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Supplementary Information A: The initial model preparations, the Wootten numbering, and the 

gridcount method  
 

The initial model preparation. Amino acid sequence analysis indicates that the 7TM is conserved with 

41% identity between the GCGR and PAC1R, and 31% between the CRF1R and PAC1R. We first 

generated several full-length 3D atomistic models using SWISS-MODEL,1 using both GCGR (PDB 

code: 4L6R)2 and CRF1R (PDB code: 4K5Y)3 as the 7TM templates. The sequence alignments are 

displayed in Supplementary Table 1. The target ECD used the crystal structure (PDB code: 3N94)4 as 

the template. The full-length homology models in membrane-bound environment went through a 

multiple-step refinement (energy minimization and equilibration) with 100-ns MD simulation. We 

obtained two structurally stable models converged to similar 7TM structures but different ECD 

orientations: one 7TM template is from GCGR, the other is from CRF1R. (Supplementary Fig. 1) 

Despite the initial full-length models, the critical ECD orientations remain to be understood, 

especially for further study of ligand binding. As PACAP and glucagon belong to the same peptide 

family, we chose the stable homology model with 7TM from GCGR template to generate a few models 

differing in ECD orientations by rotating the backbone dihedrals in the linker (Supplementary Fig. 2). 

We relaxed each model with major stages of energy minimization, 200-ps equilibration, and 20~50-ns 

short simulations. Four models of different ECD orientations were then selected (labeled as G1, G2, 

G3, and G4) for further simulations.   

 
 

Supplementary Fig. 1 PAC1R homology modeling and refinements. Homology models 2 and 4 (pink and 
magenta) converged to similar TMD structures after 100 ns (GCGR and CRF1R) but different ECD orientations. 
Homology models 1 and 3 (yellow and green) are unstable (with visible conformational distortions) after 1.4 
and 11.3 ns.  Model 2 was selected for microsecond simulations. 
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Supplementary Fig. 2 Top view and side view of models generated from rotating ECD of Model 2 

(Supplementary Fig. S1). Extended simulations were only carried out from the starting models of G1, G2, G3, 

and G4. We did not pursue the simulations starting from the models of g1’, g3’, and g4’, since they were 

converted to similar intermediate conformations of G1, G3, and G4 after 36, 5, and 2 ns.  

 

The Wootten numbering. Similar to the Ballesteros–Weinstein numbering scheme5 for class A GPCRs, 

the Wootten numbering scheme6 helps to identify the conserved residues in the transmembrane (TM) 

helices of class B GPCRs and facilitates the comparisons among members in the same class. The most 

conserved residue in each TM helix is designated X.50b (the “b” after the number is to identify class B 

when comparing with class A), where X is the TM helix number and all other residues in that helix are 

numbered relative to this conserved position (highlighted in bold in Supplementary Table 1).   

 

The gridcount method. Gridcount7 is an analysis tool that creates 3D (number) densities from 

molecular dynamics trajectories. It is used to look at the density of water or ions near proteins or in 

channels and pores. First, it counts occurrences of molecules on a 3D grid over a MD trajectory, and 

then creates (after proper normalization) a 3D density map. Next, the map is calculated by the 

cylindrical and slice averages and converted into a density map that is readable by VMD.8  
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Supplementary Table 1. Transmembrane domain sequence alignment of PAC1R with GCGR and CRF1R in 
the Wootten numbering6. 
 

 
 
Note: The conserved residues in TM1-7 are highlighted in bold. 
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Supplementary Information B: The construction, validation, and analyses of our Markov state 

model (MSM) 

We used the MSMBuilder9,10 program to construct the MSM transition matrix between the open and 

closed conformations and calculated the transition timescale based on the transition-path theory.11-14 

We first prepared the trajectory dataset with atoms indices by saving the Cα coordinates of res. 30-419. 

The Cα atoms are often used to represent the overall protein structures and the dynamic terminal 

residues should be excluded. With the structural stabilities of our PAC1R models in the microsecond 

MD refinements (by RMSD measurement in Supplementary Fig. 5), each PAC1R model reached to a 

relatively stable state after 200~500 ns, which had been continuously relaxed to prove the stability for 

another 1.5~2.5 µs. The percentages of the open and closed states were 23.2%, 17.5%, 19.9%, and 

25.1% for G4, G1, G2, and G3 respectively in the total conformations we sampled. Therefore, we have 

collected six shorter MD simulations of 20~50 ns each, and the first 200~550 ns from the long 

simulations, totaling 6,324 configurations.  

