Ligand Promoted *meta*-C-H Chlorination of Anilines and Phenols

Hang Shi, Peng Wang, Shin Suzuki, Marcus E. Farmers and Jin-Quan Yu

Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road. La Jolla, CA 92037, USA.

TABLE OF CONTENTS

1. General Information	2
2. Substrate Structures	3
3. Experimental Section	4
3.1 Preparation of Substrates	4
3.2 Preparation of Ligands	7
3.3 Ligand Screening	9
3.4 Norbornene Derivatives Screening	0
3.5 Loading Screening	1
3.6 meta-C-H Chlorination of Anilines	1
3.7 meta-C–H Dichlorination of Aniline 1ab	9
3.8 <i>meta</i> -C–H Chlorination of Phenol 3	9
3.9 Gram-Scale <i>meta</i> -C–H Chlorination of Aniline 1a 20	0
3.10 Diversification of <i>meta</i> -Chloro Aniline 2a	0
3.11 KIE Studies and Competition Experiments	3
4. X-ray Crystallographic Data of Compound 2aa	6
5. NMR Spectra	4
References	7

1. General Information

Solvents

Dry toluene, tetrahydrofuran, acetonitrile, cyclohexane, 1,4-dioxane, benzonitrile, and dimethylformamide were purchased from Sigma-Aldrich. Chloroform- d_1 and DMSO- d_6 were purchased from Cambridge Isotope Laboratories.

Chromatography

Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with UV light and Vogel's permanganate.

Spectroscopy and Instruments

¹H NMR was recorded on Bruker DRX-600 instrument (600 MHz). Chemical shifts were quoted in parts per million (ppm) referenced to 7.26 ppm of chloroform-*d* or referenced to the center line of a septet at 2.50 ppm of DMSO-*d*₆. ¹³C NMR spectra were recorded on Bruker DRX-600 instrument (150 MHz), and were fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to either the center line of a triplet at 77.0 ppm of chloroform-*d* or referenced to the center line of a septet at 39.52 ppm of DMSO-*d*₆. ¹⁹F NMR spectra were recorded on Bruker AMX-400 instrument (376 MHz), and were fully decoupled by broad band proton decoupling. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sext = sextet, sep = septet, m = multiplet, br = broad. Coupling constants, *J*, were reported in Hertz unit (Hz). High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

Starting materials

All substrates were used as received from commercial suppliers, unless otherwise stated. $Pd(PhCN)_2Cl_2$ and Ag_2CO_3 were purchased from Sigma-Aldrich. Methyl bicyclo[2.2.1]hept-2-ene-2-carboxylate (NBE-CO₂Me) was synthesized following literature procedures.¹

2. Substrate Structures

3. Experimental Section

3.1 Preparation of Substrates

Substrates 2a–2h, 2j, 2k, 2o–2ab, and 3 were synthesized following the literature procedures.²

tert-Butyl ((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)(3-(methoxymethoxy)phenyl)carbamate (1i) To a solution of *tert*-butyl (3-(methoxymethoxy)phenyl)carbamate s1 (557 mg, 2.2 mmol, 1.1 equiv.) in DMF (10 mL) was added NaH (240 mg, 6 mmol, 3 equiv.) at 0 °C, and the resulting mixture was allowed to warm up to room temperature and stirred for 30 min. The mixture was cooled to 0 °C again, then 2-chloromethyl-4-methoxy-3,5-dimethylpyridine hydrochloride (442 mg, 2 mmol, 1 equiv.) was added into the mixture slowly. The resulting mixture was allowed to warm up to room temperature and stirred for another 12 hours. After the reaction completed, EtOAc was added to dilute the reaction mixture, then the organic phase was washed with water, brine and dried over Na₂SO₄. After the organic solvent was concentrated by rotatory evaporation, the residue was purified by silica gel chromatography (hexanes/EtOAc = 5:1 v/v to 2:1 v/v) to afford 762 mg of compound **1i** as a yellow liquid (95% yield). R*f* = 0.30 (hexanes/EtOAc = 2:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.15 (s, 1H), 7.21 (t, J = 7.8 Hz, 1H), 6.94 (s, 1H), 6.89 (d, J = 7.8 Hz, 1H), 6.79 (ddd, J = 8.4 Hz, J = 7.8 Hz, J = 3.0 Hz, J = 1.2 Hz, 1H), 5.09 (s, 2H), 4.89 (s, 2H), 3.72 (s, 3H), 3.42 (s, 3H), 2.20 (s, 6H), 1.40 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.61, 157.10, 154.97, 154.59, 148.91, 143.94, 128.83, 124.59, 123.64, 119.88, 114.84, 113.23, 94.45, 80.31, 59.79, 55.85, 53.41, 28.20, 13.16, 10.35. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₂H₃₁N₂O₅ [M+H]⁺: 403.2227; found: 403.2230.

tert-Butyl ((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)(3-((triisopropylsilyl)ethynyl)phenyl)carbamate (11).

