission	from	Infected	

Mosquito	to	Human	
Poisson	 𝑔3#(𝑠) = 𝑒𝑥𝑝	9𝑅<3#(𝑠 − 1):	

	
Overall	Process	 -	 𝑔%3 =𝑔ℑ9𝑔3#(𝑠):>	

	

Step	 Distribution	 Generating	Function	
Number	of	Humans	Onboard	

aircraft	
Poisson	 𝑔%#(𝑠) = 𝑒𝑥𝑝	9𝜆#(𝑠 − 1):	

	
Infection	of	Individual	Human	 Bernoulli	 𝑔"#(𝑠) = 1 − 𝑝"# + 𝑝"# ∙ 𝑠.	

	
Transmission	from	Infected	

Human	to	Mosquito	
Poisson	 𝑔#3(𝑠) = 𝑒𝑥𝑝	9𝑅<#3(𝑠 − 1):	

	
Transmission	from	Infected	

Mosquito	to	Human	
Poisson	 𝑔3#(𝑠) = 𝑒𝑥𝑝	9𝑅<3#(𝑠 − 1):	

	
Overall	Process	 -

	
𝑔%# ?𝑔"# =𝑔#39𝑔3#(𝑠):>@	
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where	M	is	the	probability	of	surviving	one	gonotrophic	cycle	and	u	is	its	duration	[4].	The	data	for	M	
and	u	are	fit	to	a	Beta	distribution	for	µgc	and	then	transformed	to	an	instantaneous	mortality	rate	µ	via	
	

.	
	

All	parameters	related	to	P.	falciparum	transmission	are	shown	in	Table	C.	
	

Table	C:	Parameters	related	to	P.	falciparum	transmission	and	their	probability	distributions.		
Quantity	 Symbol	 Mean	and	95%	CI	 Distribution*	

Prevalence	of	P.	falciparum	in	humans	 pIH	 0.24	(0.00,	0.90)	 Beta(0.35,	1.11)	
Prevalence	of	P.	falciparum	in	mosquitoes	 pIM	 0.02	(0.00,	0.09)	 Beta(0.98,	40.8)	
Mosquito	density	 r	 32.8	(1.4,	112.1)	per	person	 Gamma(1.2,	0.036)	
Mosquito	biting	rate	 b	 0.30	(0.14,	0.53)	per	day	 Beta(9.3,	30.5)	
Human-to-mosquito	transmissibility	 pHM	 0.16	(0.14,	0.18)	 Beta(306,	1900)	
Mosquito-to-human	transmissibility	 pMH	 0.55	(0.47,	0.63)	 Beta(82,	68)	
Human	Infectious	Period	 D	 211	(185,	238)	days	 Gamma(242,	1.15)	
Mosquito	mortality	per	gonotrophic	cycle	 µgc		 0.12	(0.03,	0.25)	 Beta(3.9,	28.1)	
Extrinsic	Incubation	Period	 EIP	 10.9	(8.4,	13.8)	days	 Gamma(63.4,	5.8)	

*Distribution	parameters	given	for	Gamma	distributions	denote	shape	and	rate	parameters.	
	
Dengue	virus	transmission	
	
Human	Infectious	Period	(D).	For	the	four	serotypes,	we	use	the	odds	ratio	(OR)	for	the	probability	of	

successful	human	to	mosquito	transmission	and	day	of	50%	infectivity	to	mosquitoes	(t50)	from	[5]	(Table	
D)	to	fit	a	logistic	function	to	the	probability	of	human	to	mosquito	transmission	as	a	function	of	day	of	
illness	(t):	

𝜋#3 𝑡 = 6
6CDEFGEFHI

,	
where	

.	
	
Finally,	we	take	D	to	be	given	as	a	Gamma	fit	to	the	length	of	time	necessary	for	human	to	mosquito	

infectivity	to	drop	to	a	threshold	of	pthrld	=	0.1	for	the	four	serotypes	and	add	one	day	to	account	for	
infectivity	before	illness	onset:	

.	
	

Table	D.	Odds	ratios	and	time	to	50%	human	to	mosquito	transmissibility	from	[5].	
	 OR	(95%	CI)	 t50	(95%	CI)	

DENV1	 0.23	(0.16,	0.35)	 4.8	(4.5,	5.2)	
DENV2	 0.26	(0.19,	0.37)	 4.1	(4,	4.5)	
DENV3	 0.35	(0.21,	0.57)	 4.0	(3.5,	4.5)	
DENV4	 0.47	(0.27,	0.82)	 2.9	(1.0,	3.5)	

	
	

 

µ = -log(1- µgc )
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Human	Total	Infectiousness	(HTI).	To	calculate	R0HM	for	dengue,	we	estimated	total	infectiousness	rather	
than	estimating	pHM	 and	D	 independently,	because	 the	 two	components	are	 linked	and	data	exists	 to	
estimate	their	combined	contribution	[5].	
Using	𝜋#3 𝑡 	as	given	in	the	previous	section,	

𝐻𝑇𝐼 = 1 + 𝜋#3 𝑡 𝑑𝑡
N

<
,	

we	integrate	the	equation	and	calculate	HTI	using	the	values	of	𝛼<	and	𝛼6	as	indicated	above:	
	

𝐻𝑇𝐼 = 1 − 6
QH
log(1	+	𝑒QG).	

All	parameters	related	to	dengue	virus	transmission	are	shown	in	Table	E.	
	

