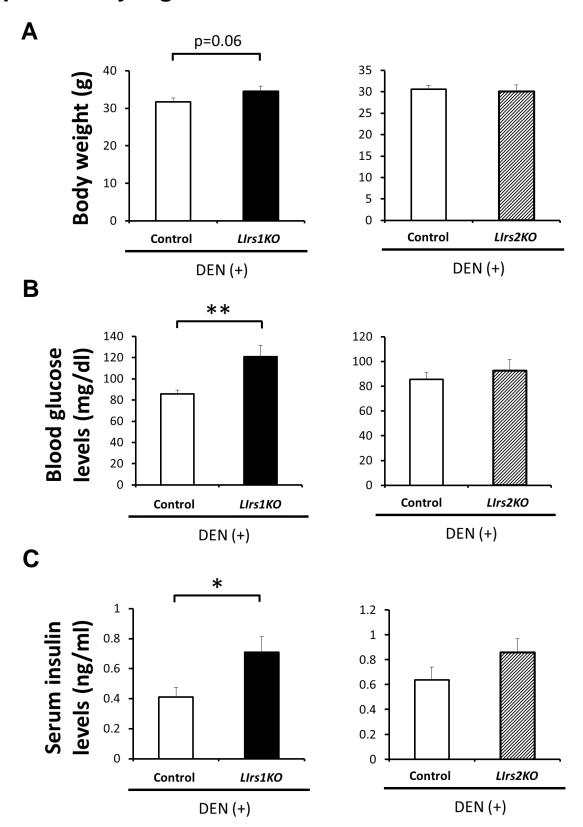
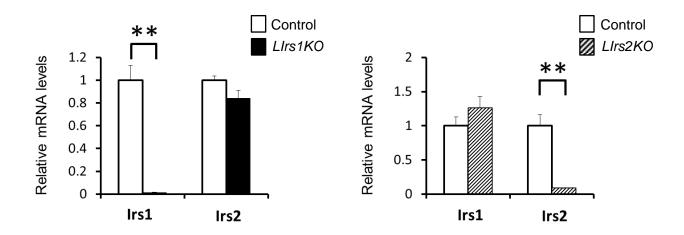
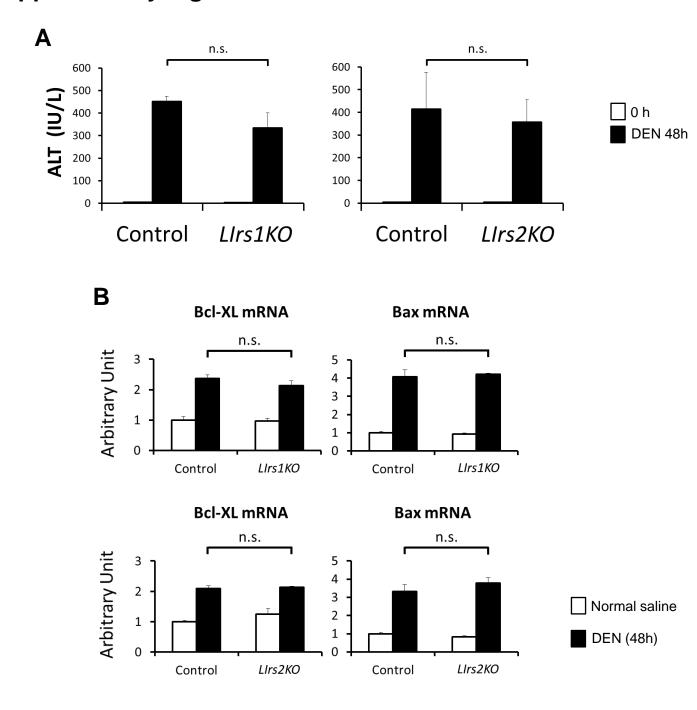
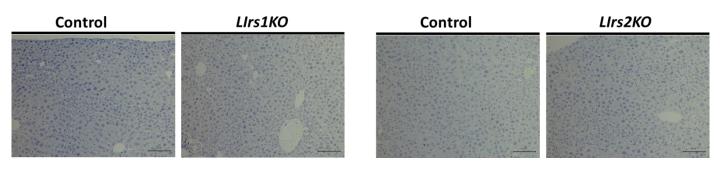

SUPPLEMENTAL INFORMATION

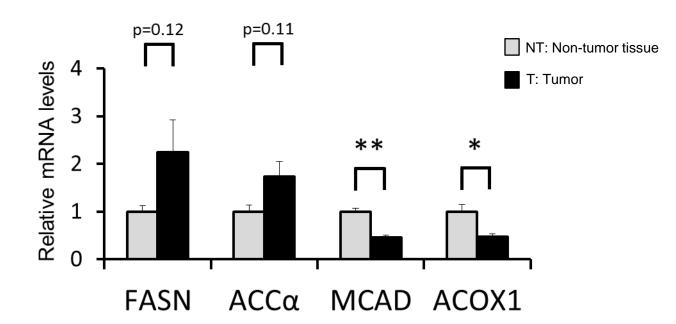
Role of insulin receptor substrates in the progression of hepatocellular carcinoma


