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Supplementary Methods 

Fine-mapping methods overview 

The aim of Bayesian fine-mapping in complex disease is to define the number of 

independent signals at a locus, generate credible sets of variants that could potentially be 

causal for each signal, and assign posterior probabilities that each of those variants is 

causal. To ensure the reliability of our results, we used three different fine-mapping 

methods, and took a consensus of the results across methods. Our procedure for 

combining the results of the three methods is described in the Online Methods.  

 

Our three methods use different models of genetic risk (multinomial logistic models for 

methods 1 and 2, liability threshold model for method 3), different ways of handling 

multiple phenotypes (using model selection for method 1, using correlated effect sizes for 

method 2 and analyzing each phenotype independently for method 3), different priors on 

effect sizes (a flat improper prior for method 1, a correlated normal prior for method 2 

and a double exponential prior for method 3) and different ways of fitting the models and 

exploring the parameter space (a steepest descent approximation for method 1, a Laplace 

integral approximation for method 2 and an MCMC sampler for method 3). We describe 

each method below in a structured format that starts with a brief summary of the method, 

followed by its relationship to published methods, a detailed description, its criteria for 

including >1 signal in a locus, and software availability.  

 

Summary of notation 
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We have phenotype data 𝒀, which is an 𝑁#$%×𝑁'()$* matrix, where elements 𝑌,- ∈ {0,1} 

are the values of phenotype k for individual j. We have covariate data 𝑿 = (𝑿7$'	𝑿'9) 

where 𝑿𝒔𝒏𝒑 is an 𝑁#$%×𝑁7$' matrix of genotype dosages and 𝑿'9 is an 𝑁#$%×𝑁'9 matrix 

of confounders (measured in our case by principal components). We will write 𝑿,,7$'  

and 𝑿,,'9 to refer to the vectors of genotype dosages and confounders for individual j. In 

our case, 𝑁'()$* = 2, for Crohn’s disease (CD) and ulcerative colitis (UC). We will 

consider each fine-mapping locus independently, so here 𝑁7$' is the number of variants 

in the fine-mapping locus. 

 

We have parameters, 𝜃 ∈ 𝜣, where 𝜣 is the set of all possible parameter vectors. We also 

have models, 𝑚 ∈ 𝑴, where each model corresponds to some set of constraints, 𝜃 ∈ 𝛩D. 

In all the cases below these models correspond to constraining some parameters to be 

equal to zero and others to be non-zero. We can define subsets of the model, 𝑴# ⊆ 	𝑴 as 

the set of all models where variant i is causal for at least one phenotype under 

consideration, and 𝑴𝑺 = 	 𝑴##∈𝑺 	as the subset of models in which at least one of the 

variants in the set S is causal.  We will write 𝜣𝑴G = 	 𝜣DD∈𝑴G  and 𝜣𝑴𝑺 = 	 𝜣𝑴G#∈𝑺 .  

 

The aim of our fine-mapping approach is to identify a minimum set of variants S that 

collectively has at least a 95% posterior probability of being causal, i.e. 

 

Pr 𝑴𝑺 𝑿, 𝒀) = 	 Pr 𝑚		 𝑿, 𝒀)
D∈𝑴𝑺

≥0.95.							(1) 
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In cases where we can assume that there is only one causal variant, the above equation 

can be written as a function of the marginal likelihoods and priors for each causal variant 

 

Pr 𝑿, 𝒀		 𝑚)	Pr	(𝑚)D∈𝑴𝑺

Pr 𝑿, 𝒀		 𝑚)D∈𝑴 Pr	(𝑚) ≥0.95.					(2) 

 

All the methods below assume an equal prior for each model (i.e. no variants are assumed 

to be more likely than any others to be causal a-priori), so we can write this as 

 

Pr 𝑿, 𝒀		 𝑚)D∈𝑴𝑺

Pr 𝑿, 𝒀		 𝑚)D∈𝑴
≥0.95.				(3) 

 

We define the marginal likelihood in terms of the data likelihood and the prior using: 

 

Pr 𝑿, 𝒀	 𝑚) = 	 Pr 𝑿, 𝒀	 𝜃)	Pr	(𝜃 	𝑚 𝑑𝜃
P∈𝜣𝒎

.							(4)	 

 

Method 1: Flat prior with steepest descent approximation 

Summary: The first fine-mapping method assumes that Pr 𝑿, 𝒀	 𝜃) takes the form of a 

multinomial likelihood, and places a flat (improper) prior on all parameters. This method 

approximates the marginal likelihood as a penalized maximum likelihood, and is thus 

comparable to the Bayesian information criterion. This method can handle arbitrary 

phenotypes, and constructs a full risk model across multiple phenotypes and variants 

using a greedy search.  
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Relationship to published methods: This method is based on the same approximations 

used to carry out gene-based association testing in ref 18, and can be viewed as an 

extension of the previously published method of Onengut-Gumuscu et al9. We have 

extended this approach in three ways. First, it is generalized to use multinomial rather 

than binomial logistic regression, meaning it can handle multi-category phenotypes (in 

this case, CD and UC). Second, we use a Bayesian approach to detect additional signals, 

as opposed to the frequentist stepwise logistic regression used by Onengut-Gumuscu et 

al9. Finally, our method carries out a repositioning step, to ensure that a suboptimal 

model has not been selected due to collinearity (a potential problem that can arise during 

stepwise regression, see chapter 15 of Draper and Smith61). 

