Supporting Information

Development of potent myostatin inhibitory peptides through hydrophobic residue-directed structural modification

Kentaro Takayama, Cédric Rentier, Tomo Asari, Akari Nakamura, Yusuke Saga, Takahiro Shimada, Kei Nirasawa, Eri Sasaki, Kyohei Muguruma, Akihiro Taguchi, Atsuhiko Taniguchi, Yoichi Negishi, and Yoshio Hayashi*

Table of contents

Materials and Methods	page S2
Analytical HPLC chromatograms	page S6-S22
Table S1	page S23
Figure S1	page S24
Figure S2	page S25
Figure S3	page S26

1. Materials

Reagents and solvents, which were used as recieved, were purchased from Wako Pure Chemical Industries (Osaka, Japan), Sigma-Aldrich (St. Louis, MO), Watanabe Chemical Industries (Hiroshima, Japan), and Tokyo Chemical Industries (Tokyo, Japan). Sterile Dulbecco's Modified Eagle's Medium (DMEM) and fetal bovine serum (FBS) were purchased from Nacalai Tesque (Kyoto, Japan) and Life Technologies (Carlsbad, CA), respectively. Sterile 100-mm dishes, 96-well clear-wall poly-D-Lys-coated plates and 96-well white-wall plates were purchased from BD Biosciences (Flanklin Lake, NJ), Thermo Fisher Scientific (Waltham, MA) and Corning (Cambridge, MA), respectively. Plasmids, FuGENE HD and Dual-Luciferase Reporter Assay System for cell-based assay were purchased from Promega (Madison, WI). Recombinant human/mouse/rat myostatin and mouse myostatin-derived recombinant prodomain protein were purchased from Merck Millipore (Billerica, MA) and R&D Systems (Minneapolis, MN), respectively.

2. Synthesis of Peptide Derivatives

Fmoc-amino acids/R-COOH (0.141 mmol) were sequentially coupled to a Fmoc-NH-SAL Resin (100 mg, 0.047 mmol) using the DIPCI (0.141 mmol)-HOBt (0.141 mmol) method. Coupling steps were performed for 2 h in DMF (1.0 mL) after removal of each Fmoc group with 20% piperidine-DMF (1.5 mL, 20 min) to obtain resin-bound peptide. Cleavage from the resins was achieved by treatment with TFA-*m*-cresol-thioanisole-EDT (4.0 mL, 40:1:1:1 v:v:v:v) for 150–180 min at room temperature, followed by preparative RP-HPLC purification in a 0.1% aqueous TFA-CH₃CN system to obtain peptide agonists as TFA salts. The purity of synthesized peptides was > 95% in RP-HPLC analysis using a C18 reverse-phase column [4.6 x 150 mm; Waters SunFire C18 5µm] with a binary solvent system: a linear gradient of CH₃CN (20-40%, 40 min) in 0.1% aqueous TFA at a flow rate of 1.0 mL/min, detected at UV 230 nm. Yields of all products obtained as a white powder were calculated as TFA salts. HR-MS (TOF MS ES+) was recorded on a micromass LCT. Analytical data of synthetic peptide derivatives are shown below.

I(30,33)L: Yield of 23%; HRMS m/z [M+H]⁺ found 2884.7117 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 100.0% (t_R = 19.47 min).

I(33,35)L: Yield of 27%; HRMS m/z [M+H]⁺ found 2884.7070 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 97.7% (t_R = 17.70 min).

I(35,37)L: Yield of 27%; HRMS $m/z \text{ [M+H]}^+$ found 2884.7090 (calcd. for $C_{130}H_{223}N_{42}O_{32}$ 2884.7114); HPLC purity 97.7% (t_R = 18.71 min).

L(38,41)I: Yield of 11%; HRMS m/z [M+H]⁺ found 2884.7214 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 98.3% (t_R = 17.07 min).

L(41,43)I: Yield of 7.5%; HRMS m/z [M+H]⁺ found 2884.7200 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 98.8% (t_R = 17.67 min).

L38I: Yield of 14%; HRMS m/z [M+H]⁺ found 2884.7158 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 100.0% (t_R = 18.20 min).

L41I: Yield of 17%; HRMS m/z [M+H]⁺ found 2884.7124 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 99.8% (t_R = 18.18 min).

L43I: Yield of 13%; HRMS m/z [M+H]⁺ found 2884.7166 (calcd. for C₁₃₀H₂₂₃N₄₂O₃₂ 2884.7114); HPLC purity 100.0% (t_R = 18.59 min).