- Yoshitaka Sakurai¹, Naoto Kubota^{1,2,3,4}*, Iseki Takamoto¹, Atsushi Obata⁵, Masahiko Iwamoto¹, Takanori Hayashi¹, Masakazu Aihara¹, Tetsuya Kubota^{1,3,4}, Hiroshi Nishihara^{6,7}, and Takashi Kadowaki¹*
- ¹ Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- ² Department of Clinical Nutrition Therapy, The University of Tokyo, Tokyo, Japan
- ³ Clinical Nutrition Program, National Institute of Health and Nutrition, National Institutes of
- Biomedical Innovation, Health and Nutrition, Osaka, Japan
- ⁴ Laboratory for Metabolic Homeostasis, RIKEN Center for Integrative Medical Sciences,
- Kanagawa, Japan
- ⁵ Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School,
- Kurashiki, Okayama, Japan
- ⁶ Department of Translational Pathology, Hokkaido University Graduate School of Medicine,
- Sapporo, Hokkaido, Japan
- ⁷ Translational Research Laboratory, Hokkaido University Hospital, Clinical Research and
- Medical Innovation Center, Sapporo, Hokkaido, Japan


Supplementary Figure S1. Expression levels of Irs1 and Irs2 genes in the tumors (T) and matched non-tumor tissues (NT) in each individual mouse treated with DEN (n=17) (paired t test). The increase in the tumor: non-tumor tissue expression ratio for Irs1 mRNA was compared to that for Irs2 mRNA. **P < 0.01.


Supplementary Figure S2. Macroscopic and microscopic examination in the liver from each group of mice in the absence of DEN. Gross appearances and H&E staining of the representative livers in control (*Irs1*^{lox/lox}) and *LIrs1KO* mice, or control (*Irs2*^{lox/lox}) and *LIrs2KO* mice at 10 months after the normal saline administration. Scale bar, 10mm (gross appearances), 200 μm (H&E staining).


Supplementary Figure S3. Metabolic parameters at 10 months after DEN administration in each group of mice. (A) Body weight, (B) Fasting blood glucose levels, (C) Fasting serum insulin levels between 10-month-old DEN-treated control ($Irs1^{lox/lox}$) and LIrs1KO mice, or between 10-month-old DEN-treated control ($Irs2^{lox/lox}$) and LIrs2KO mice (n=11-12). *P < 0.05. **P < 0.01.


Supplementary Figure S4. Expression levels of Irs1 and Irs2 genes in tumors from each DEN-treated mouse group. Values are the means \pm SEM of data obtained from the analysis of each group (n=8-11). **P < 0.01.

Supplementary Figure S5. Acute reaction in the liver following initial exposure of DEN. (A) Serum ALT levels (n=6-8) and (B) expression levels of Bcl-XL and Bax in the livers from control ($Irs1^{lox/lox}$) and LIrs1KO mice, or control ($Irs2^{lox/lox}$) and LIrs2KO mice at 48h after administration of DEN (100mg/kg) or normal saline (n=4). Values are the means \pm SEM of data obtained from each group. (n.s., not significant difference.)

Supplementary Figure S6. Ki67 immunostaining in the liver from each group of mice in the absence of DEN. Representative images of Ki67 immunostaining in the livers from control ($Irs1^{lox/lox}$) and LIrs1KO mice, or control ($Irs2^{lox/lox}$) and LIrs2KO mice at 10 months after the normal saline administration. Scale bar, 100 μ m.

Supplementary Figure S7. Expression levels of lipogenic genes (FASN and ACC α) and genes related to β -oxidation (MCAD and ACOX1) in tumors (T) and matched non-tumor tissues (NT) in each individual mouse treated with DEN (C57BL/6J) (n=7) (paired t test). *P < 0.05. **P < 0.01.

List of probes and primer sequences for quantitative RT-PCR **Supplementary Table S2**

TaqMan[®] probe

lrs1	Mm00439720_s1
lrs2	Mm03038438_m1
Axin2	Mm00443610_m1
Cyclophilin A	Mm02342429_g1