Description: The parameter set is given by 𝜃 = (𝜶, 𝜷), where 𝜶 is a vector of intercepts 

for each phenotype (length 𝑁'()$*), and 𝜷 is an (𝑁'9 + 𝑁7$')	×	𝑁'()$*	matrix of effect 

sizes, with elements 𝛽#- being the effect size (log odds ratio relative to controls) of 

predictor i on each phenotype k. A particular model m is defined by which variants are 

causal for which phenotypes, so m is an 𝑁7$'	×	𝑁'()$* matrix where 𝑚#- = 1 if variant i 

is causal for phenotype k and 𝑚#- = 0 otherwise. In the terminology given above, this 

means that 𝜃 ∈ 𝛩D if 𝛽#- ≠ 0	∀	𝑖, 𝑘 ∶ 𝑚#- = 1 (i.e. all causal variants have non-zero 

effect size) and 𝛽#- = 0	∀	𝑖, 𝑘 ∶ 𝑚#- = 0 (i.e. all non-causal variants have zero effect 

size). A model is in the set of causal models for variant i (𝑚 ∈ 𝑴𝒊) if the variant is causal 

for at least one phenotype (i.e. ∃𝑘 ∶ 	𝑚#- = 1). Equivalently, we can state that 𝜃 ∈ 𝛩𝑴𝒊 if 

𝜷𝒊 ≠ 𝟎. Note that principal components are always included as fixed covariates (i.e. 𝜷𝒊 ≠

𝟎	∀𝒊 ∈ 𝒑𝒄). 
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The multinomial likelihood: The probability of an individual j having phenotype k, given 

their vector of predictors 𝑿,̇∙ and the parameter values (𝜶, 𝜷), is given by 

Pr 	𝑌,- = 1, 𝑌,-b = 0	∀𝑘c ≠ 𝑘	 𝑿𝒋∙, 𝜶, 𝜷) = 	
𝑒𝑥𝑝(𝛼- + 𝑿𝒋∙𝜷∙𝒌)

𝟏 + 𝑒𝑥𝑝(𝛼-c +	𝑿𝒋∙𝜷∙𝒌c)
𝑵𝒑𝒉𝒆𝒏𝒐
𝒌co𝟏

			(5) 

and the probability of being a control (i.e. all phenotypes being zero) is 

Pr 	𝑌𝒋∙ = 0	 𝑿𝒋∙, 𝜶, 𝜷) = 		
1

𝟏 + 𝑒𝑥𝑝(𝛼-b +	𝑿𝒋∙𝜷∙𝒌c)
𝑵𝒑𝒉𝒆𝒏𝒐
𝒌co𝟏

					(6) 

The overall likelihood is then given by  

Pr 	𝒀 𝑿, 𝜃) = 	 Pr 	𝑌𝒋∙	 𝑿𝒋∙, 𝜶, 𝜷)
𝑵𝒊𝒏𝒅

𝒋o𝟏

	(7) 

Prior and approximation to marginal likelihood: Equation (4) (and thus also (7)) can be 

estimated using the steepest descent approach if the likelihood function only has one 

global maximum and decays rapidly to zero away from the maximum18.  All likelihood 

functions in the exponential family (including the linear, binomial, or multinomial 

models) meet these criteria. Assuming a flat (improper) prior on the parameters 𝜃, the 

integral in (4) can be calculated as  

ln Pr 𝑿, 𝒀	 𝑚) ≈ ln Pr 𝒀 𝑿, 𝜃∗) −	
𝑚 ln 𝑁#$%

2 					(8) 

in which 𝜃∗ is maximum likelihood estimate of the parameter values subject to 𝜃∗ ∈ 𝛩D 

and 𝑚  is the number of non-zero elements of m (i.e. the number of model parameters 

that are non-zero). This formulation is equivalent to using a Bayesian information 

criterion in model selection.  

Model selection: We begin by selecting the optimal model 𝑚∗, which maximizes the 

marginal likelihood in (8). We do this using a greedy search, followed by a repositioning 
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search. The greedy search starts by setting the initial model as 𝑚y = 	𝟎 (i.e. the null 

model, where only intercepts and principal components are non-zero). For each iteration 

(t), we calculate the marginal likelihood in (8) for every model 𝑚 that adds one new 

causal variant (i) for one phenotype (k) to the model at the previous iteration; i.e. each 

model m where 𝑚#- = 	1 (the new causal variant/phenotype pair) and 𝑚#b-b =

	𝑚#b-b
z{|	∀(𝑖c, 𝑘c) ≠ (𝑖, 𝑘) (the remainder of the model carried over from the last iteration). 

Note that we can add an extra variant that has not been associated with any phenotype 

(i.e. an entirely new causal variant), or add an additional phenotype to a variant that is 

already associated with one or more phenotypes. If none of these models improve the 

marginal likelihood then the algorithm terminates and returns the model 𝑚z{|, otherwise 

it sets 𝑚z to the model with the largest marginal likelihood and starts another iteration.  