Next, we grouped the conformation dataset into a set of clusters, called microstates, based on structural 

similarities. We used the k-centers algorithm9 to group the dataset into 55 clusters by RMSD metric 

with mean distance of ~0.34 Å and maximum distance of ~0.56 Å, which is in the range of the RMSD 

standard deviations of the last ~1.5 µs in Supplementary Fig. 3. The small cluster number, in a 

difference from the hundreds to thousands of intrinsic conformations of previous protein 

folding/unfolding studies,12,15 is the result of limited conformational changes due to the linker rotation 

and partial melting.  

 

Supplementary Fig. 3 Time evolution of PAC1R RMSDs. RMSDs were computed by backbone alignments on 
initial structures with standard deviations of 0.34~0.56 Å in the last ~1.5 µs. Each PAC1R model reached to a 
relatively stable state after 200~500 ns, which had been continuously relaxed to prove the stability for another 
1.5~2.5 µs. The conformational states between which we calculated the shortest pathways are circled.  
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With the set of microstates discretization, a series of microstate transition matrixes in the evolution of 

the observation interval or lag time at τ, 2τ, …, nτ, were constructed, on which the implied timescales 

and the Chapman-Kolmogorov test16 were carried out to examine if a microstate transition matrix with 

the microstate discretization and a chosen lag time is Markovian.12,16,17 We used maximum likelihood 

estimation to build the transition matrixes at series of lag times, in which increasing the lag time means 

that states can get larger and more coarse grained as the longer lag time the fewer states are kinetically 

relevant (kinetically reach each other on timescales faster than the lag time).18 The implied timescales 

as a function of the lag time and the eigenvalues of the transition matrix are shown in in 

Supplementary Fig. 4. The macrostates number of four is determined by the number of the major gaps 

of the implied timescales as well as the number of eigenvalues of the transition matrix that are close to 

1.19 The division of four macrostates were calculated from the eigenfunction structure using the Perron 

Cluster Cluster Analysis (PCCA) method.19 Consistently, the conformations of G1, G2, G3, and G4 

were lumped into the four macrostates, A, B, C, and D, respectively. 

 

Supplementary Fig. 4 Left panel: Implied timescales as a function of the lag time. The macrostate partitions 
were robust within ranges of lag time series. Right panel: Eigenvalues of the transition matrix at lag time of 4.8 
ns. Only the first seventeen data are shown.  

 

The Chapman-Kolmogorov test can be implemented on an individual state or set of states.12,16 In 

general, we compared the transition probability matrix T(nτ) based on the transition counts (known as 

observed trajectory) and [T(τ)]n from MSM for a given set of states A defined at the starting microstate 

discretization.12,16 The initial stationary distribution at time τ restricted to a set A is given by 

𝑤!! =
𝜋!
𝜋!!∈!

          𝑖 ∈ 𝐴

0                 𝑖 ∉ 𝐴
 ,                                (𝑠 − 1) 
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where π is the stationary probability of the m × m transition matrix T(τ). The trajectory-based time-

dependence of the probability to be after time nτ with starting distribution 𝐰! is given by  

𝑝!" 𝐴,𝐴;  𝑛𝜏 = 𝑤!! 𝑝!"(𝑖,𝐴;  𝑛𝜏)
!∈!

, (𝑠 − 2) 

where  𝑝!"(𝑖,𝐴;  𝑛𝜏) is the trajectory-based estimate of the stochastic transition function given by 

 𝑝!" 𝑖,𝐴;  𝑛𝜏 =
𝑐!"!"#(𝑛𝜏)!∈!

𝑐!"!"#(𝑛𝜏)!
!!!

,                      (𝑠 − 3) 

where  𝑐!"!"#(𝑛𝜏) is number of transition counts between states i and j at time nτ.  

Likewise, the probability to be at A by Markov model is given by  

𝑝!"! 𝐴,𝐴;  𝑛𝜏 = [(𝐰!)!   𝐓!(𝜏)]!  
!∈!

, (𝑠 − 4) 

We tested how well the equality 𝑝!" 𝐴,𝐴;  𝑛𝜏 = 𝑝!"! 𝐴,𝐴;  𝑛𝜏  holds, as whether the solid line is 

within the error bar range of the dash line in Supplementary Fig. 5. The uncertainties of the transition 

probabilities estimated from the MD trajectories are computed as:  

𝜖!" 𝐴,𝐴;  𝑛𝜏 = 𝑛
𝑝!" 𝐴,𝐴;  𝑛𝜏 − [𝑝!" 𝐴,𝐴;  𝑛𝜏 ]!

𝑐!"!"#(𝑛𝜏)!
!!!!∈!

.         (𝑠 − 5) 

There are around 27 microstates that constitute the shortest and second shortest transition pathways 

between closed and open states, and were identified as four subsets based on the macrostate division. 

