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S1: Nei and Li genotype similarity coefficient

GS = 2Nij/(Ni + Nj) where Nij is the number of common sites between i and
j and Ni(j) is the total number of observed sites in individual i(j) (Nei and Li,
1979). In our situation, considering the same number of SNPs in parent i and j
makes GS equivalent to the simple matching coefficient (SM).

S2: Simple matching coefficients table between parents of the EU-NAM
Dent panel

B73 D06 D09 EC169 F252 F353 F618 Mo17 UH250 UH304 W117
B73 1 0.566 0.556 0.685 0.561 0.557 0.59 0.554 0.579 0.584 0.542
D06 1 0.866 0.643 0.611 0.586 0.599 0.559 0.836 0.624 0.568
D09 1 0.585 0.628 0.618 0.589 0.559 0.762 0.648 0.564

EC169 1 0.556 0.558 0.589 0.558 0.613 0.591 0.538
F252 1 0.633 0.578 0.576 0.609 0.648 0.579
F353 1 0.589 0.567 0.575 0.761 0.565
F618 1 0.552 0.595 0.606 0.559
Mo17 1 0.578 0.586 0.564

UH250 1 0.614 0.563
UH304 1 0.587
W117 1

Average genetic similarity score per subset

¯SMshort = 0.639

¯SMhet. = 0.613

¯SM long = 0.573
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S3: Principal component bi-plot of the EU-NAM Dent parents
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S4: Genetic marker map of the different subsets

Short subset

Chromosome N Length(cM) Average spacing maximum spacing
1 985 183.8 0.2 1.8
2 633 137.9 0.2 2.0
3 702 150.9 0.2 2.4
4 617 133.9 0.2 2.2
5 563 136.5 0.2 3.8
6 482 119.9 0.2 3.1
7 470 128.9 0.3 3.3
8 496 125.6 0.3 2.6
9 449 118.4 0.3 2.4
10 340 105.8 0.3 5.3
Overal 5737 1341.6 0.2 5.3
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Heterogeneous subset

Chromosome N Length(cM) Average spacing maximum spacing
1 1055 184.5 0.2 1.9
2 630 137.9 0.2 2.1
3 711 151.0 0.2 2.9
4 620 134.6 0.2 2.2
5 573 136.6 0.2 3.8
6 526 119.9 0.2 2.6
7 493 128.9 0.3 2.6
8 527 125.6 0.2 2.9
9 467 118.4 0.3 2.4
10 332 105.8 0.3 7.3
Overal 5934 1343.2 0.2 7.3
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Long subset

Chromosome N Length(cM) Average spacing maximum spacing
1 1121 184.5 0.2 1.9
2 641 137.9 0.2 2.0
3 743 151.0 0.2 1.9
4 647 134.6 0.2 3.1
5 598 136.6 0.2 4.1
6 550 119.9 0.2 2.1
7 524 128.9 0.2 2.2
8 560 125.6 0.2 2.9
9 484 118.4 0.2 2.7
10 344 105.8 0.3 5.7
Overal 6212 1343.2 0.2 5.7
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S5: Test statistic of the QTL effect

Wald test derivation

The significance of the estimated QTL effects β̂Q can be estimated using the Wald
test (Wald, 1943). From model (2), the phenotype values y have an expectation
equivalent to Xβ and their variance is R (McCulloch and Searle, 2001, 6.5, 6.6).
In such a situation, we can derive a generalized estimate for β and its variance as
follow (Rao et al, 2008, 4.65, 4.66):

β̂ = (X′R−1X)−1X′R−1y (1)

V (β̂) = (X′R−1X)−1 (2)

In its general form, the Wald statistic is equal to (McCulloch and Searle, 2001,
5.39):

W = (β̂ − β̂0)′[V (β̂)]−1(β̂ − β̂0) (3)

Under the null hypothesis we assume β̂ = β̂0 =
[
0 0 . . . 0

]′
After substituting (1)

and (2) in (3), we can rewrite the Wald statistic like that:

W = y′R̂−1X(X′R̂−1X)−1X′R̂−1y

= y′R̂−1Xβ̂

= y′R̂−1Hy

= y′R̂−1ŷ

(4)

where,

H = X(X ′R̂−1X)−1X ′R̂−1

is the generalized hat matrix.

