

Figure S1. Synaptic morphology in *acr-2(gf)* and inducible expression of ACR-2(gf), related to Figure 1

(A) Representative images of animals carrying *Pacr-2-GCaMP6f-SL2-mKate2* (left), ratio of GCaMP6f and mKate2 in wild type and *acr-2(gf)* (middle), and in animals with *inducible ACR-2(gf)* and wild type controls (right).

(B) Average traces (left) and mean amplitudes (right) of 0.5 mM ACh-evoked postsynaptic responses in wild type and acr-2(gf).

(C) Representative images and intensity of UNC-63-YFP (kr98) in wild type and acr-2(gf). Intensities are normalized to wild type.

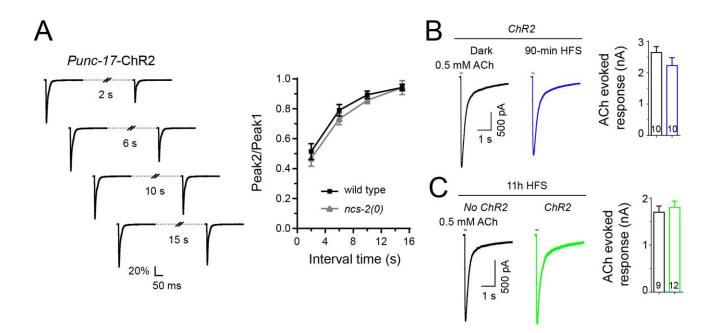
(D) Representative images, punctum density and intensity of *Punc-129-ELKS-1-Cerulean* (*tauIs12*) (left) and UNC-2-GFP (vaIs33) (right) in wild type and *acr-2(gf)*. Intensities are normalized to wild type.

(E) Representative EM images of ultrastructural organization of cholinergic neuromuscular junctions in wild type and acr-2(gf) mutants. EM data were collected from one wild type animal (21 synapses, 122 profiles and 501 docked synaptic vesicles) and one acr-2(gf) animal (20 synapses, 96 profiles and 525 docked synaptic vesicles).

(F-G) The average number of total SVs (F) and docked SVs (G) in single profiles of cholinergic synapse containing a dense projection in wild type and acr-2(gf).

(H) Histogram of docked vesicle number per profile located at different distances to the presynaptic dense projection in wild type and *acr-2(gf)*. Insert, the average docked vesicle number per profile from each synapse in specific regions (<165 nm, 165-330 nm and >330 nm).

(I) Convulsion rates 24 hours post-induction with different induction times of heat shock treatment in *inducible ACR-2(gf)* animals. n=8 for each conditions. L4 stage animals were treated with heat shock.


(J) Representative images of inducible ACR-2(gf)-GFP expression in ventral nerve cord (VNC) pre-induction or 2 hours post-induction (left) and time course of GFP intensities (n=5).

(K) GFP intensities of single copy insertion of ACR-2(gf)-GFP and inducible ACR-2(gf)-GFP expression 24 hours post-induction.

(L) Convulsion rates 24 hours post-induction of heat shock treatment in wild type and *inducible ACR-2(gf)* animals in indicated conditions. n=10 for each conditions. Adult stage animals were treated with heat shock.

(M) Average traces (left) and mean amplitude of 0.5 mM ACh-evoked postsynaptic responses from indicated genotypes and conditions in 1.2 mM Ca^{2+} bath solution. Data from wild type were recorded 2 hours post-induction treatment.

