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I. Molecular dynamics protocol
A. System setup

The initial coordinates used for all simulations
of the hydrophilic peripheral arm of complex I
(NADH:ubiquinone oxidoreductase) were adopted from
the Protein Data Bank entry 3IAM and corre-
spond to bacterium T. thermophilus.1 The original
PDB file contains eight different protein subunits,
a 1,4-dihydronicotinamide adenine dinucleotide (NAD)
molecule, a flavin mononucleotide (FMN), and nine iron-
sulfur clusters (ISCs). These cofactors include two Fe2S2
(N1a, N1b) and seven Fe4S4 (N2, N3, N4, N5, N6a, N6b,
N7) ISCs. The topological structure was created by sep-
arating all subunits, individual molecules, and cofactors
and recombining with the addition of hydrogen atoms
and application of all force-field parameters using the
VMD subprogram psfgen.2 The force field topology and
parameters for the protein subunits were taken directly
from the CHARMM36 (with CMAP torsion corrections)
force field.3 CHARMM force field parameters for neutral
FMN were taken from studies of the flavin-binding LOV
(Light-Oxygen-Voltage) domains in the phototropin re-
ceptor protein.4,5 CHARMM parameters for both NADH
and NAD+ have previously been published and the pa-
rameters corresponding to NAD+ were applied here.6,7

FIG. S1. Simulation box with the hydrophilic part of complex
I.
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The parameters for the iron-sulfur clusters (including
modified ligated protein amino acids) were taken directly
from DFT calculations performed by Chang and Kim.8

The electron transfer reactions between the ISC cofac-
tors follow the hydride transfer from NADH to FMN.
We therefore considered the protonated form of FMN
(FMNH) and deprotonated form of NADH (NAD+). The
new charges for the FMNH were calculated with DFT
(B3LYP/6-311+G ) implemented in Gaussian09. A sin-
gle hydrogen atom was added to the N5 nitrogen of the
flavin and the ribitol alcohol was removed and replaced
by a single hydrogen atom (closed shell). Following the
geometry optimization, the partial atomic charges were
obtained from a fit to electrostatic potential (ESP) using
the ”CHelp” option.9 Once the charges were obtained,
the ribitol alcohol was added back to the structure and
the residual charge from the extra hydrogen was added
back to the corresponding carbon atom to assure unit
charge on both the flavin and ribitol substructures.
The ISC cofactors were attached to the protein matrix

through applied patches using psfgen for all correspond-
ing ligations, with the patches obtained from the sup-
plemental material provided by Chang and Kim.8 These
patches include both oxidized and reduced charge states
for all ISCs plus ligands, along with bond, angle, and
dihedral force field parameters.
Finally, after all the charges and topological informa-

tion (bonds, angles, dihedrals, improper angles, etc) were
applied to complex I, TIP3P water was added to the sys-
tem using the CHARMM force field and the solvate

plugin from VMD. Ions were added to the system using
the autoionize plugin, with the resulting ionic concen-
tration of ≃50 mM/L. The resulting system consisted of
481641 atoms in an orthorhombic box with x, y, z box
lengths of 178.9× 148.3× 178.1 Å(Fig. S1). The box di-
mensions were taken after a short 20 ns NPT simulation
(details below) and held constant throughout all subse-
quent NVT simulations.
B. Simulation protocol

All simulations were performed using NAMD 2.9.10

The initial structure described in the previous section
was first simulated (NPT) for 20 ns in order to relax
the waters surrounding the complex I with all ISCs in
their oxidized states except for the reduced N4. This
was followed by 5000 steps of steepest decent minimiza-
tion. This initial equilibration was followed by 340 ns
of production for the charge transfer state N4−/N5/N6a,
with the electron on N4, using the NVT ensemble. The
starting configuration for the charge state N4/N5−/N6a
was extracted at the 60th ns of the previous run. The
new charges were then applied and a 328 ns NVT sim-
ulation was carried out. Finally, the configuration after
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TABLE S1. Distances (Å) and rms displacements (Å2) be-
tween the cofactors in the chain obtained from MD simula-
tions.