 

If there is only one causal variant in the model when the greedy search terminates (i.e. we 

only have one signal), then we set 𝑚∗ = 	𝑚z, where t is the final iteration of the greedy 

search. If there is more than one causal variant in the final model (i.e. we have more than 

one signal), we undergo a repositioning stage to ensure that we have the optimal set of 

causal variants to explain the signals. At each stage, we select each causal variant in turn 

and see whether the marginal likelihood can be improved by swapping it with another 

variant. If so, we swap it with the variant that gives the largest improvement to the 

marginal likelihood. Once no variants can be swapped without decreasing the marginal 

likelihood, we finish the repositioning and set 𝑚∗ to the final model selected. 
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Fine-mapping: If there is only one signal at a locus, fine-mapping can be carried out 

easily by plugging equation (8) into equation (3). When there are multiple signals, we 

carry out fine-mapping for each signal 𝑖 conditional on the set of lead variants for the 

remaining signals (which we denote 𝑐𝑜𝑛𝑑). This means that we restrict our set of 

possible models to only those models where the causal variants for the alternative signals 

are fixed, i.e. to the set 

𝑀9*$% = 	 𝑀,							(9)
,	∈	9*$%

 

and credible sets can then be calculated using the equation 

Pr 𝑿, 𝒀		 𝑚)D∈��		∩	�����

Pr 𝑿, 𝒀		 𝑚)D∈	�����

≥0.95.				(10) 

This has the advantage of being fast and easy to calculate, and makes each credible set 

distinct and easily interpretable. However, it has the disadvantage of not accounting for 

uncertainty in the localization of alternative signals. 

Criteria for including additional signals: Under the Bayesian information criterion, 

additional signals are included if they improve the log maximum likelihood by at least 

ln 𝑁#$% /2. In this case, 𝑁#$% = 67,852, which corresponds to a likelihood ratio chi-

squared test statistic of 11.125 (i.e. P = 8.52 x 10-4). 

Software availability:  This method is implemented in R scripts, and the source code is 

available from https://github.com/hailianghuang/Fine-mapping. 

 

Method 2: Empirical covariance prior with Laplace approximation 

Summary: This fine-mapping method also uses a multinomial likelihood for Pr 𝑿, 𝒀	 𝜃), 

but places an empirical correlated normal prior on the effect sizes, with the 
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hyperparameters of this prior learned across all known disease loci. This leverages the 

strong correlation in effect size between loci to improve power without needing to make 

assumptions about which loci are or are not shared (as all loci are assumed to be shared, 

just with potentially different effect sizes). This method directly calculates maximum a-

priori model estimates (as opposed to approximating them with maximum likelihood 

estimates, as in the method above), and uses a Laplace approximation to convert these to 

marginal likelihoods. 

Relationship to published methods: This method uses the empirical prior Bayesian 

association framework described in ref 49, and the fine-mapping approach is briefly 

described and assessed in the appendix to that paper. The extension from Bayesian 

multinomial logistic regression to multinomial fine-mapping is essentially identical to the 

extension from Bayesian binomial logistic regression to binomial fine-mapping detailed 

in Maller et al6. 

Description:  

The parameter set is given by 𝜃 = (𝜶, 𝜷), as in the previous method. Unlike that method, 

each variant is either causal for all phenotypes, or for no phenotypes (so it is assumed that 

any causal variant has an effect on all phenotypes, though this effect is allowed to be very 

small for some phenotypes). Thus, a particular model m merely defines which variants 

are causal, so m is an 𝑁7$' vector where 𝑚# = 1 if variant i is causal for any phenotype. 

In the terminology given above, this means that 𝜃 ∈ 𝛩D if 𝜷𝒊 ≠ 𝟎	∀	𝑖 ∶ 𝑚# = 1 and 𝜷𝒊 =

𝟎	∀	𝑖 ∶ 𝑚# = 0. A model is in the set of causal models for variant i (𝑚 ∈ 𝑴𝒊) if the 

variant is causal (i.e. 𝑚# = 1). This is equivalent to the definition of causal model sets 

above, as 𝜃 ∈ 𝛩𝑴𝒊 if 𝜷𝒊 ≠ 𝟎. As before, confounders are included as fixed covariates. 
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The multinomial likelihood: The multinomial likelihood is specified as in equation (7) 

above. This method uses the list of signals generated by the previous method. As in the 

previous method, when there is more than one independent signal at a locus we consider 

each signal separately by including all other signals in the region as fixed covariates. This 

means that, given a causal model 𝑚, all effect sizes are assumed to be zero other than 

those for the causal variant, the alternative signals that we are conditioning on, and the 

confounders, i.e. 𝜷� = 𝟎	∀𝑎 ∉ 𝑖, 𝑝𝑐, 𝑐𝑜𝑛𝑑 . We can thus write the likelihood given a 

particular causal variant using a reduced subset of the data 

Pr 𝒀	 𝑿, 𝜃, 𝜃 ∈ 𝑴#) = 	Pr 𝒀	 𝑿#, 𝑿'9, 𝑿9*$%, 𝜶, 𝜷#, 𝜷'9, 𝜷9*$%),						(11) 

which reduces the complexity of the integrals below. 

Prior distribution on parameters: To calculate the marginal likelihood, we next need to 

define the prior distributions for all the parameters. We assume that intercepts and 

confounding effect sizes are all independently normally distributed with a mean of zero 

and unit variance (in practice the results are invariant to these values, providing the 

variance is not vanishingly small). For associated variants, we assume they are drawn 

from a correlated multivariate normal prior  

𝜷# ∼ 𝑀𝑉𝑁 0, 𝚺 ,					(12) 

where Σ is a hyperparameter representing the covariance matrix for the effect sizes across 

different phenotypes at the same variant, such that Σ�� = 𝑐𝑜𝑣[𝛽.�,	𝛽.�].  

Laplace approximation to the marginal likelihood: The marginal likelihood for each SNP 

is then calculated using the Laplace approximation: 
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Pr 𝒀, 𝑿	 𝑚) 	∝ 	Pr 𝒀	 	𝒎, 𝑿)

= Pr 𝒀	 	𝑿, 𝜃)	Pr 𝜃 𝜮)𝑑𝜃
P∈𝜣�

≈ 2	𝜋 ������������ 𝐻 𝜃∗
|
�Pr 𝒀	 	𝑿, 𝜃∗)	Pr 𝜃∗ 𝚺)					(13) 

where 𝜃∗ is the maximum posterior estimate of 𝜃, calculated using Newton’s method, and 

𝐻(𝜃) is the Hessian of the log joint likelihood, i.e.  