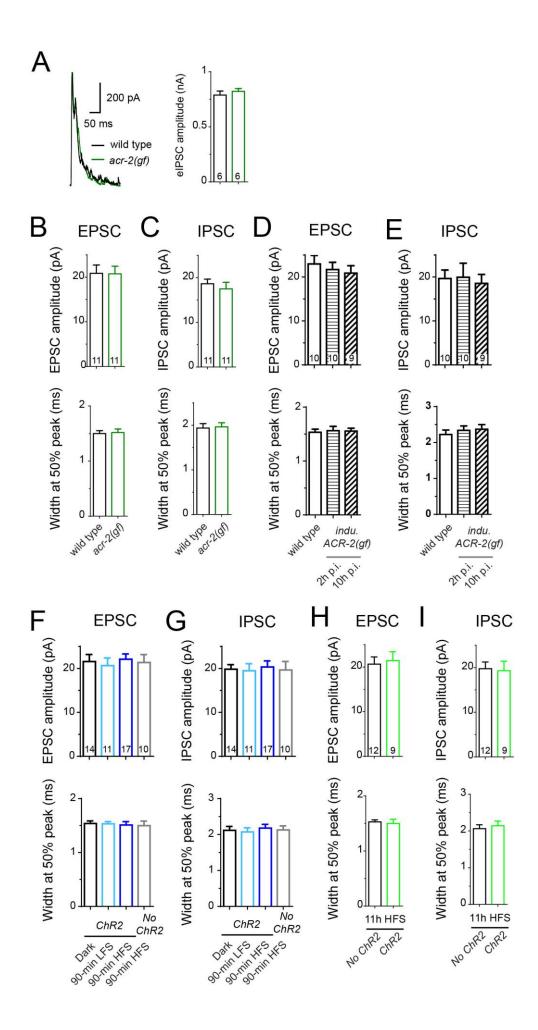

Scale bar: 5 m in (A), (C), (D) and (J). a.u. represents arbitrary unit. ***, p < 0.001; **, p < 0.01; *, p < 0.05. Sample size is shown within each bar.

Figure S2. Recovery of eEPSCs with dual stimulation of *Punc-17-ChR* and postsynaptic responses to exogenous ACh, related Figure 2.

(A) Ration of eEPSC amplitudes with dual stimulation of *Punc-17-ChR2* by blue light in wild type (n=8) and *ncs-2(tm1943)* (n=8). (B-C) Average traces (left) and mean amplitudes (right) of 0.5 mM ACh-evoked postsynaptic responses in animals under different conditions and treatments.

Sample size is shown within each bar.

Figure S3. Evoked response in GABAergic neurons by stimulation of *Punc-47-ChR2*, and amplitude and kinetics of endogenous EPSC and IPSC in *acr-2(gf)* and ChR2-expressing animals, related to Figure 3

(A) Evoked inhibitory postsynaptic currents triggered by *Punc-47-ChR2* in wild type and *acr-2(gf)* mutants.

(B-C) Mean amplitudes and mean widths at 50% peak of endogenous EPSCs (B) and IPSCs (C) from wild type and acr-2(gf) in 2 mM Ca²⁺ bath solutions.

(D-E) Mean amplitudes and mean widths at 50% peak of endogenous EPSCs (D) and IPSCs (E) from indicated genotypes and conditions in 1.2 mM Ca^{2+} bath solutions.

(F-I) Mean amplitudes and mean widths at 50% peak of endogenous EPSCs (F and H) and IPSCs (G and I) from animals under different indicated genotypes and treatments in 2 mM Ca^{2+} bath solutions.

Sample size is shown within each bar.

