Science Advances

AAAS

advances.sciencemag.org/cgi/content/full/3/7/e1603238/DC1

Supplementary Materials for

Superconductivity across Lifshitz transition and anomalous insulating state in surface K–dosed (Li_{0.8}Fe_{0.2}OH)FeSe

Mingqiang Ren, Yajun Yan, Xiaohai Niu, Ran Tao, Die Hu, Rui Peng, Binping Xie, Jun Zhao, Tong Zhang, Dong-Lai Feng

> Published 14 July 2017, *Sci. Adv.* **3**, e1603238 (2017) DOI: 10.1126/sciadv.1603238

This PDF file includes:

- fig. S1. Resistivity, dc magnetic susceptibility measurement, and optical microscopy image of (Li_{0.8}Fe_{0.2})OHFeSe single crystal.
- fig. S2. Topographic image and STS taken on the as-cleaved Li_{0.8}Fe_{0.2}OH surface.
- fig. S3. Spatial distribution of the superconducting gap on the as-cleaved FeSe surface.
- fig. S4. Additional topographic images of the FeSe surface after K dosing.
- fig. S5. Unnormalized dI/dV spectra at the K_c near Lifshitz transition.
- fig. S6. dI/dV maps and corresponding FFTs taken in an area of $100 \times 100 \text{ nm}^2$ of the FeSe-terminated surface at $K_c = 0.124 \text{ ML}$.

fig. S1. Resistivity, dc magnetic susceptibility measurement, and optical microscopy image of (Li_{0.8}Fe_{0.2})OHFeSe single crystal. (A) Temperature dependence of the resistivity of (Li_{0.8}Fe_{0.2})OHFeSe single crystal. (**B**) Temperature dependence of the DC magnetic susceptibility of (Li_{0.8}Fe_{0.2})OHFeSe measured with zero-field cooling (ZFC). (**C**) Optical microscopy image of a surface of (Li_{0.8}Fe_{0.2})OHFeSe single crystal.

fig. S2. Topographic image and STS taken on the as-cleaved Li_{0.8}Fe_{0.2}OH surface. (A) Topographic image of as-cleaved Li_{0.8}Fe_{0.2}OH surface. (B) dI/dV spectra taken on Li_{0.8}Fe_{0.2}OH surface and FeSe surface, respectively.

fig. S3. Spatial distribution of the superconducting gap on the as-cleaved FeSe surface. (A) Topography of FeSe surface (same as Fig. 1A). (B) dI/dV spectra taken along the line cut marked in (A) shows a spatially-homogenous superconducting gap.

fig. S4. Additional topographic images of the FeSe surface after K dosing. (A). K_c =0.124 ML, taken mostly in a single rotational domain. (B) FFT image of (A), showing six Bragg spots. (Note that due to the tip drift in scanning the Bragg spots are not perfectly six-folding symmetric). (C) K_c =0.226 ML (size: 40×40 nm²), (D) K_c =0.306 ML (size: 50×50 nm²)

fig. S5. Unnormalized dI/dV spectra at the K_c near Lifshitz transition.

Un-normalized dI/dV spectra of K_c =0.069 ML, 0.080ML and 0.098 ML, showing the evolution of the DOS near the Lifshitz transition. The red arrows indicate the double coherence peaks of the δ band.

fig. S6. d*I*/d*V* maps and corresponding FFTs taken in an area of $100 \times 100 \text{ nm}^2$ of the FeSe-terminated surface at $K_c = 0.124$ ML. Set point: $V_b = 50 \text{ mV}$, I = 150 pA, $\Delta V = 3 \text{ mV}$. Each map has 200×200 pixels. The FFT images are four-fold symmetrized.