𝐻�� 𝜃 =
𝜕� ln[Pr 𝒀	 𝑿, 𝜃)]

𝜕𝜃�𝜃�
+	
𝜕� ln[Pr 𝜃 𝚺)]

𝜕𝜃�𝜃�
					(14) 

Credible sets can then be generated using equation (4). 

Criteria for including additional signals: This method takes the number of independent 

signals from method 1. However, the actual signals generated can differ between methods 

1 and 2: while method 2 does not propose new signals, it can move a signal to a new lead 

SNP if that lead SNP gives a higher value of equation (13). 

Software availability:  This method is implemented in the c++ program Trinculo49, and 

source code and binaries are available from http://sourceforge.net/projects/trinculo/. 

 

Method 3: Bayesian LASSO 

Summary: This method uses a liability threshold model to describe the relationship 

between genotype and phenotype. Unlike the other two methods it does not attempt to 

calculate marginal likelihoods directly. Instead, it uses an MCMC algorithm to sample 

values of 𝜃 ∈ 𝑀, and directly measures the proportion of samples that fall into different 

causal models. It considers multiple causal variants at once, and uses a Bayesian LASSO 

to enforce sparsity on the number of signals. However, unlike the previous two methods, 



	 12	

this method does not consider different phenotypes simultaneously, and thus can only 

fine-map one phenotype at a time. 

Relationship to published methods: The Bayesian LASSO element of the method is 

based on previous work on LASSO priors to allow effective shrinkage of sparse genetic 

effect sizes62. The use of MCMC to handle multiple signals is similar in approach to other 

published MCMC-based fine-mapping methodologies, such as the piMASS method63. 

The synthesis of these ideas into a fine-mapping method is described in a pre-print64. 

Description:  The parameter set is given by 𝜃 = (𝛼, 𝜷, 𝑳), where 𝛼 is an intercept for the 

liability and 𝜷 is a column vector of effect sizes (increase in liability per unit increase in 

predictor) for both the confounders (𝜷𝒑𝒄) and the genotype dosages (𝜷𝒔𝒏𝒑), and 𝑳 is a 

vector of liabilities for each individual. There is also a series of hyperparameters, 𝝀 and 

𝝉𝟐, which define the priors on effect sizes. Note that, in order to account for uncertainty 

in the hyperparameters, the MCMC samples from both the parameters and the 

hyperparameters (with hyperpriors set on the latter). This method only analyses one 

phenotype for each locus, i.e. k is set to a particular value for each locus. After defining 

the clusters (discussed in Defining clusters of SNPs), we merge overlapping cluster pairs 

(sharing one or more variants) if one of them is associated with CD and the other is 

associated with UC.  These merged clusters were assigned the phenotype of IBD. 

We define a causal model m as in method 2, whereby 𝑚# = 1 if variant i is causal for the 

phenotype k under consideration and 𝑚# = 0 otherwise. A model is in the set of causal 

models for variant i (𝑚 ∈ 𝑴𝒊) if the variant is causal (i.e. 𝑚# = 1). This is comparable to 

the first two methods, as 𝜃 ∈ 𝛩𝑴𝒊 if 𝛽# ≠ 0. Note that, unlike the previous two methods, 

the causal model m is not an internal state of the method, as the method does not 
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constrain effect sizes to be zero or non-zero, instead it uses a Bayesian LASSO to shrink 

effect sizes to zero.  

Liability threshold model: The proposed model is based on the standard assumption of an 

underlying (unobserved) normally distributed liability 𝐿,	for each individual j, with 

threshold T, such that individuals for which 𝐿, > 𝑇	are affected and individuals for which 

𝐿, ≤ T are healthy. This method hypothesizes that the liability is influenced by a set of 

(known) confounders and by a set of (unknown) potentially causal variants 𝑪, such that 

the liability of individual j as 

𝐿, = 𝛼 + 𝑿𝒋,𝑪𝜷𝑪 + 𝑿𝒋,𝒑𝒄𝜷𝒑𝒄 +	𝜀,							(15) 

where 𝛼	is the population mean, and 𝜀# is an error term, assumed to have a mean of 0 and 

a variance 𝜎«�. Following Sorensen and Gianola (2002)65, the values of T and 𝜎«� are fixed 

at 0 and 1, respectively. We describe the set 𝑪 as “potentially causal”, as it is set to 

always contain exactly 20 causal variants (i.e. enough to contain all detectable 

independent signals, as in practice the number observed is always many fewer than 20), 

but these values are allowed to shrink to zero in the LASSO stage, meaning that many of 

these signals will have 𝛽# ≅ 0. 

Priors and hyperpriors on the parameters: We define uniform (improper) priors on the 

population mean,	𝛼, and the effect sizes for confounders 𝜷'9 (i.e. Pr 𝛼 ∝ 1; Pr 𝜷'9 ∝

1). Following Fang et al.62, the prior distribution of the effect of variant 𝑖 ∈ 𝐂, 𝛽#, is 

assumed to follow a zero-centered double-exponential distribution: 

Pr 𝛽# =
𝜆#
2 𝑒

{°G ±G 				(16) 
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The double-exponential prior is used in Bayesian LASSO, and ensures that small effects 

shrink to zero. In order to allow efficient sampling from the double exponential, we 

introduce an exponentially distributed random nuisance variable 𝜏#�, which is equal to the 

prior variance on 𝛽#, such that Pr 𝛽# 𝜏#� = 𝜙 𝛽# 0, 𝜏#�  and Pr 𝜏#� 𝜆# = °G
�
𝑒{°G´G

µ �.  