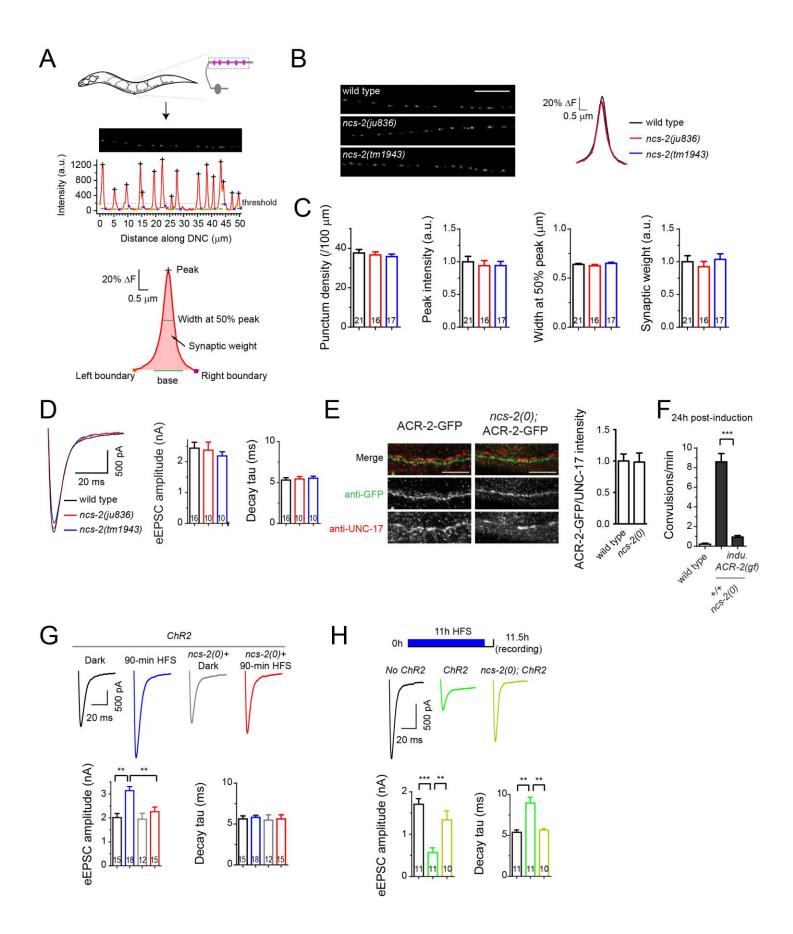
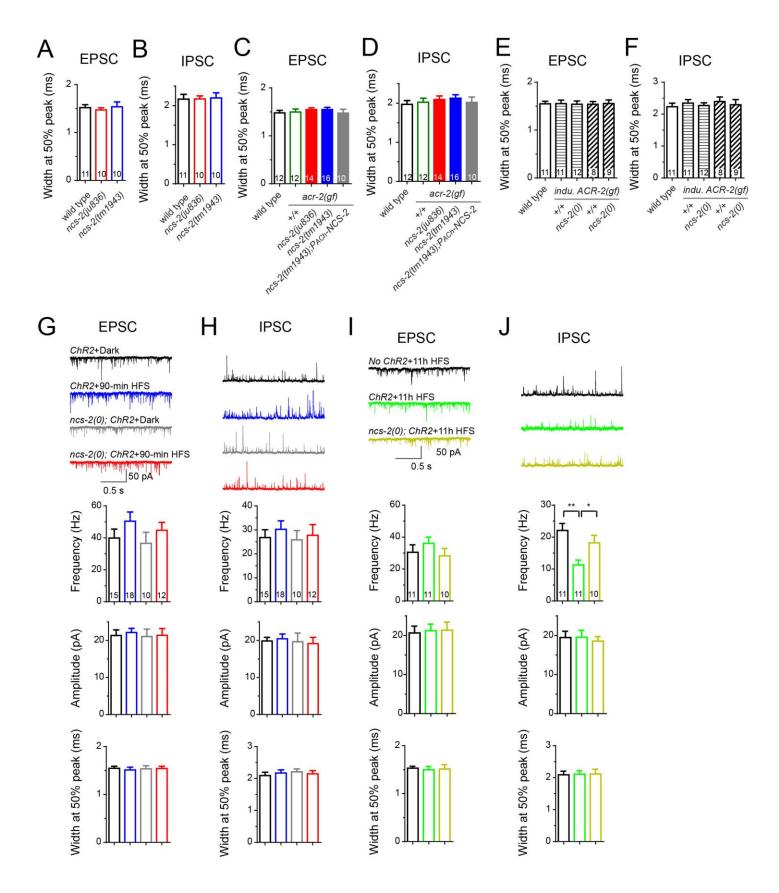


Figure S4. ncs-2 mutants do not affect synaptic morphology and the baseline of synaptic transmission, related to Figure 4

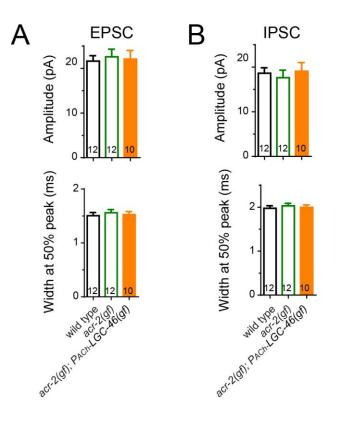
(A) Illustration of fluorescent punctum analysis. Top panel: puncta representing synapses were located along dorsal nerve cord (DNC) of *C. elegans*. Middle panel: a linescan and analysis of punctum distribution for the above image. Bottom panel: single punctum with calculated parameters.

(B-C) Representative images, average shapes (B) and distribution (C) of puncta of *Punc-129-mCherry-RAB-3 (tauIs46)* in indicated genotypes. Peak intensities and synaptic weights are normalized to wild type.


(D) Average traces (left), mean amplitude (middle) and mean decay tau (right) of eEPSCs from indicated genotypes in 1.2 mM Ca^{2+} bath solutions.

(E) ACR-2-GFP intensity normalized to UNC-17 intensity in wild type and *ncs-2(tm1943)*. n>10 for each genotypes.

(F) Convulsion rates in indicated genotypes and induction conditions. n = 10 for each genotypes.


(G-H) Average traces (top), mean amplitudes and mean decay tau (bottom) of eEPSCs from indicated genotypes and conditions in 2 mM Ca^{2+} bath solutions.