The previous expression W represent a global Wald test coefficient W (β̂) including
both effect of the cross intercepts β̂c and the QTL effects β̂Q. The significance of

the QTL effects W (β̂Q) can be obtained doing the difference between W (β̂) and

W (β̂c), the Wald statistic of a model including only the cross intercept terms.

W (β̂Q) = W (β̂)−W (β̂c) (5)

W (β̂Q) is therefore proportional to W (β̂) described in (4). W (β̂Q) tests the hy-

pothesis of all QTL effects equal zero versus at least on component of β̂Q being

non null. W (β̂Q) follows a χ2 distribution with degree of freedom equal to the
rank of XQ (the number of estimated QTL effects).
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Interpretation

Expression (4) allows to summarise the main features of the proposed QTL mod-
els: parsimony versus goodness of fit and accurate form of the residual term.

Parsimony vs goodness of fit

Since the degree of freedom of the Wald test depends on the number of estimated
parameters, more parsimonious models like the ancestral or the bi-allelic model
will automatically increase the significance level of W (β̂Q). The use of more par-
simonious models is however not always a guaranty of better results (Bardol et al,
2013; Steinhoff et al, 2011). An important criteria to be balanced with parsimony
is the necessity to infer allele effects that capture correctly the trait variability. To
illustrate this, we can further reduce expression W (β̂) (4) and substitute it in (5)
to draw the following relationship:

W (β̂Q) ∝ y′ŷ =
N∑
n=1

yiŷn (6)

From this expression we can see that the more the vector y and the vector ŷ
vary in the same direction the higher will be W (β̂Q). This simply means that
the form of the QTL incidence matrix XQ should be chosen to give genetic es-

timates β̂Q allowing a projection ŷ = Hy capturing the highest proportion of
the trait variability. If these variations are due to parental or cross-specific effects,
corresponding genetic effect estimates β̂Q capturing these local variation should
perform better at the price of a higher number of parameter to estimate. On the
other hand if the effects are similar through the MPP, a reduced number of pa-
rameters will capture this variability and allows gains in power by a lower number
of degree of freedom.

Accurate form of the residual term

The test statistic is also influenced by the chosen VCOV. As we can see in ex-
pression (4) each element composing W (β̂Q) is weighted by the estimated R̂. The
more R̂ will reflect the correct form of the residual term the more accurate will be
the QTL detection process. In the HRT case, substituting (4) in (5), we can write
the following relationship:

W (β̂Q) ∝
N∑
n=1

ynŷn
σ2
r

(7)

In this situation each elements is weighted by an average level of uncertainty σ2
r

which may not be representative of crosses particularities. In the CSRT situation,
we have:

W (β̂Q) ∝
nc∑
c=1

Nc∑
n=1

ynŷn
σ2
rc

(8)

Here, the different elements will be weighted by cross-specific variance residual
terms σ2

rc that take into account the potential differences of uncertainty between
crosses. The more σ2

rc are heterogeneous the more a CSRT model is needed to
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handle this variability. In such case, a HRT model will tend to be more liberal
when uncertainty is in fact larger (cross 1 in Table 1) and more conservative when
effects are in reality more certain (cross 3 in Table 1).

Table 1 Illustration of the difference between the HRT and CSRT assumption in an hetero-

geneous MPP and its effect on the QTL test statistic ( β
σ2 ).

σ2
rc

(”True”) σ2
r (”Average”) Test (HRT) Test (CSRT)

cross 1 190 β1
100

> β1
190

cross 2 100 100 β2
100

= β2
100

cross 3 10 β3
100

< β3
10

S6: CSRT model approximation

The idea is to first estimate the variance covariance structure R̂ and then use it
in a generalized estimate of the Wald test (4):

W (β̂) = y′R̂−1X(X′R̂−1X)−1X′R̂−1y (9)

Since in the CSRT model R̂ contains only diagonal elements we can simply invert
R̂ by doing R̂−1 = 1/R̂.