A32V: Yield of 14%; HRMS m/z [M+H]⁺ found 2912.7471 (calcd. for C₁₃₂H₂₂₇N₄₂O₃₂ 2912.7427); HPLC purity 98.6% (t_R = 18.44 min).

A32L: Yield of 28%; HRMS m/z [M+H]⁺ found 2926.7581 (calcd. for C₁₃₃H₂₂₉N₄₂O₃₂ 2926.7583); HPLC purity 97.5% (t_R = 19.24 min).

A32M: Yield of 26%; HRMS m/z [M+H]⁺ found 2944.7114 (calcd. for C₁₃₂H₂₂₇N₄₂O₃₂S 2944.7147); HPLC purity 100.0% (t_R = 18.50 min).

A32F: Yield of 23%; HRMS m/z [M+H]⁺ found 2960.7427 (calcd. for C₁₃₆H₂₂₇N₄₂O₃₂ 2960.7400); HPLC purity 99.5% (t_R = 19.22 min).

A32W: Yield of 29%; HRMS m/z [M+H]⁺ found 2999.7593 (calcd. for C₁₃₈H₂₂₈N₄₃O₃₂ 2999.7536); HPLC purity 100.0% (t_R = 20.23 min).

A32Y: Yield of 21%; HRMS m/z [M+H]⁺ found 2976.7376 (calcd. for C₁₃₆H₂₂₇N₄₂O₃₃ 2976.7417); HPLC purity 98.9% (t_R = 18.90 min).

A32H: Yield of 20%; HRMS m/z [M+H]⁺ found 2950.7312 (calcd. for C₁₃₃H₂₂₅N₄₄O₃₂ 2950.7332); HPLC purity 98.5% (t_R = 15.72 min).

A32K: Yield of 26%; HRMS m/z [M+4H]⁴⁺/4 found 736.2019 (calcd. for C₁₃₃H₂₃₃N₄₃O₃₂ 736.1982); HPLC purity 100.0% (t_R = 19.75 min).

A32R: Yield of 23%; HRMS $m/z [M+4H]^{4+}/4$ found 743.1982 (calcd. for $C_{133}H_{233}N_{45}O_{32}$ 743.1997); HPLC purity 100.0% (t_R = 18.06 min).

A32E: Yield of 27%; HRMS m/z [M+4H]⁴⁺/4 found 736.6876 (calcd. for C₁₃₂H₂₂₈N₄₂O₃₄ 736.4351); HPLC purity 100.0% (t_R = 19.59 min).

A32Q: Yield of 25%; HRMS m/z [M+4H]⁴⁺/4 found 736.1920 (calcd. for C₁₃₂H₂₂₉N₄₃O₃₃ 736.1891); HPLC purity 100.0% (t_R = 19.84 min).

3a: Yield of 25%; HRMS m/z [M+4H]⁴⁺/4 found 750.7043 (calcd. for C₁₃₈H₂₃₁N₄₃O₃₂ 750.6942); HPLC purity 100.0% (t_R = 25.26 min).

3b: Yield of 32%; HRMS m/z [M+4H]⁴⁺/4 found 721.4141 (calcd. for C₁₃₁H₂₂₄N₄₀O₃₃ 721.4270); HPLC purity 100.0% (t_R = 26.94 min).

3c: Yield of 39%; HRMS m/z [M+4H]⁴⁺/4 found 750.1732 (calcd. for C₁₃₉H₂₂₉N₄₁O₃₃ 750.1875); HPLC purity 96.8% (t_R = 29.15 min).

3d: Yield of 29%; HRMS m/z [M+4H]⁴⁺/4 found 750.1732 (calcd. for C₁₃₉H₂₂₉N₄₁O₃₃ 750.1875; HPLC purity 100.0% (t_R = 28.63 min).

L38F: Yield of 34%; HRMS m/z [M+4H]⁴⁺/4 found 730.4254 (calcd. for C₁₃₃H₂₂₄N₄₂O₃₂ 730.4298); HPLC purity 99.1% (t_R = 19.60 min).

L38W: Yield of 35%; HRMS m/z [M+4H]⁴⁺/4 found 740.1840 (calcd. for C₁₃₅H₂₂₅N₄₃O₃₂ 740.1825); HPLC purity 99.4% (t_R = 20.51 min).

I30V: Yield of 12%; HRMS m/z [M+H]⁺ found 2870.6912 (calcd. for C₁₂₉H₂₂₁N₄₂O₃₂ 2870.6957); HPLC purity 99.1% (t_R = 17.35 min).

I33V: Yield of 17%; HRMS m/z [M+H]⁺ found 2870.6987 (calcd. for C₁₂₉H₂₂₁N₄₂O₃₂ 2870.6957); HPLC purity 98.3% (t_R = 17.43 min).