State 〈dI,II〉
〈

δd2I,II
〉

〈dII,III〉
〈

δd2II,III
〉

〈dI,III〉
〈

δd2I,III
〉

N4− (I) 12.56 0.05 17.00 0.04 28.49 0.10
N5− (II) 12.98 0.10 17.33 0.05 29.01 0.39
N6a− (III) 12.71 0.03 16.52 0.26 27.66 0.27

100 ns simulation of the N4/N5−/N6a charge state was
used as the starting configuration for the final simulation
of the charge state N4/N5/N6a− simulated for 461 ns.
The total simulation length, including all charge states,
was 1.129 µs.

All production simulations were done using the NVT
ensemble with the Langevin temperature control set to
300 K and a damping coefficient of 5 ps−1. Long-range
electrostatic interactions were treated with the particle
mesh Ewald technique using a cutoff distance of 12.0 Å.
A 2.0 fs timestep was used for all simulations, along with
a 1 ps saving frequency, except for the initial 60 ns of
the charge state N4−/N5/N6a for which the saving fre-
quency was 2 ps. It was noticed that after approximately
50 ns, some of the ISCs would collapse resulting in un-
physical geometries due to a new minimum in the angle
and dihedral energies that was not offset by the van der
Waals interactions. For this reason, we increased the
problematic angle and dihedral force constants (making
the structures slightly more rigid) incrementally making
it impossible for the ISCs to populate these unwanted
and unphysical geometries and assuring the stability of
the simulations.

The center-to-center distances between the cofactors
obtained from MD simulations are listed in Table S1.
The protein matrix does not show major conformations
in response to moving electrons. However, the hydration
levels of N5 and N6a cofactors change upon the arrival of
the electron (see below). In addition, there is a shorten-
ing of the distance between the cofactors in the reduced
N6a− state.

C. Quantum calculations

The coordinates of a particular iron-sulfur cluster were
extracted from the PDB file (PDB:3IAM1) and used as
the starting point for the quantum mechanical (QM) cal-
culations. All QM calculations were done with Gaus-
sian 09.9 The original cysteine (and histidine) residues
were removed from the entire ligated irons-sulfur clus-
ters, keeping only the organic sulfur (or nitrogen) atoms
and ligated carbon atoms. Hydrogen atoms were then
added to fill the valencies. The hydrogen atoms were
geometrically optimized keeping all heavy atoms frozen.

To model the antiferromagnetic coupling between the
iron atoms within the ISCs, we used the broken sym-
metry (BS)11 method by first employing the fragment
sub-directive under the guess directive within Gaussian.
This directive allows one to specify the α and β spins
separately for unpaired electrons in each fragment. All
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FIG. S2. Schematic diagrams of the formal iron charges and
spin configurations for the iron-sulfur clusters in complex I,
in both the (a) reduced and (b) oxidized states. Within the
protein matrix, the ligands R/R’ are cysteine residues for the
iron-sulfur clusters N4 and N6a, while for N5, the ligand R’ is
a histidine. For the quantum calculations performed here,
R/R’ were SCH3 in place of the cysteine residues for N4
and N6a and R’ was NH3 in place of the histidine residue
in N5. Due to the slight asymmetry adopted in the geome-
try from the original PDB file, quantum mechanical calcula-
tions were performed using initial guess Hartree-Fock wave-
functions from all allowed permutations of the charge/spin
configurations.

ground and excited state calculations were performed us-
ing the BS ZINDO technique.12,13 In this methodology,
the initial guess wave function is found by matching the
basis set used in ZINDO with the guess and fragment
keywords in Gaussian and then proceeding to the SCF
and the excited state calculations.

Since the redox properties of the iron-sulfur clusters
are dependent on both the Fe and S atoms, we kept the
Fe and inorganic S atoms as separate fragments in the ini-
tially created guess Hartree-Fock wavefunction. There-
fore, a total of twelve separate fragments were used in
the QM calculations; the four iron atoms, the four in-
organic sulfur atoms, and the four remaining ligands
(SCH3/NH3). For all QM calculations, the inorganic sul-
fur atoms were taken in the state with a formal charge
of −2 and with a spin multiplicity of 1, while the charge
and spin multiplicity of SCH3 (NH3) ligands were taken
to be −1 and 1 (0 and 1), respectively.