Primer sequences

VED	Forward	5'-CACACCCGCTTCCCTCAT-3'
ALL	Reverse	5'-TTTTCGTGCAATGCTTTGGA-3'
2	Forward	5'-CCCGAGTGCCCGTCTGGCTA-3'
IK	Reverse	5'-GCCAGGTTGTTGCCCCCTCG-3'
10 (0,0011)	Forward	5'-ATCAGAGTGAGTATGACGACTCGG-3'
IR (exoniti)	Reverse	5'-TCCTGACTTGTGGGCACAATGGTA-3'
and	Forward	5'-TTGTAGTTATATTTCAAAGCAGCAAA-3'
ארט	Reverse	5'-AGAAGATCTGGATCAATCCCTTT-3'
177	Forward	5'-CTGGACCAGAGACCCTTTGC-3'
IGLT	Reverse	5'-GGACGGGGACTTCTGAGTCTT-3'
וכבט	Forward	5'-GTGCTGCATCGCTGCTTAC-3'
IGFZ	Reverse	5'-ACGTCCCTCTCGGACTTGG-3'
10510	Forward	5'-GTGGGGCTCGTGTTTCTC-3'
IGLIN	Reverse	5'-GATCACCGTGCAGTTTTCCA-3'
LO dilay	Forward	5'-GCGTACCCTGACACCAATCTC-3'
Cyclill D1	Reverse	5'-CTCCTCTTCGCACTTCTGCTC-3'
O Marie	Forward	5'-GACGAGCACAAGCTCACCTC-3'
C-IVIYC	Reverse	5'-CCCCAGCCAAGGTTGTGAGG-3'
an J	Forward	5'-CCGCCCCTGTCCCCTAT-3'
C-JUII	Reverse	5'-TCCTCATGCGCTTCCTCTC-3'
0	Forward	5'-CCCCAAACTTCGACCATGAT-3'
C-LOS	Reverse	5'-GGAGGATGACGCCTCGTAGTC-3'
IV 19 0	Forward	5'-GAATGGAGCCACTGGCCA-3'
DCI-AL	Reverse	5'-GCTGCCATGGGAATCACCT-3'
a Ac	Forward	5'-CCAGGATGCGTCCACCAAGAA-3'
Day	Reverse	5'-CTCTGCAGCTCCATATTGCTGT-3'
Z IN F	Forward	5'-CCAGACCCTCACACTCAGATC-3'
D-LNI	Reverse	5'-CACTTGGTGGTTTGCTACGAC-3'

0 0000	Forward	5'-CATTCGCGTGGATAAGGAGT-3'
C-JININI	Reverse	5'-CACTGCAGGAGGTCGTAGG-3'
CL GLALA	Forward	5'-TTGTGGATAAACACTACTGGAGGT-3'
INIINIK-TZ	Reverse	5'-AAATCAGCTTGGGGTAAGCA-3'
7,505	Forward	5'-AGACGGACACATGGAGGT-3'
VEGF	Reverse	5'-AAAGACTCAATGCATGCCAC-3'
TI I I	Forward	5'-CCAGCTGGGAATCGTCGTT-3'
GEOIT	Reverse	5'-CAAGTCTGCATTGCCCATGAT-3'
CAIT	Forward	5'-TGATCGCCTGCTTATTCACGG-3'
ZVL	Reverse	5'-AACCGCCTAGAAATCTCCAGA-3'
76400	Forward	5'-GTCCAGAATCTCATGGTGCTGA-3'
xndon	Reverse	5'-GCAATGTTGTCTCGATTCCAGA-3'
CLANG	Forward	5'-TCGCATGCAGCACCTGATT-3'
PNINZ	Reverse	5'-CCTCGAATAGCTGCAAGTGGTA-3'
4 + v	Forward	5'-TGAGAGGGTCCTATCAAAACCA-3'
Athon	Reverse	5'-CACCAGAATCTCCTGCTCAAC-3'
200001	Forward	5'-GCAGACCCTGGTGAGTGG-3'
SNEDFI	Reverse	5'-GTCGGTGGATGGGCAGTTT-3'
NOVE	Forward	5'-TTGCTGGCACTACAGAATGC-3'
NCAL	Reverse	5'-AACAGCCTCAGAGCGACAAT-3'
۷	Forward	5'-CTGACGTATACTGAACTGGTGTTGGATG-3'
ACCA	Reverse	5'-TTTCCAGGCTACCATGCCAATCTC-3'
	Forward	5'-TCGGAACAAGTCGGAGGT-3'
INIGEL	Reverse	5'-TCAGCAGCTGTATGCCAAAG-3'
∞ LT02	Forward	5'-GACTCCGCTCGTTC-3'
CLITA	Reverse	5'-TCTGCCATCTTGAGTGGTGA-3'
	Forward	5'-AGTACCCTGTGGAGAAGCTGAT-3'
MCAD	Reverse	5'-TCAATGTGCTCACGAGCTATG-3'
7,007	Forward	5'-GCCAAGGCGACCTGAGTGAGC-3'
ACOVI	Reverse	5'-ACCGCAAGCCATCCGACATTC-3'
Ovelonbilin A	Forward	5'-GAGCTGTTTGCAGACAAAGTTC-3'
Cyclopillill A	Reverse	5'-CCCTGGCACATGAATCCTGG-3'