I35V: Yield of 15%; HRMS m/z [M+H]⁺ found 2870.6982 (calcd. for C₁₂₉H₂₂₁N₄₂O₃₂ 2870.6957); HPLC purity 98.6% (t_R = 18.87 min).

I37V: Yield of 15%; HRMS m/z [M+4H]⁴⁺/4 found 718.4222 (calcd. for C₁₂₉H₂₂₄N₄₂O₃₂ 718.4298); HPLC purity 99.1% (t_R = 17.98 min).

I30F: Yield of 18%; HRMS m/z [M+H]⁺ found 2918.6953 (calcd. for C₁₃₃H₂₂₁N₄₂O₃₂ 2918.6957); HPLC purity 99.0% (t_R = 19.07 min).

I33F: Yield of 33%; HRMS m/z [M+H]⁺ found 2918.6973 (calcd. for C₁₃₃H₂₂₁N₄₂O₃₂ 2918.6957); HPLC purity 100.0% (t_R = 18.87 min).

I35F: Yield of 40%; HRMS m/z [M+H]⁺ found 2918.6968 (calcd. for C₁₃₃H₂₂₁N₄₂O₃₂ 2918.6957); HPLC purity 96.0% (t_R = 19.02 min).

I37F: Yield of 21%; HRMS m/z [M+H]⁺ found 2918.6978 (calcd. for C₁₃₃H₂₂₁N₄₂O₃₂ 2918.6957); HPLC purity 100.0% (t_R = 17.78 min).

3. Cell-based assay

HEK293 cells were subcultured in DMEM containing 10% FBS and nonessential amino acids. The cells were seeded at 2.0×10^4 cells per well in the 96-well plates the day before transfection of reporter (pGL4.48[luc2P/SBE/Hygro]) and control (pGL4.74[hRluc/TK]) vectors using FuGENE HD. After 24 h of transfection, the medium was exchanged to serum-free DMEM and the cells were incubated for 8 h at 37 °C under 5% CO₂. Each synthesized peptide was dissolved with H₂O, diluted by adding DMEM containing recombinant human/mouse/rat myostatin [final concentration; 8 ng/mL (0.32 nM)], and incubated for 20 min. Cells were treated with a peptide solution and incubated at 37 °C under 5% CO₂. After 4 h, cells were washed with PBS. The lysates were prepared, and the luciferase activities were measured using a Dual-Luciferase Reporter Assay System according to manufacturer's protocol (Promega). Mouse myostatin-derived recombinant propeptide (prodomain) was used as a positive control and underwent the same manipulation (final concentration, 10 nM). Each experiment was carried out in triplicate. Values represent means \pm SD (n= 3). Non-linear regressions are performed using GraphPad Prism software, using the integrated log(inhibitor) vs. response - Variable slope (four parameters). Data was normalized based on negative and positive controls using first and last data points of each series as 0 and 100% plateaus, and outliers (ROUT coefficient of 1% was

used to discriminate legitimate data points from outliers) were not included in curve fitting calculations. All the curve fitting parameters details can be found in Table S1.

4. Measurement of the circular dichroic (CD) spectra

CD spectra of peptides **1** and **3d** were obtained at 25 °C using a Jasco J-1500 CD spectrometer (JASCO, Japan) in a quartz cell with a 0.5-cm path length. Spectra were collected between 190–250 nm with a scan speed of 100 nm/min, a response time of 1 s, and a bandwidth of 1 nm. Peptide samples with a final concentration of 5 μ M were prepared in 20 mM sodium phosphate buffer (pH 7.4) containing 10% 2,2,2-trifluoroethanol. The baseline scan, which was acquired by measuring the buffer alone, was subtracted from the experimental readings. CD data, which were collected every 0.1 nm, were the average of nine scans. The normalized CD data was expressed in the mean residue ellipticity (deg cm2 dmol-1) and plotted as functions of wavelength.

5. Intramuscular administration of peptide 3d

Animal studies were approved by the Animal Research Committee of Tokyo University of Pharmacy and Life Sciences. Forty microliter of the peptide solution (0.75 mM peptide 3d in saline) and saline (control) were intramuscularly injected into left and right tibialis anterior or gastrocnemius muscle of 5-week-old *mdx* or ICR mice, respectively. After two weeks, the treatment was repeated for the same muscle. Then four weeks after the last treatment, the muscles were collected and weighed.