Finally, we place a gamma distributed hyperprior on 𝜆#�, such that Pr °G
µ

�
=

𝑔𝑎𝑚𝑚𝑎(𝛿, 𝛿), where 𝛿 is a very small number (we used 10-5 in this study). 

Overview of MCMC algorithm: The aim of the MCMC algorithm is to sample from the 

joint distribution of the parameters of interest (the vector 𝜷𝒔𝒏𝒑), as well as all of the 

unobserved nuisance parameters, given by: 

Pr 𝜷𝒔𝒏𝒑, 𝜷𝒑𝒄, 𝑪, 𝝀, 𝝉𝟐, 𝑳, 𝛼	 𝑿, 𝒀)							(17) 

The MCMC algorithm has two stages: a Metropolis-Hastings stage, to sample the 

potential causal variants 𝑪, and a Gibbs sampler stage, to select values of the other 

parameters. The MH stage is carried out once, followed by a single Gibbs sampler update 

of 𝛼, 𝜷'9 and 𝑳, followed by 50 rounds of Gibbs sampler updates on 𝜷𝒔𝒏𝒑, 𝝀 and	𝝉𝟐. The 

complete process is repeated 1 million times.  We initiate the chain by assigning values 

randomly to all variables (within their legal boundaries). The first 500,000 iterations are 

used as burn-in and ignored when compiling the summary statistics, and manual 

inspection of parameter traces was used to check that the chain was well mixed and 

independent of the starting values. We will denote the parameters at iteration t as 𝜷𝒔𝒏𝒑𝒕 , 

and the total number of iterations considered as 𝑁z. 

Defining clusters of SNPs: The MH stage of the MCMC serves two purposes: firstly, to 

search for independent signals in each locus, and secondly, to identify variants in high 
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LD for each signal from which to fine-map the causal variant. In order to ensure that the 

MH stage searches the entire space of variants, we first cluster all variants in the region 

into a series of high-LD clusters 𝐻, such that each variant belongs to exactly one cluster 

ℎ ∈ 𝐻. We hierarchically cluster variants that are in high LD using (1-r2) as distance 

measure and the “single linkage” approach implemented with the R “hclust” package.  

We define clusters such that variants in distinct clusters will never have r2 > Q (though 

note that variants within clusters may have r2 < Q).  We tested Q values of 0.9 and 0.5; 

larger values can artificially split credible sets across clusters, but smaller values can 

artificially lump different signals into the same cluster. We tested for the former by fitting 

a multivariate regression model with all detected clusters (with posterior > 0.5) and 

checking for pairwise collinearity between clusters.  We used Q = 0.9 if the model fit did 

not show evidence of collinearity, otherwise we used Q = 0.5. 

Variant sampling using the Metropolis-Hastings algorithm: During the MH stage, we 

enforce that each variant in 𝑪 comes from a different cluster. At each round of the 

MCMC chain, we sequentially attempt to swap each of the variants in	𝑪, by proposing a 

new variant to replace it. Half of the time the new proposed variant is selected uniformly 

from the same cluster as the original variant, and half of the time a new cluster is selected 

uniformly from all clusters that do not contain a causal variant and a new variant is 

uniformly selected from within this cluster.  In other words, this means that the MCMC 

chain spends half of its time searching for the best possible variants within clusters, and 

half of its time for the best possible clusters. When a substitute variant is selected, the 

probability to “accept” it is 

𝑚𝑖𝑛 1,
Pr 𝑳 𝑿.#º»¼, …
Pr 𝑳 𝑿.#º, …

						(18) 



	 16	

where 

Pr 𝑳 … =
1
2𝜋

𝑒𝑥𝑝
1
2 𝐿, − 𝛼 − 𝑿,,¾𝜷¾ − 𝑿,,'9𝜷'9

�
�G��

,o|

								(19) 

and 𝑖z�| and 𝑖z	correspond to the “new” and “old” variants included in C, respectively.   

Parameter updates using the Gibbs sampler: We set 𝛽#= 0 ∀𝑖 ∈ 𝑠𝑛𝑝\𝑪, and elements of 

the effect size vector 𝜷𝑪 are sampled from normal distributions with mean				 

𝛽Á = 𝑋,#�
�G��

,o|
+
1
𝜏#�

{|

𝑋,# 𝐿, − 𝛼 − 𝑿,,¾	\	#𝜷¾	\	# − 𝑿,,'9𝜷'9
�G��

,o|
, ∀𝑖 ∈ 𝑪				(20) 

and variance 

𝜎±G
� = 𝑋,#�

�G��
,o| + |

´G
µ

{|
, ∀𝑖 ∈ 𝑪	,					(21) 

where subscript 𝑪	\	𝑖 indicates all potential causal variants, excluding the variant under 

consideration i. 