Scale bar: 10 µm in (B) and (E). a.u. represents arbitrary unit. ***, *p*<0.001; **, *p*<0.01. Sample size is shown within each bar.

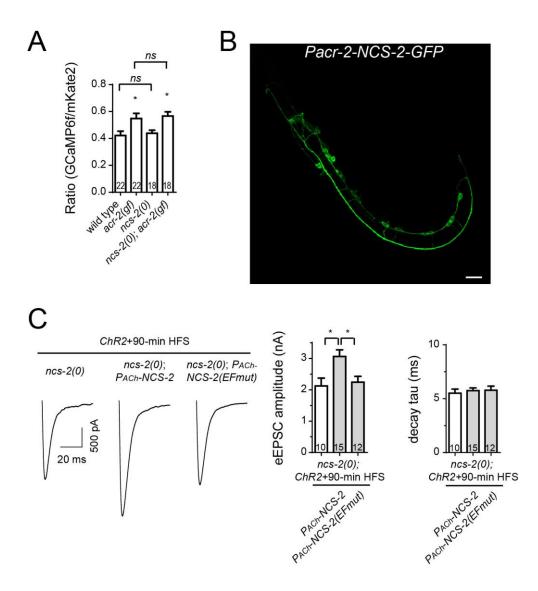


Figure S5. Effects of *ncs-2* mutants on endogenous EPSC and IPSC, related to Figure 5

(A-F) Mean widths at 50% peak of endogenous EPSCs and IPSCs from indicated genotypes and conditions. (G-J) Representative traces, mean frequencies, mean amplitudes and mean widths at 50% peak of endogenous EPSCs (G and I) and IPSCs (H and J) from indicated genotypes and conditions in 2 mM Ca²⁺ bath solutions. Sample size is shown within each bar.

Figure S6. LGC-46(gf) has not effects on kinetics of endogenous EPSCs and IPSCs, related to Figure 6 (A-B) Mean amplitudes and mean widths at 50% peak of endogenous EPSCs (A) and IPSCs (B) from indicated genotypes in 2 mM Ca²⁺ bath solutions.

Figure S7. ncs-2 mutants do not affect basal Ca²⁺, related to Figure 7

(A) Ratio of GCaMP6f and mKate2 in indicated genotypes.

(B) NCS-2-GFP driven by *Pacr-2* is expressed in both somatodendrites and axonal processes at L1 stage after hatch. Scale bars: 10 μ m.

(C) eEPSCs in indicated genotypes and conditions.

*, p < 0.05. Sample size is shown within each bar.

Supplemental Tables

Table S1. Strain information, related to Figure 1-7

Strain	Genotype	Allele description, and notes
N2	wild type	
CZ10402	acr-2(n2420) X	<i>n2420</i> : g4944a (V309M) in K11G12.2 (Jospin et al., 2009)
JSD25	tauIs12[Punc129-ELKS-1-Cerulean]	Previously reported in (Martin et al., 2011)
CZ20048	acr-2(n2420) X; tauIs12[Punc129-ELKS-1-Cerulean]	
EN98	unc-63[kr98-YFP] I	UNC-63-YFP knock in at the endogenous locus (Gendrel et al., 2009)
CZ24849	unc-63[kr98-YFP] I; acr-2(n2420) X	
CZ21294	unc-63[kr98-YFP] ncs-2(tm1943) I	UNC-63-YFP is not altered in <i>ncs-2(tm1943)</i>
CZ20473	ncs-2(ju836) I	<i>ju836</i> : c284t (R72Stop) in F10G8.5
CZ20427	ncs-2(ju836) I; acr-2(n2420) X	
CZ22071	ncs-2(ju843) I; acr-2(n2420) X	<i>ju843</i> : c17t (S6F) in F10G8.5
CZ20527	ncs-2(tm1943) I	<i>tm1943</i> : 1,001 bp deletion in F10G8.5, removes 5' sequences including 486 bp promoter sequences and the first two exons
CZ20212	ncs-2(tm1943) I; acr-2(n2420) X	
CZ22238	nuIs321[Punc-17-mCherry]; juEx6719[Pncs-2-GFP]	<i>ncs-2</i> transcriptional reporter is expressed in cholinergic neurons.
CZ22241	juIs223[Pttr-39-mCherry]; juEx6719[Pncs-2-GFP]	<i>ncs-2</i> transcriptional reporter is expressed in GABAergic neurons.
CZ22459	juSi260[Pncs-2-NCS-2-GFP] ncs-2(tm1943) I	Cas9-mediated insertion on Ch I (<i>ttTi4348</i>)
CZ22345	juSi260[Pncs-2-NCS-2-GFP] ncs-2(tm1943) I; acr- 2(n2420) X	
CZ22648	ncs-2(tm1943) I; acr-2(n2420) X; juEx6887[Prgef-1- NCS-2-GFP]	multiple lines were visually observed for effects on <i>acr-2(gf)</i> induced behavior, and 2 lines were quantitated for convulsion frequency.
CZ21621	ncs-2(tm1943) I; acr-2(n2420) X; juEx6574[Punc- 17β-NCS-2]	multiple lines were visually observed for effects on <i>acr-2(gf)</i> induced behavior, and 2 lines were quantitated for convulsion frequency.