6. Histological analysis

The treated GAS muscles were dissected 28 days after the 2nd injection of **3d** or saline at day 14. The frozen tissue sections were prepared transversely (6 μ m) using a cryostat. Each section was stained with hematoxylin and eosin and fiber sizes were determined by measuring the area of each myofiber in a fixed area. Two hundred cross-sectioned myofibers were randomly selected from 3 fields of tissue sections from each tissue sample.

Analytical HPLC chromatograms

I(30,33)L:

I(33,35)L:

I(35,37)L:

L(38,41)I:

L(41,43)I:

D-2500

МЕТНО	:			TAG:	352	сн:	1			
FILE:	Ø	CAL	C-METHOD:	AREA%	: TAB	BLE:		0	CONC:	AREA
NO.		RT	A	REA	CONC	: вс	:			
t	11	.43	10	199	0.058	8 BE	3			
2	14	.52	149	527	0.849) Br	,			
3	15	5.22	27	688	0.157	, UC	,			
4	17	.67	17400	985	98.835	5 UL	J			
5	1 9	.46	17	677	0.100	TBE	3			
TOTAL										
			17606	976	100.000)				
PEAK R	2EJ	:	10000							

L38I:

D-2500								
METHOD:			TAG:	184	СН: 1			
FILE: 0	CALC-M	1ETHOD:	AREA%	TA	BLE:	0	CONC:	AREA
NO. 1 1	RT 8.20	AF 29182	253	CON(100.00)	0 BC			
TOTAL		29182	253	100.000	a			
PEAK REJ	:	19999						

L43I:

D-2500								
МЕТНОD:			TAG:	188	CH: 1			
FILE: 0	CALC-	метнор:	AREA%	TAR	I.F:	9	CONC:	AREA
NO.	RT	A	REA	CONC	BC			
t 1	18.59	2735	399	100.000	BB			
TOTAL								
		27358	300	100.000	1			
PEAK RE	T :	10000						

	ing.	11 00			
FILE: 0 CALC	-METHOD: AREA%	: TABLE	: 0	CONC:	AREA
NO. RT	AREA	CONC	BC		
1 19.00	45018	2.459	BV		
2 19.24	1785421	97.541	VB		
TOTAL					
	1830439	100.000			
PEAK REJ :	10000				

A32F:

D-2500					
METHOD:	TAG:	636 C	H: 1		
FILE: 0 CALC	-METHOD: AREA	% TABL	E: 0	CONC	: AREA
NO. RT 1 8.69 2 19.22	AREA 23918 4850562	CONC 0.491 99.509	BC 88 88		
TOTAL PEAK REJ :	4874480 10000	100.000			

D-2500	1									
METHOD	:			TAG:	639	CH:	1			
FILE:	0	CALC-M	ETHOD:	AREA%	TA	BLE:	e) (CONC:	AREA
NO.	26	RT	A1	REA	CONI	C BC				
TOTAL	20	.20	4377	072	100.00	9 66				
PEAK R	EJ		4599) 10000	892	100.000	3				

A32Y:

D-2500							
METHOD:		TAG:	637 (сн: 1			
FILE: 0 CALC-	METHOD:	AREA%	TABL	.E:	0	CONC:	AREA
NO. RT 1 18.90 2 19.50	AF 58126 643	REA 514 349	CONC 98.905 1.095	BC BV TBB			
TOTAL	58769	963	100.000				
PEAK REJ :	10000						

D-2500

METHOD:		TAG:	638 (СН: 1			
FILE: 0	CALC-METHOD:	AREA%	TABL	.E:	0	CONC:	AREA
NO. 1 15 2 16	RT A 5.72 4548 5.52 69	REA 524 9 480	CONC 98.495 1.505	BC BV TBB			
PEAK REJ	4618 : 10000	004 10	00.000				

A32K:

D-2500

METHOD:	TAG:	618	CH: 1	
---------	------	-----	-------	--

FILE: 0 CALC-METHOD: AREA% TABLE: 0 CONC: AREA

NO. RT	AREA	CONC	BC	
1 19.75	1424655	100.000	88	
TOTAL				
	1424655	100.000		
PEAK REJ :	10000			

A32E:

3c:

3b:

I30V:

140 .	re i		C D D D	D	
2	17.35	3517792	99.135	BU	
3	18.84	14054	0.396	TBB	
4	19.40	16650	0.469	TBB	
TOTAL					
		3548496	100.000		
PEAK R	2EJ :	10000			

I35V:

D-2500

ELLE: 0 CALC-METHOD: AREA% TABLE: 0 CONC: AREA NO. RT AREA CONC BC 2 6.24 47950 1.191 BB 3 18.87 3969178 98.555 BU 4 20.30 10226 0.254 TBB TOTAL 4027354 100.000 PEAK REJ : 10000	метнор	:	TAG:	†35 C	н: 1			
NO. RT AREA CONC BC 2 6.24 47950 1.191 BB 3 18.87 3969178 98.555 BV 4 20.30 10226 0.254 TBB TOTAL 4027354 100.000 PEAK REJ : 10000	FTI F:	0 сагс-м	ETHOD: AREA%	TABL	E:	0	CONC:	AREA
2 6.24 47950 1.191 BB 3 18.87 3969178 98.555 BU 4 20.30 10226 0.254 TBB TOTAL 4027354 100.000 PEAK REJ : 10000	NO.	RT	AREA	CONC	BC			
3 18.87 3969178 98.555 BU 4 20.30 10226 0.254 TBB TOTAL 4027354 100.000 PEAK REJ : 10000	2	6.24	47950	1.191	BB			
4 20.30 10226 0.254 TBB TOTAL 4027354 100.000 PEAK REJ : 10000	.3	18.87	3969178	98.555	ΒV			
TOTAL 4027354 100.000 PEAK REJ : 10000	4	20.30	10226	0.254	ТВВ			
4027354 100.000 PEAK REJ : 10000	TOTAL							
PEAK REJ : 10000			4027354	100.000				
	PEAK R	PET :	10000					

D-2500								
метнор	:		TAG:	129	сн: 1			
FILF:	0 CALC-	метнор:	ARFA%	TAI	RI F:	а	CONC:	APFA
NO.	RT	AF	PEA	CON	r Rr			
1	5.84	266	59	Ø .94	7 RR			
.5	17.98	27889	P A K	99.05	T UR			
TOTAL								
		28155	562	100.001	а			
PEAK R	ET:	10000						

I30F:

I35F:

D-2500

METHOD	:	TAG:	1002 0	H: 1		
FILE:	0 CALC-I	METHOD: AREA%	TABL	.E: 0	CONC:	AREA
NO.	RT	AREA	CONC	BC		
1	19.02	5861079	96.023	BU		
2	21.42	108257	1.774	TBB		
5	25.47	22456	0.368	UU		
10	33.39	81176	1.330	BU		
12	36.08	14398	0.236	UU		
13	37.31	16460	0.270	UB		
TOTAL						
		6103826	100.000			
PEAK R	EJ :	10000				

	Pentide 1	Pentide 3d
Best-fit values		Teplae eu
Bottom	-0 1120	-0.9718
Top	96.86	104.2
	-5 448	-6 492
HillSlope	-3.721	-1.866
IC 50	3.562e-006	3.220e-007
Span	96.97	105.2
Std. Error		
Bottom	1.915	2.777
Тор	1.910	3.689
LogIC ₅₀	0.01569	0.03293
HillSlope	0.3512	0.2513
Span	2.838	5.271
95% Confidence Intervals		
Bottom	-4.221 to 3.997	-6.765 to 4.821
Тор	92.76 to 101.0	96.48 to 111.9
LogIC ₅₀	-5.482 to -5.415	-6.561 to -6.423
HillSlope	-4.475 to -2.968	-2.390 to -1.342
IC ₅₀	3.297e-006 to 3.849e-006	2.749e-007 to 3.772e-007
Span	90.88 to 103.1	94.16 to 116.1
Goodness of Fit		
Degrees of Freedom	14	20
R square	0.9924	0.9826
Absolute Sum of Squares	241.4	711.5
Sy.x	4.153	5.964

Table S1. GraphPad Prism parameters obtained for the 4-parametric non-linear regression ofdose-response curves of peptides 1 and 3d.

Figure S1. (A) Structures of the Leu-substituted peptides at position 38. The numbers above each amino acid indicate its position in the prodomain sequence of mouse myostatin. (B) The luciferase reporter assay determined the activities of the Leu-substituted peptides toward myostatin inhibition relative to peptide **1**. Peptide concentration: 3 μ M. Results are presented as mean values \pm SD (n = 3).

Figure S2. (A) Structures of the Ile-substituted peptides. The numbers above each amino acid indicate its position in the prodomain sequence of mouse myostatin. (B) The luciferase reporter assay determined the activities of the Ile-substituted peptides toward myostatin inhibition relative to peptide **1**. Peptide concentration: $3 \mu M$. Results are presented as mean values \pm SD (n = 3).

Figure S3. CD spectra of peptides **1** and **3d** in 20 mM sodium phosphate buffer (pH 7.4) containing 10% 2,2,2-trifluoroethanol; peptide concentration, 5 μ M.

•