Elements of 𝝉𝟐are sampled from inverse Gaussian distributions 

𝜏#� 𝛽#, 𝜆# ∼ 𝐼𝑛𝑣𝐺𝑎𝑢𝑠𝑠
𝜆#�

𝛽#�
, 𝜆#� , 𝑖 ∈ 𝑪.							(22) 

The hyper-parameters 𝝀 are sampled from gamma distributions  

𝜆#� 𝜏#� ∼ 𝐺𝑎𝑚𝑚𝑎 1,
𝜏#�

2 , 𝑖 ∈ 𝑪.						(23) 

Elements of the confounding effect sizes	𝜷𝒑𝒄 are sampled from normal distributions with 

mean 

𝛽Á = 𝑋,#
�G��

,o|

{|

𝐿, − 𝛼 − 𝑿,,¾𝜷¾ − 𝑿,,'9	\		#𝜷'9		\	# , ∀𝑖 ∈ 𝑝𝑐	
�G��

,o|
						(24) 

and variance 
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𝜎±G
� = 𝑋,#

�G��

,o|

{|

, ∀𝑖 ∈ 𝑝𝑐,									(25) 

where subscript 𝑝𝑐	\	𝑖 indicates all confounders, excluding the confounder under 

consideration i. 

The population mean, 𝛼, is sampled from a normal distribution with mean 

𝛼 =
1

𝑁#$%
𝐿, − 𝑿,,¾𝜷¾ − 𝑿,,'9𝜷'9

�G��

,o|
								(26) 

and variance 1 𝑁#$%. 

For affected individuals (𝑌,- = 1), the liabilities, 𝐿, , are sampled from the truncated 

normal distributions (such that 𝐿, > 𝑇) with density 

Pr 𝐿, 𝑌,- = 1,… =
𝜙 𝐿, 𝛼 + 𝑿,,¾𝜷¾ + 𝑿,,'9𝜷'9, 𝝈𝑬𝟐

1 − ΦÉ 𝛼 + 𝑿,,¾𝜷¾ + 𝑿,,'9𝜷'9, 𝝈𝑬𝟐
									(27) 

For unaffected individuals (𝑌,- = 0), the liability, 𝐿,, are sampled from the truncated 

normal distributions (such that 𝐿, ≤ 𝑇) with density  

Pr 𝐿, 𝑌,- = 0,… =
𝜙 𝐿, 𝛼 + 𝑿,,¾𝜷¾ + 𝑿,,'9𝜷'9, 𝝈𝑬𝟐

ΦÉ 𝛼 + 𝑿,,¾𝜷¾ + 𝑿,,'9𝜷'9, 𝝈𝑬𝟐
									(28) 

In these, ΦÉ ∙  corresponds to the cumulative density from −∞ to T. 

Summarizing the results. The posterior probability that variant i is causal is given by the 

proportion of MCMC iterations where variant 𝑖 is in the set of potentially causal variants 

for that iteration (𝑪𝒕), or 

Pr 𝑴# 𝑿, 𝒀) =
1
𝑁z
	 	I(𝑖 ∈
z

	𝑪z).					(29) 

The posterior probability for each cluster h is then given by Pr 𝑴##∈( 	𝑿, 𝒀). We 

report a positive signal for any cluster that has a posterior probability greater than 50%, 
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and calculate credible sets using equations (1) and (29). Finally, to eliminate spuriously 

associated clusters, we carried out a joint frequentist logistic regression to calculate P 

values for each variant, and only retained signals that achieved p < 10-4 in this analysis.  

Criteria for including additional signals: This method declares a new signal in any 

cluster where both the posterior of that cluster is greater than 50% (i.e. in at least 50% of 

MCMC samples, a causal variant from that cluster is included in 𝑪) and has a logistic 

regression P value of less than 10-4. 

Software availability.  The algorithm is implemented in the BayesFM program which 

can be downloaded from https://sourceforge.net/projects/bayesfm-mcmc-v1-0/ 
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Supplementary	Notes	

Three regions that were not resolved in fine-mapping: 

• Chr1:22.6-22.8Mb: This region contains two UC signals of similar significance.  The 

first UC signal has P value of 2.7x10-13 with AF of 5%, and the second signal has 

4.8x10-13 with AF=16%. R2 between the two signals is 0.3.  Jointly fitting the two 

signals has P value of 1x10-13.  Because the models are almost equally significant, our 

model selection procedure is unable to conclude which model is clearly the best. 

• Chr4:112.9-123.6Mb: The best model in this region has one IBD and one CD signal, 

both identified only by “Method 3: Bayesian LASSO”.  The next best model has an 

additional IBD signal identified using “Method 1: Flat prior with steepest descent 

approximation”. Because neither of these models includes signals identified by more 

than one method, we conservatively flag this region as “unresolved”.  

• Chr16:85.9-86.0Mb: Fine-mapping has identified two models of similar significance 

for this region.  Model 1 (P=6.0x10-26) has a CD signal and an IBD signal, whereas 

model 2 (P=5.6x10-26) has the same IBD signal, but a different CD signal. Because 

the models are almost equally significant, our model selection procedure is unable to 

conclude which model is clearly the best. 
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Duplicated insertion variant: 

We discovered an indel alignment error in credible variants in signal 1 in region 104 (the 

TNSF15/TNSF8 region).  This credible set consists of four variants, three of which are 

insertions in nearly perfect LD (r2 > 0.999). The local reference sequence is ‘TAAAT’, 

and the alternate alleles for the three variants are ‘T(AGA)AAAT’, ‘TA(GAA)AAT’ and 

‘TA(GA)AAT’. The first two of these are the same variant with the position shifted by 

1bp, and the third appears to be a historical annotation error. If we combine the three 

posteriors into the current canonical variant in dbSNP (chr9:117571293 / rs35396782), 

we will have a two-variant credible set with chr9:117571293 having 92% posterior 

probability and rs4372078 having 3% posterior probability. 
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Supplementary Box 

Strawberry notch homologue 2 (SBNO2, OMIM*615729), interleukin-10 (IL10, 

OMIM*124092) and interleukin-19 (IL19, OMIM*605687)  