The transition metal iron atom is typically found to oc-
cur in one of three possible oxidations states (+2, +3, or
+4) with various possible spin states (Fig. S2). The iron
atoms within the tetranuclear iron sulfur clusters in com-
plex I are found to exist under physiological conditions in
two redox states with formal iron charges (+3,+3,+2,+2)
and (+3,+2,+2,+2).14 The oxidized (Ox) state consists
of two ferric (+3) and two ferrous (+2) atoms anti-
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ferromagnetically coupled and forming a complex with
total spin S = 0. The reduced state has a single ferric
iron atom and three ferrous atoms with an effective spin
S = 1/2. The S = 7/2 reduced state has a comparable
low lying ground state energy.15 This S = 7/2 reduced
state configuration was also included in the calculation
even though it has been shown that the S = 1/2 state
is slightly lower in energy.15 It was also shown that the
four iron atoms within tetranuclear clusters were indis-
tinguishable via the Mössbauer spectroscopy.16

The polarizabilities for the reduced and oxidized states
of the iron-clusters can be found by using the excited
state transition energies and the transition dipole mo-
ments all of which are provided within the ZINDO frame-
work of Gaussian’09 and the BS-ZINDO methodology
used here.12,13 Explicitly, the polarizability tensor for a
given structure can be calculated using

αβγ
0 = 2

∑

j>0

µβ
0jµ

γ
j0

∆E0j
, (S1)

where ∆E0j = Ej − E0 is the difference in energy be-
tween excited state j and the ground state and β, γ
represent Cartesian coordinates. The scalar polarizibil-
ities reported in Fig. S3 are traces of the correspond-
ing tensors α0 = 1

3Tr [α0]. The polarizabilities shown
in Fig. S3 correspond to SCFs produced for the N5 co-
factor for different initial configurations. The red points
within the figure are polarizabilities calculated for the
dominant spin state along the classical trajectory, which
is determined from to the lowest energy eigenvalue of the
complete Hamiltonian.
For comparison, we calculated the polarizabilities for

the cofactors using the double and triple zeta basis sets
(cc-pDVZ and cc-pTVZ) which include polarization func-
tions and the full configuration interaction singles (CIS)
method included in Gaussian along with the broken sym-
metry framework described in the main text under the
Methods section (designated here as BS-CIS). One can
see in Fig. S4 that the dominant spin state contribution
(shown by the red open points) is very slowly converging.
Because of the computational overhead (large amounts
of memory and very long computational times) needed
for the full CIS calculations, slowly converging polariz-
abilities, and the quality of the results provided by BS-
ZINDO for a fraction of the computational cost, the BS-
ZINDO calculation was used for all main results in this
study. The full energy gap calculation was also carried
out using this methodology including 50 excited states
in contrast to the included 100 excited states for the BS-
ZINDO method. The energy gap statistics (Stokes shift
and variational reorganization energies) for the BS-CIS
including 50 excited states is given in Table S3 and are
consistent with the BS-ZINDO calculations.
D. Water Penetration

To understand water’s role in solvating the cofactors,
we calculated the average number of water molecules sur-
rounding the N6a iron-sulfur cluster along the trajectory
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FIG. S3. The polarizability of the iron-sulfur cluster vs the
number of excited states included in the sum in Eq. (S1) for
the reduced (a) and oxidized (b) states of the N5 cofactor
using the BS-ZINDO methodology.12,13 Different spin states
are indicated by black points (the solid lines connecting the
points are drawn to guide the eye). The red points correspond
to the polarizability for the dominant spin state found from
the minimum energy eigenvalue of the complete Hamiltonian.

(Fig. S5). One can see that no waters are present within
a 3 Å shell when the electron is on N4 and begin to ap-
pear after the electron arrives to N5. In the final state,
with the electron on N6a, the average number of waters
increases on the time-scale of ∼ 150 ns from nearly 0 to
∼ 6 waters. This increase in hydration corresponds to an
increase in fluctuations of the electrostatic potential, as
well as an increase in the fluctuations of the electric field.