SIM

Cr(Int) model: y = Xcβc + r (10)

Cr(Int) + Q model: y = Xcβc +XQβQ + r (11)

To estimate the significance of the QTL effect we can use the following incremental
Wald statistics

W (β̂Q) = W ([β̂c|β̂Q])−W (β̂c) (12)

The procedure to estimate the significance of the QTL effect genome-wide is the
following:

1. Estimate R̂ from model (10).
2. Compute W (β̂c) substituting R̂ and X = Xc in (9).
3. Compute at each position W ([β̂c|β̂Q]) substituting R̂ and X = [Xc|XQ] in

(9).
4. Compute the p-value of the QTL effect using (12) and W (β̂Q) ∼ χ2

df with
df = Rank(XQ).
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CIM

Cr(Int) + cof model: y = Xcβc +Xcofβcof + r (13)

Cr(Int) + cof + Q model: y = Xcβc +Xcofβcof +XQβQ + r (14)

To estimate the significance of the QTL effect we can use the following incremental
Wald statistics

W (β̂Q) = W ([β̂c|β̂cof |β̂Q])−W ([β̂c|β̂cof ]) (15)

The procedure to estimate the significance of the QTL effect genome-wide is the
following:

1. Estimate R̂j for the different combinations of cofactor Xcof.j using model
(13).

2. Compute W ([β̂c|β̂cof.j ]) for the different combinations of cofactor substituting

R̂j and X = [Xc|Xcof.j ] in (9).

3. Compute at each positionW ([β̂c|β̂cof.j |β̂Q]) substituting R̂j andX = [Xc|Xcof.j |XQ]
in (9).

4. Compute the p-value of the QTL effect using (15) and W (β̂Q) ∼ χ2
df with

df = Rank(XQ).
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S7: Multi QTL effects model

The multi-QTL effect model uses a forward regression to build up a model in
which different loci are allowed to have different types of QTL effects. At each
step one QTL is added, and each of the different types of effects are compared.
To select this position, we compute genome wide profiles using the types of QTL
effects given by the user. Each of these profiles uses a single type of effect for all
the tested (QTL) position.

y = Xcβc +XQ1βQ1 + r (16)

Where, the QTL position XQ1βQ is parental, ancestral, or bi-allelic. We calculate
therefore as many QTL profile as types of QTL effects chosen by the user.
From each of these profiles, the most significant position based on the -log10(p value)
statistic is selected (e.g., XQ1.par, XQ1.anc, XQ1.biall). Note that the selected
QTL positions might or not be at the same position. The one that increases the
most the R2

adj is selected as QTL. The selected position with its type of QTL effect
is added to the cofactors list and the selection process starts again. If at step 1
we selected a bi-allelic QTL, then at step 2 the QTL profiles will be based on the
following models:

y = Xcβc +Xq1.biallβq1 +XQ2βQ2 + r (17)

With again the tested QTL position XQ2βQ2 taking, in each QTL profile, the
form of one of the QTL effect specified by the user.

The procedure stops when there is no more significant position. The final list of
QTL is tested simultaneously using a backward elimination. The final model could
look like that:

y = Xcβc +Xq1.biallβq1 + ...+Xq(t−1).parβq(t−1) +XQt.ancβQt + r (18)
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S8: Genetic variance versus parental relatedness tables

The following graphs represent the scatter plots of estimated genetic variance per
family on SM coefficient between the central parent and the peripheral one (see
S1 and S2). The two trends represent the linear and quadratic trend respectively.

Dry matter yield
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Plant height
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S9: Permutation threshold results

Significance thresholds determined by 1000 genome-wide permutations taking the
-log10(p-value) of the upper 95% Wald statistic under the empirical null distribu-
tion as the critical value for rejection.

Dry mater yield

parental ancestal bi-allelic Average - MQE
short 3.89 4.09 4.66 4.21
het. 4.03 4.27 5.01 4.44
long 3.82 3.97 4.56 4.12

Average 3.91 4.11 4.74

Plant height

parental ancestal bi-allelic Average - MQE
short 3.86 4.03 4.65 4.18
het. 3.97 4.22 5.18 4.46
long 3.77 4.14 4.85 4.25

Average 3.87 4.13 4.89
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Steinhoff J, Liu W, Maurer HP, Würschum T, Friedrich C, Longin H, Ranc N,
Reif JC (2011) Multiple-line cross quantitative trait locus mapping in european
elite maize. Crop science 51(6):2505–2516

Wald A (1943) Tests of statistical hypotheses concerning several parameters when
the number of observations is large. Transactions of the American Mathematical
society 54(3):426–482