Fine-mapping of locus #165 (Chr. 19; containing ABCA7, HMHA1, GPX4, POLR2E, 

SBNO2 and STK11) identified a primary signal with a credible set of three variants that 

are located in three separate introns of the SBNO2 gene and that are all within 653 bp of 

each other.  While these common variants (MAF ~0.22) do not overlap known regulatory 

sequences, their tight clustering within a single gene supports SBNO2 as the best 

candidate causal gene.  Furthermore, there is a secondary association signal in this region 

with a credible set of 10 variants, led by rs72977562, which is located in a gut enhancer 

element (H3K27ac) 6 kb before the TSS of SBNO2. While there is limited information on 

the function of this gene, it has been reported that it contributes to the downstream anti-

inflammatory effects of IL-1066 and may be involved in sepsis67, bone homeostasis68 and 

inflammatory response in the central nervous system69. IL10 is one of three candidate 

genes in locus #23 (Chr. 1; MAPKAPK2, IL10, IL19), where the primary signal is defined 

by a credible set of two variants separated by 4kb, one in the third intron of IL10 and the 

other ~1 kb downstream, and both overlap the H3K4me1 peaks.  The secondary 

association signal in this locus is defined by a credible set of four variants within a 4kb 

interval between IL10 and IL19.  IL19 is a member of the IL10 cytokine family whose 

function in the inflammatory response in humans is poorly understood. In fact, IL19 has 

been reported both to have an anti-inflammatory role70 or a pro-inflammatory role71 in 

IBD. Without functional data to establish causality it is not possible to definitively state 

whether the causal gene in this locus is IL10 or IL19, however, this fine mapping clearly 
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indicates the need to better understand the SBNO2/IL10/IL19 axis in IBD, in particular in 

the monocyte/macrophage lineage where the latter two genes are primarily expressed70. 

 

Leucine-rich repeat kinase 2 (LRRK2, OMIM*609007) 

Association to the chromosome 12 region containing the LRRK2 and MUC19 genes was 

identified in the first CD meta-analysis72.  The primary association signal has a credible 

set of 20 variants extending over a ~65kb interval: 10 variants within the LRRK2 gene 

(including one located within 3’UTR), 8 within the MUC19 gene, and 2 intergenic. The 

secondary association signal, however, is fine-mapped to a single variant (rs7307562), 

which is located in the 39th intron of LRRK2, suggesting this as the more likely gene. 

LRRK2 was first described as a gene for autosomal dominant Parkinson disease (PARK8; 

OMIM*607060). Functional studies demonstrated that LRRK2 might play a role in 

inflammatory signaling pathways relevant to Crohn’s disease73.  Specifically, the 

promoter of LRRK2 contains a conserved binding site for interferon (IFN) response 

factors, and it was shown that stimulation with IFN resulted in the up-regulation of the 

expression of LRRK2, which activated NFkB in an IKK-dependent manner.  More 

recently it was shown that LRRK2 deficiency conferred enhanced susceptibility to 

experimental colitis in mice74.  In addition, it was reported that a coding variant 

(Met2397Thr) in this gene led to lower LRRK2 protein levels and was therefore likely 

pathogenic74, but that variant is more than ten orders of magnitude less significant than 

the rs7307562 intronic variant in our dataset, and can be explained by the residual signal 

derived from the modest correlation between these variants (r2=0.38). 
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Kinase suppressor of Ras-1 (KSR1, OMIM*601132) and PR Domain containing 

protein 1 (PRDM1, OMIM*603423) 

Fine-mapping of the locus #157 (containing 4 genes) identified a single association to 

CD.  The credible set for this region consists of seven common variants (MAF ~0.30) 

across 25kb, all within the KSR1 gene and more than 50 kb from any of the other genes in 

the region.  With multiple predicted isoforms, these variants are clustered within the first 

introns of some isoforms and upstream of the transcription start site of others.  Two of the 

variants within the credible set are predicted to impact transcription factor binding sites 

detected by ENCODE ChIP-seq experiments:  rs8075695 in a PRDM1 site and 

rs2948542 in a TAL1 site. KSR1 is a reasonable candidate gene for this locus as previous 

functional studies suggested that it had a role to play in protecting against intestinal 

inflammation.  Specifically, Polk and colleagues observed that KSR1 is activated in 

inflamed mucosa and using KSR1-deficient mice demonstrated that KSR1 protects 

intestinal epithelium from cytokine-mediated apoptosis during inflammation75.  

Interestingly, there may be a link between KSR1 and another IBD gene as PRDM1 itself 

is implicated as the most likely causal gene in locus #77,  which contains two well-

defined associations (including a single-variant credible set). 

 

Mothers against decapentaplegic, drosophila (SMAD3, OMIM *603109) 

A CD locus on Chr. 15 harbors three genes SMAD3, AAGAB, and IQCH. Previous 

analyses prioritized SMAD3 within this locus based on the GRAIL text-mining algorithm, 

and now our fine-mapping focuses the primary association on rs17293632, which is in an 

intron of SMAD3 and  has the best posterior probability (40%) within the 5-variant 
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credible set.  This variant disrupts an AP-1 binding motif that is highly conserved across 

vertebrates23.  ChIP-seq experiments in HeLa cells, which are fortuitously heterozygous 

at this site, showed major allelic imbalance with almost non-existent binding to the CD 

risk allele.  Furthermore, a second independent association at this locus is resolved to a 

single protein-coding variant I170V in SMAD3, identifying with near certainty that this is 

the relevant gene. SMAD3 is a key signaling molecule in the Transforming Growth beta 

(TGF-β) pathway, which is implicated in various immune abnormalities and is associated 

with other diseases including tumor development and fibrotic complications.  In addition, 

mucosal inflammation in CD is characterized by reduced activity of TGF-β1 due to high 

levels of SMAD7 mediated through SMAD3.  An oral SMAD7 antisense oligonucleotide 

(Mongersen) has recently shown great promise in a phase 2 clinical trial for Crohn’s 

disease76,77. SMAD7 (itself recently associated to IBD but not in a high density 

genotyping region on the Immunochip and therefore not fine-mapped here) is an inhibitor 

of SMAD3.  Mongersen, by targeting SMAD7, restores SMAD3 signaling and TGF-β 

activation, leading to suppression of inflammation.  Consistent with this, genetic 

disruption of SMAD3, as identified here, constitutes an increased risk for CD. 