E. Correlations between the cofactors

Diagonalizing the Hamiltonian matrix along the tra-
jectory produces the lowest-energy eigensatate, with the
energy Ea

g (D/A), among all spin configurations in either
Red or Ox state of each cofactor (a = Red,Ox). These
four energies allow us to define the instantaneous energy
gap17

X =
[

EOx
g (D)− ERed

g (D)
]

−
[

EOx
g (A)− ERed

g (A)
]

(S2)

sampled along the trajectory. In Table S2, we have sep-
arated X into the donor and acceptor contributions in
the variance 〈(δX)2〉. This separation allows us to look
at individual contributions to the total variance and at
the cross term. Except for the N4− → N5 transition, the
total variance of X is largely dominated by the sum of
the variances of individual cofactors.
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TABLE S2. Variances of the energy gap X (Eq. (S2)) produced from the QM/MM formalism. The total is the sum of the
donor and acceptor components, X = X1+X2, X1 = EOx

g (D)−ERed
g (D), X2 = EOx

g (A)−ERed
g (A). All energies are in eV. The

mean of the values in the last column for a given reaction yields the reorganization energy λ in Table I in the main text. The
QC subscript in classical calculation using the electrostatic potential (X = 〈∆φ〉QC) indicates that the potential was averaged
over the quantum center, the cofactor in this case, as well as along the simulation trajectory.

N4←→N5 β
〈

δX2
1

〉

/2 β
〈

δX2
2

〉

/2 β 〈δX1δX2〉 β
〈

δX2
〉

/2
N4−/N5 (1−/2) (QM/MM) 1.75 1.63 1.29 2.09
Classical (X = 〈∆φ〉

QC
) 1.96

Classical (X =
∑

i
∆qiφi) 2.8

N4/N5− (1/2−) (QM/MM) 2.30 2.20 -0.08 4.58
Classical (X = 〈∆φ〉

QC
) 3.40

Classical (X =
∑

i
∆qiφi) 6.2

N5←→N6a β
〈

δX2
1

〉

/2 β
〈

δX2
2

〉

/2 β 〈δX1δX2〉 β
〈

δX2
〉

/2
N5−/N6a (1−/2) (QM/MM) 2.20 1.21 0.68 2.72
Classical (X = 〈∆φ〉

QC
) 2.18

Classical (X =
∑

i
∆qiφi) 4.9

N5/N6a− (1/2−) (QM/MM) 1.79 2.81 0.65 3.95
Classical (X = 〈∆φ〉

QC
) 2.97

Classical (X =
∑

i
∆qiφi) 6.6

TABLE S3. The Stokes reorganization energy, λSt = |X01 −X02|/2, and the variance reorganization energy, λ = σ2
X/(2kBT ),

produced from the QM/MM formalism using the BS-CIS method. All energies are in eV.

Reaction λSt λ
N4−→N5 0.57 2.54
N5−→N6a 1.24 2.63

II. Free energy of electron transfer
Here we provide the derivation of Eqs. (8) and (9) in

the main text, connecting the free energy of electron
transfer to the free energy of Coulomb interaction be-
tween the cofactors in the chain. We start with a general
problem of electron transfer between two cofactors car-
rying the charges ZOx

D (at the donor) and ZOx
A (at the

acceptor) in their oxidized (Ox) states. The total charge
of the donor is therefore ZOx

D − 1 in the initial state and
the total charge of the acceptor is ZOx

A − 1 in the final
state (Fig. S6). The free energy of electron transfer can
be written in the linear response approximation as18

∆G0 = ∆Egas −
1
2χ

LE2 ∗E2 +
1
2χ

LE1 ∗E1. (S3)

Here, ∆Egas is the gas-phase energy gap and χL is the
longitudinal response function of the medium, which gen-
erally can be given as a non-local kernel.19 The elec-
tric field of the donor-acceptor complex Ei in the initial
(i = 1) and final (i = 2) states is integrated over the vol-
ume occupied by the thermal bath (protein and water).
The asterisks notation involves both the volume integral
and the scalar product

Ei ∗Ei =

∫

V

Ei ·Eidr. (S4)

The fields in the initial and final states can be represented
as sums of the corresponding donor and acceptor fields