The Chapman-Kolmogorov test of the four subsets is shown in Supplementary Fig. 5, all of which hold 

the test within the statistical uncertainty. The transition probabilities from MSM agree well with the 

probabilities in observed trajectory within statistical uncertainty at lag time of 1.68 ns. Thus, we built 

up a four macrostates MSM with 94% data in use with lag time of 1.68 ns.  

Using the transition-path theory (TPT),11-14 we calculated the minimum transition net flux of the 

shortest pathway connecting the closed states or from the open states to closed states in the transition 

matrix. With the lag time divided by the minimum transition net flux, we obtained the time to travel 

from one set of states to the other. The minimum transition net flux, number of microstates, and 

estimated transition time in the shortest pathway between closed and open states are summarized in 

Supplementary Table 2. The pathways connecting the closed states (G1, G2, and G3) are relatively 

short, but from closed states to the open states (G4) it is rather remote, suggesting a clear partition in 

the conformational states. Regarding the minimum transition flux, the reversible transitions within the 
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closed states are about 10-30 times faster than the transition from open states to a closed one. Key 

conformations in the shortest pathways among closed and open states are summarized in Fig. 1A.  

 

 

Supplementary Fig. 5 Microstates that constitute the shortest and second shortest transition pathways between 
closed and open states were divided into four subsets (A, B, C, and D) according to macrostate division and 
examined by Chapman-Kolmogorov test. The transition probabilities from MSM agree well with the 
probabilities in the observed trajectories within statistical uncertainty. 

 

Supplementary Table 2. The minimum transition net flux, the number of microstates, and the estimated 
transition time of the shortest pathways between closed and open states shown in Fig. 1A.  

 
G1-G2	 G1-G3	 G2-G3	 G1-G4	 G2-G4	 G3-G4	

Minimum net flux (10-5)	 6.10	 7.17	 7.84	 0.41	 0.26	 0.59	

Number of microstates	 3	 5	 3	 13	 12	 11	

Transition time (µs) 27.6	 23.4	 21.4	 412.3	 650	 284.5	

Note: G1, G2, G3 and G4 are represented by one or two microstates. 
  



 S9 

Supplementary Information C: Details of the PAC1R orientations and conformations 

 

Supplementary Fig. 6 Time evolutions of the ECD orientation (θ) and the ECM-7TM separation in G1-G4 
trajectories. After 0.2-1.2 µs, three of four simulations (G1-G3) turned out to form close ECD-7TM contacts — 
as shown by the ECD-7TM distance mostly within 42 Å. The open conformation of the PAC1R was stable and 
lasted for over 1.5 µs to the end of the simulation. The color scheme is consistent with Fig. 1.   
 

 

Supplementary Fig. 7 Structural stability of the PAC1R models after microsecond MD refinements. (A) 
RMSDs with standard errors (± 0.4 Å) computed by backbone alignments of ECD core on crystal structure 
(PDB ID: 3N94), and 7TM on GCGR (PDB ID: 4L6R and 5EE7) and CRF1R (PDB ID: 4K5Y) for four ligand-
free states (G1-G4). (B) Sideview of the ECD core alignments, topview of the 7TM alignment, and sideviews of 
the β3-β4 loop and linker of the four final states are shown on the right. The color scheme and line types are 
consistent with Fig. 1.   
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Supplementary Fig. 8 Overlapped cartoon illustrations of the initial (white) and final (red) conformations in 
four PAC1R-short model simulations with res. 89-109 deleted from the final models of our PAC1R simulations; 
each system was simulated for 120~160 ns.  

 

Supplementary Information D: Helices distance and Residue-residue minimum-distance maps  
 

 

Supplementary Fig. 9 (A) Plots of the helical separation changing over time. (B) Plot of TM6 Z-COM shift 

over time. 
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Supplementary Fig. 10 The residue-residue minimum-distance maps of (A) ECD and ECLs and of (B) TM2-
TM3 and TM6-TM7. Data were collected and averaged from the last 100 ns of each trajectory. In (B), the 
upward-pointing arrows represent the residue pair getting closer and the downward-pointing arrows represent 
the residue pair getting father in the open-to-closed transition. The color scheme is consistent with Fig. 1.   

 

Supplementary Information E: PACAP-bound models in the open and closed states  

 

Supplementary Fig. 11 Superposition of the PAC1R ECD-PACAP6-38 solution structure (PDB ID: 2JOD, 
purple) on our open-state (gold) and closed-state final models (blue). Our open-state model (G4) clearly shows 
that the 21-aa sequence does not impact the peptide-binding groove,20 which provides an explanation to the 
unaltered binding properties from 21-aa deletion in previous studies.21  
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