 

Interferon-induced helicase c domain-containing protein 1 (IFIH1, OMIM*606951)  

The UC genetic signal from the locus on Chr. 2 that harbors the candidate genes DPP4, 

GCG, FAP, IFIH1, GCA and KCNH7 has here been reduced to a single rare missense 

variant (I923V) in IFIH1.  The IFIH1 gene encodes Melanoma Differentiation-

Associated Protein 5 (MDA5) which is part of the RIG-I-Like receptor family and is a 

cytoplasmic viral RNA receptor involved in activating type I interferon signaling.  We 
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queried all our single variant credible sets for evidence of published associations to other 

diseases. By doing this we found that the single rare missense variant (I923V) in IFIH1 

associated to UC is also associated to type 1 diabetes (T1D) although with an opposite 

direction of effect37. This supports the notion that studies of shared genetic variation 

across immune-mediated diseases should, in many instances, ultimately point to the same 

variant. The identified variant has shown to be involved in the alteration of RNA 

secondary structure and reduces poly(I:C)-induced interferon-β production in subjects 

with T1D78.  The isoleucine to valine change does not directly disrupt the RNA helicase 

domain of IFIH1 that binds to dsRNA but electronic magnifier and ATP hydrolysis 

assays showed functional consequences due to impaired filament assembly and reduced 

kinetic stability79.  This variant (I923V) was not genotyped in the previous IBD 

association study and a common variant (rs2111485), in LD (r2 > 0.9) with a IFIH1 

coding variant (rs1990760, A946T), was reported3.  This common variant is independent 

of I923V and is marginally significant (P= 7.8x10-6 versus the threshold at 1.35x10-6).  

Another independent signal (rs72871627) with marginal significance (P= 3.5x10-6) is a 

T1D fine-mapped association9 and is additionally associated with psoriasis, ankylosing 

spondylitis and primary sclerosing cholangitis80. All three independent signals (I923V, 

rs2111485/A946T and rs72871627) are protective for psoriasis and T1D, and risk for 

IBD, ankylosing spondylitis and primary sclerosing cholangitis9,80.   

 

Interleukin receptor 2 alpha (IL2RA, CD25 OMIM* 147730). 

The IL2RA signal, first identified in 20123, has been fine-mapped to a single intronic 

variant, which has also been associated with T1D although with opposite direction of 
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effect38.  IL2RA encodes CD25, a constituent part of the IL2 receptor that is expressed in 

both soluble and membrane-bound forms.  The same single variant has been reported as 

the most associated variant in a 2013 Sardinian study of immune cell levels81, 

demonstrating association to variation in levels of T-cells expressing CD25, with the 

allele increasing risk to Crohn’s disease corresponding to higher levels of CD25 

expressing T-cells.  Animal models have suggested that CD25 prevents autoimmunity via 

a cell contact, cytokine independent mechanism and that the immunosuppressive effects 

of CD25/CD4 positive T cells can be overcome by microbial activation of Toll-like 

receptors and subsequent maturation of dendritic cells82.  However IL6 deficient mice 

were unable to overcome this Treg mediated suppression leading to decreased 

autoimmunity and increased infection suggesting that anti-IL6 therapy may be an 

appropriate therapy for immune-mediated diseases83.  In addition to the T1D association 

genetic variants in IL2RA have also been associated with Graves disease and multiple 

sclerosis.  

    

Regulator of telomere elongation helicase 1 (RTEL1, OMIM* 608833) and tumor-

necrosis factor receptor superfamily, member 6b (TNFRSF6B, OMIM* 603361))  

The original association of this locus in IBD susceptibility identified a region possibly 

containing more than 20 genes.  Fine-mapping (locus #175) identified a single signal, 

rs6062496, that disrupts the binding of Early B Cell Factor 1 (EBF1), overlaps DNaseI 

hypersensitivity clusters, and is highly conserved across species.  RTEL1 is a DNA 

helicase involved in protecting telomeres during replication. Read-through transcription 

of RTEL1 into tumor-necrosis factor receptor superfamily, member 6b (TNFRSF6B) 
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results in a non-coding transcript. TNFRSF6B (also known as Decoy Receptor 3 [DCR3]) 

neutralizes three different TNF ligands all of which have been associated with IBD 

susceptibility: FasL (TNFSF6), LIGHT (TNFSF14), and TL1A (TNFSF15).  

Manipulation of both TNFSF14 and TNFSF15 have been proposed as potential 

therapeutic strategies for IBD84,85.  In addition DCR3 plays a role in monocyte 

development, and also monocyte adhesion to endothelial cells via up-regulation of ICAM-

1, VCAM-1, and IL8 expression86.  DCR3 is overexpressed in gastrointestinal 

malignancies87 and has also been associated with multiple sclerosis, rheumatoid arthritis, 

and glomerulonephritis.   
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