E1 =ERed
D +EOx

A ,

E2 =EOx
D +ERed

A ,
(S5)

where EOx,Red
A,D are the fields of the donor (D) and accep-

tor (A) in the corresponding redox states. After some
manipulations, we obtain

∆G0 = ∆Egas+∆GA
s −∆GD

s +χL
[

EOx
A ∗Ee

D −EOx
D ∗Ee

A

]

,
(S6)

where Ee
D,A is the electric field of the electron localized

either on the donor or the acceptor. Further, ∆GD,A
s are

the solvation free energy differences between the Red and
Ox states. By using the Coulomb law, this equation can
be transformed to

∆G0 = ∆Egas +∆GA
s −∆GD

s +
4πe2χL

RDA

(ZOx
D − ZOx

A ),

(S7)
where RDA is the donor-acceptor distance. One has ad-
ditionally to keep in mind that the free energy of the
electrostatic field of the donor acceptor complex is con-
tained in ∆Egas

∆Egas = ∆E′

gas +
1
8πE2 ∗E2 −

1
8πE1 ∗E1. (S8)

Combining these terms together one gets

∆G0 = ∆Egas+∆GA
s −∆GD

s

+
e2

RDA

(4πχL − 1)(ZOx
D − ZOx

A ),
(S9)

where ∆Egas is now the difference of the gas-phase ener-
gies of the isolated donor and acceptor fragments, ex-
cluding their Coulomb interaction. The standard as-
signment of the longitudinal susceptibility is19 4πχL =
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FIG. S4. The polarizability of the iron-sulfur cluster vs the
number of excited states included in the sum in Eq. (S1) for
the reduced (a) and oxidized (b) states of the N5 cofactor
using the BS-CIS methodology. Different spin states are in-
dicated by black points (the solid lines connecting the points
are drawn to guide the eye). The red points correspond to
the polarizability for the dominant spin state found from the
minimum energy eigenvalue of the complete Hamiltonian.

1 − ǫ−1
eff , where ǫeff is the effective dielectric constant of

the medium. One obtains the final expression

∆G0 = ∆Egas +∆GA
s −∆GD

s −
e2

ǫeffRDA

(ZOx
D − ZOx

A ).

(S10)
Expressing the first three terms in this equation in terms
of the standard (midpoint) reduction potentials of the
donor and acceptor, one arrives at Eq. (7) in the main
text. For charge separation reactions, ZOx

D = 1 and
ZOx
A = 0 and one arrives from Eq. (S10) at the standard

Rehm-Weller result used in the literature.20

The effective dielectric constant ǫeff in Eq. (S10) is not
known and this relation is not practical for most het-
erogenous systems. An alternative can be thought in
finding the interaction energy between the charges di-
rectly from simulations.
The free energy of two charges placed in a polarizable

medium can be written as the sum of the direct Coulomb
interaction between them and the variance of the medium
potentials φ1 and φ2 at the location of the charges (linear
response approximation21)

Gs =
q1q2
R

−
β

2
〈(q1δφ1 + q2δφ2)

2〉. (S11)

The self variances in this equation 〈(δφi)
2〉 produce sol-

vation free energies and the cross variance is responsible
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FIG. S5. The number of waters within a 3 Å shell surrounding
N6a along the simulation trajectory. The solid blue curve
represents the rolling average number of waters surrounding
N6a from the configuration with the electron on N4 (first
vertical dashed line), to the electron on N5 (second vertical
dashed line), to the final state studied here with the electron
on N6a. The dashed blue line represents the rolling average
taken only along the trajectory with the electron on N6a.
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FIG. S6. Schematics of electron transfer in a donor-acceptor
complex. The charged of the oxidized state are ZOx

D for the
donor and ZOx

A for the acceptor.

for the potential of mean force, i.e., the alteration of the
free energy of bringing the charges from infinity to the
distance R

∆Gs(R) = q1q2
[

R−1 − β〈δφ1δφ2〉
]

. (S12)

The results of calculations of cross-variances of the
medium electrostatic potentials at the cofactors of the
charge-transfer chain are listed in Table S4. These re-
sults are combined with distances listed in Table S1 to
calculate the profile of reaction free energies along the
chain shown in Fig. 5 in the main text.
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