CZ22652	ncs-2(tm1943) I; acr-2(n2420) X; juEx6889[Punc-25-	multiple lines were visually observed for effects
022002	NCS-2-GFP]	on $acr-2(gf)$ induced behavior, and 2 lines were quantitated for convulsion frequency.
CZ19997	tauIs46[Punc129-mCherry-RAB-3]	
CZ20528	ncs-2(tm1943) I; tauIs46[Punc129-mCherry-RAB-3]	
CZ20821	ncs-2(ju836) I; tauIs46[Punc129-mCherry-RAB-3]	
CZ13763	Pacr-2-ACR-2-GFP(juSi21) II	Mos1-mediated insertion on Ch II (<i>ttTi5605</i>) (Qi et al., 2013)
CZ21203	ncs-2(tm1943) I; Pacr-2-ACR-2-GFP(juSi21) II	
CZ19788	lite-1(ce314) X	
CZ23320	lite-1(ce314) X; juIs489[Punc-17-ChetaHR-mKate2]	
CZ22837	ncs-2(tm1943) I; lite-1(ce314) X; juIs489[Punc-17- ChetaHR-mKate2]	
CZ23338	ncs-2(tm1943) I; lite-1(ce314) X; juIs489[Punc-17- ChetaHR-mKate2]; juEx7118[Pacr-2-NCS-2-GFP]	
CZ23339	ncs-2(tm1943) I; lite-1(ce314) X; juIs489[Punc-17- ChetaHR-mKate2]; juEx7119[Pacr-2-NCS- 2(EFmut)-GFP]	
CZ23855	acr-16(ok789) V; juIs489[Punc-17-ChetaHR- mKate2]	
CZ24146	ncs-2(tm1943) I; acr-16(ok789) V; juIs489[Punc-17- ChetaHR-mKate2]	
ZX426	zxIs3[Punc-47-ChR2(H134R)-YFP] I	Previously reported in (Liewald et al., 2008)
CZ15301	<i>zxIs3[Punc-47-ChR2(H134R)-YFP] I; acr-2(n2420) X</i>	
CZ22029	juEx6678[Pacr-2-GCaMP6f-SL2-mKate2]	
CZ22153	acr-2(n2420) X; juEx6678[Pacr-2-GCaMP6f-SL2- mKate2]	
CZ24971	juIs517[Phsp-ACR-2(gf)]; juEx6678[Pacr-2- GCaMP6f-SL2-mKate2]	
CZ22385	ncs-2(tm1943) I; juEx6678[Pacr-2-GCaMP6f-SL2- mKate2]	
CZ22386	ncs-2(tm1943) I; acr-2(n2420) X; juEx6678[Pacr-2- GCaMP6f-SL2-mKate2]	