Table	E:	Parameters	related	to	dengue	virus	transmission	and	their	probability	distributions.		
Quantity	 Symbol	 Mean	and	95%	CI	 Distribution*	

Dengue	incidence	in	humans	 NA	 0.25	(0.004,	0.74)	 Beta(0.83,	2.53)	
Intrinsic	Incubation	Period	 IIP	 5.9	(5.1,	6.7)	days	 Gamma(209,	35.4)	
Human	Infectious	Period	 D	 7.0	(6.5,	7.5)	days	 Gamma(721,	103)	
Prevalence	of	dengue	viruses	in	mosquitoes	 pIM	 0.02	(0.006,	0.04)	 Beta(0.66,	21.17)	
Mosquito	density	 r	 2.0	(0.5,	4.4)	per	person	 Gamma(4,	2)	
Mosquito	biting	rate	 b	 0.7	(0.6,	0.8)	per	day	 Beta(70,	3)	
Human	Total	Infectiousness		 HTI	 5.0	(4.3,	5.7)	days	 Gamma(190,	38)	
Mosquito	mortality	rate	 µ 0.21	(0.18,	0.24)	per	day	 Gamma(155,	736)	
Mosquito–to-human	transmissibility	 pMH	 0.50	(0.29,	0.71)	 Beta(10,	10)	
Extrinsic	Incubation	Period	 EIP	 6.5	(4.6,	8.7)	days	 Gamma(39.2,	6.0)	

*	Parameters	for	the	Gamma	distributions	denote	shape	and	rate,	respectively	
	

3) Sensitivity	analysis	
	
We	 quantified	 the	 sensitivity	 of	 the	 introduction	 probabilities	 with	 respect	 to	 parameters	 using	

‘sensitivity	coefficients’	to	describe	how	sensitive	a	certain	quantity	is	with	respect	to	small	changes	of	
one	of	its	parameters,	while	other	parameters	remain	fixed.	The	sensitivity	coefficient	𝑆𝐶W	of	a	quantity	𝑃	
with	respect	to	its	𝑖-th	parameter	𝜃W 	as:	

𝑆𝐶W =
[
\]

^\]
^[

.	

It	measures	the	relative	change	in	𝑃	per	unit	of	relative	change	in	the	parameter	q.	For	example,	a	1%	
increase	in	q	leads	to	an	𝑆𝐶%	change	in	𝑃.	Note	that	this	sensitivity	depends	upon	the	value	of	all	
remaining	parameters,	as	well	as	on	the	value	of	𝜃W 	itself.	

	
4) Relative	odds	of	introduction	
	

We	calculated	the	odds	of	introduction	via	humans	versus	mosquitoes	using	for	the	estimated	probability	
distribution.	First,	we	matched	deciles	 from	human	and	vector	distributions	 to	capture	 the	 large-scale	
correlation	that	exists	between	the	seroprevalence	of	both	hosts.	Within	each	decile,	however,	we	paired	
individual	probabilities.	We	then	obtained	the	distribution	of	odds	values	by	dividing	the	probability	of	
introduction	by	humans	(𝑝W_`ab#W)	and	by	mosquitoes	(𝑝W_`ab3W):	
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𝑜W =

d]eIfgh]
d]eIfgi]

,	

	
for	i	=	1,	2,…	N.	However,	the	many	instances	of	infinitesimally	small	𝑝W_`ab3W,	make	the	distribution	of	

the	oi	have	a	long	tail	which	skews	the	calculation	of	means	and	medians	towards	very	high	values.	To	
correct	for	this,	we	split	the	N	values	into	B	bins	and	calculate	a	median	for	each	of	the	bins,	resulting	in	
N/B	values	medj,	for	j	=	1,	2,	…	N/B	and	a	distribution	representing	uncertainty	on	the	median	estimated	
odds	ratio.		
	

5) Decreased	likelihood	of	infection	in	human	travelers	
	

In	this	section,	we	explore	the	possibility	that	infection	prevalence	in	humans	may	be	inversely	related	to	
the	probability	of	 travel,	 for	 example	 if	 prevalence	was	highest	 in	 children	or	 residents,	 but	 adults	or	
visitors	were	more	likely	to	travel.	To	simulate	this	possibility,	we	decreased	the	probability	that	a	human	
traveler	 is	 infected	by	 either	malaria	or	 dengue	pathogens	by	90%	while	 leaving	 the	 infection	 rate	of	
mosquitoes	the	same	(Figure	A).	The	median	probability	of	P.	falciparum	introduction	by	infected	human	
travelers	 is	 reduced	 to	 0.70	 (95%	 CI:	 0.17–0.98).	 For	 dengue	 viruses,	 a	 90%	 decrease	 in	 infection	
prevalence	among	human	travelers	reduced	the	median	probability	of	introduction	to	0.05	(95%	CI:	0.02–
0.11)	(Figure	A).	Although	the	distribution	of	introduction	probabilities	via	traveling	mosquitoes	remain	
as	in	the	main	text,	they	are	shown	here	for	comparison	purposes.	With	the	90%	reduction	in	infection	
prevalence	among	human	travelers,	the	average	odds	of	introduction	by	humans	versus	mosquitoes	was	
563:1	(95%	CI:	376:1–672:1)	for	malaria	and	31:1	(95%	CI:	22:1–42:1)	for	dengue.	
	

	
Figure	A.	Distributions	for	the	probability	of	introduction	by	each	pathway	when	the	prevalence	of	

infection	in	human	travelers	is	reduced	by	90%.	The	density	(log	scale)	for	the	probability	of	introduction	
via	each	pathway	across	1	million	simulations	for	P.	falciparum	(left	column)	and	dengue	virus	(right	

column)	and	for	the	two	pathways	of	introduction:	infected	mosquitoes	(top	row)	and	infected	humans	
(bottom	row).	Each	panel	provides	the	mean	and	95%	credible	interval.	
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