CZ24882	juEx6780[Pacr-2-NCS-2-GFP]	
CZ24879	juEx6935[Pacr-2-NCS-2(EFmut)-GFP]	
CZ24938	juEx6977[Pacr-2-NCS-2(G2A)-GFP]	
CZ24941	juEx6979[Pacr-2-NCS-2(S6F)-GFP]	
CZ22351	ncs-2(tm1943) I; acr-2(n2420) X; juEx6780[Pacr-2- NCS-2-GFP]	multiple lines were visually observed for effects on $acr-2(gf)$ induced behavior, and 2 lines were quantitated for convulsion frequency.
CZ22750	ncs-2(tm1943) I; acr-2(n2420) X; juEx6935[Pacr-2- NCS-2(EFmut)-GFP]	multiple lines were visually observed for effects on $acr-2(gf)$ induced behavior, and 2 lines were quantitated for convulsion frequency.
CZ22861	ncs-2(tm1943) I; acr-2(n2420) X; juEx6977[Pacr-2- NCS-2(G2A)-GFP]	multiple lines were visually observed for effects on $acr-2(gf)$ induced behavior, and 2 lines were quantitated for convulsion frequency.
CZ22863	ncs-2(tm1943) I; acr-2(n2420) X; juEx6979[Pacr-2- NCS-2(S6F)-GFP]	multiple lines were visually observed for effects on $acr-2(gf)$ induced behavior, and 2 lines were quantitated for convulsion frequency.
CZ22777	acr-2(ok1887) X; juEx6952[Phsp-ACR-2(gf)-GFP]	<i>ok1887</i> : 2,857 bp deletion and 420 bp random nucleotide insertion in 5' region of K11G12.2, removes the first 3 exons of <i>acr-2</i> (Jospin et al., 2009)
CZ22917	juEx6952[Phsp-ACR-2(gf)-GFP]	
CZ24637	juIs517[Phsp-ACR-2(gf)]	
CZ24765	ncs-2(tm1943) I; juIs517[Phsp-ACR-2(gf)]	
CZ25297	ncs-2(tm1943) I; juIs517[Phsp-ACR-2(gf)]; juEx7661[Pacr-2-NCS-2-GFP]	
CZ25298	ncs-2(tm1943) I; juIs517[Phsp-ACR-2(gf)]; juEx7662[Pacr-2-NCS-2(EFmut)-GFP]	
CZ21292	<i>lgc-46(ju825gf) III; acr-2(n2420) X</i>	ju825gf: M314I in LGC-46 protein.
CZ21949	acr-2(n2420) X; juEx6643[Punc-17β-LGC-46(gf)]	

Plasmid	Description	Description
	FRT-HygromycinR-FRT-Pncs-2-	For Cas9-mediated insertion on Ch I (<i>ttTi4348</i>), it includes 4 kb upstream sequence from the start codon and 683 bp
PCZGY2671	NCS-2-GFP ^a	downstream sequence after stop codon of NCS-2.
PCZGY2673	Prgef-1-NCS-2-GFP	
PCZGY2674	Pacr-2-NCS-2-GFP	
PCZGY2675	Punc-25-NCS-2-GFP	
PCZGY2676	Pncs-2-NCS-2-GFP	
PCZGY2677	Pacr-2-GCaMP6f-SL2-mKate2	
PCZGY2678	Pacr-2-NCS-2(EFmut)-GFP	<i>EFmut: D75A/E86Q/D111A/E122Q/D158A/E169Q</i>
PCZGY2690	Pacr-2-NCS-2(G2A)-GFP	
PCZGY2694	Punc-17β-NCS-2	
PCZGY2762	Pacr-2-NCS-2(S6F)-GFP	
pCZGY3108	Punc-17-ChetaHR-mKate2	ChetaHR: ChR2(E123T/H134R)
PCZ939	Phsp-16.2-ACR-2(gf)-GFP	
PCZ940	Phsp-16.41-ACR-2(gf)-GFP	
PCZ941	Phsp-16.2-ACR-2(gf)	
PCZ942	Phsp-16.41-ACR-2(gf)	

Table S2. Plasmid information, related to Figure 4, Figure 5 and Figure 7

^a: 3'*utr* of *ncs-2* is used for the construct. If not indicated, 3'*utr* of *unc-54* is used.

Supplemental Reference

Gendrel, M., Rapti, G., Richmond, J.E., and Bessereau, J.L. (2009). A secreted complement-control-related protein ensures acetylcholine receptor clustering. Nature 461, 992-996.

Jospin, M., Qi, Y.B., Stawicki, T.M., Boulin, T., Schuske, K.R., Horvitz, H.R., Bessereau, J.L., Jorgensen, E.M., and Jin, Y. (2009). A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans. PLoS Biol 7, e1000265.

Liewald, J.F., Brauner, M., Stephens, G.J., Bouhours, M., Schultheis, C., Zhen, M., and Gottschalk, A. (2008). Optogenetic analysis of synaptic function. Nat Methods 5, 895-902.

Martin, J.A., Hu, Z., Fenz, K.M., Fernandez, J., and Dittman, J.S. (2011). Complexin has opposite effects on two modes of synaptic vesicle fusion. Curr Biol 21, 97-105.

Qi, Y.B., Po, M.D., Mac, P., Kawano, T., Jorgensen, E.M., Zhen, M., and Jin, Y. (2013). Hyperactivation of B-type motor neurons results in aberrant synchrony of the Caenorhabditis elegans motor circuit. J Neurosci 33, 5319-5325.