Aryl bromide **1r** (210 mg, 0.5 mmol, 1 equiv.), PdCl₂ (3.5 mg, 20 µmol, 4 mol%), and PPh₃ (10.5 mg, 40 µmol, 8 mol%) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. H₂O (2 mL), pyrrolidine (83.5 µL, 1 mmol, 2 equiv.), and ethynyltriisopropylsilane (137 µL, 0.6 mmol, 1.2 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 120 °C. After 2 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was extracted with EtOAc (3 × 5 mL). The combined organic layers were dried with Na₂SO₄. After the organic solvent was concentrated by rotatory evaporation, the residue was purified by silica gel chromatography (hexanes/EtOAc = 8:1 v/v to 4:1 v/v) to afford 183 mg of compound **1l** as a yellow liquid (70% yield). R*f* = 0.66 (hexanes/EtOAc = 2:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.14 (s, 1H), 7.30 (s, 1H), 7.23–7.18 (m, 2H), 7.15 (t, *J* = 7.8 Hz, 1H), 4.90 (s, 2H), 3.72 (s, 3H), 2.20 (s, 6H), 1.40 (s, 9H), 1.10 (s, 21H); ¹³C NMR (150 MHz, CDCl₃) δ 163.72, 154.79, 154.55, 148.97, 142.63, 130.10, 129.26, 128.19, 126.95, 124.75, 123.81, 123.59, 106.77, 90.37, 80.52, 59.83,

53.23, 26.21, 18.62, 13.17, 11.27, 10.43. HRMS (ESI-TOF) m/z calc'd for C₃₁H₄₇N₂O₃Si [M+H]⁺: 523.3350; found: 523.3347.

tert-Butyl ((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)(3-(3-methylbut-2-en-2-yl)phenyl)carbamate (1m).

Aryl bromide **1r** (210 mg, 0.5 mmol, 1 equiv.), Pd(OAc)₂ (4.5 mg, 20 µmol, 4 mol%), XPhos (19 mg, 40 µmol, 8 mol%), and aqueous K₃PO₄ (0.5 M, 3 mL, 1.5 mmol, 3 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. THF (5 mL) and 4,4,5,5-tetramethyl-2-(3-methylbut-2-en-2-yl)-1,3,2-dioxaborolane (0.22 mL, 1 mmol, 2 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 60 °C. After 2 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was extracted with EtOAc (3 × 5 mL). The combined organic layers were dried with Na₂SO₄. After the organic solvent was concentrated by rotatory evaporation, the residue was purified by silica gel chromatography (hexanes/EtOAc = 8:1 v/v to 2:1 v/v) to afford 193 mg of compound **1m** as a yellow liquid (94% yield). R*f* = 0.58 (hexanes/EtOAc = 2:1 v/v). ¹H NMR (600 MHz, CDCl₃) δ 8.11 (s, 1H), 7.15 (t, *J* = 7.8 Hz, 1H), 7.03 (d, *J* = 8.0 Hz, 1H), 6.88 (s, 1H), 6.85 (d, *J* = 7.4 Hz, 1H), 4.93 (s, 2H), 3.71 (s, 3H), 2.20 (s, 3H), 2.18 (s, 3H), 1.85 (s, 3H), 1.75 (s, 3H), 1.46 (s, 3H), 1.39 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.66, 155.18, 154.77, 148.88, 145.37, 142.04, 129.60, 127.91, 127.18, 127.11, 125.70, 124.63, 124.06, 123.70, 80.10, 59.78, 53.53, 28.27, 21.96, 20.62, 20.43, 13.15, 10.46. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₅H₃₅N₂O₃ [M+H]⁺: 411.2642; found: 411.2640.

tert-Butyl ((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)carbamate (1n).

Aryl chloride **1q** (113 mg, 0.3 mmol, 1 equiv.), $Pd_2(dba)_3$ (5.5 mg, 6.0 µmol, 2 mol%), XPhos (11.4 mg, 24 µmol, 8 mol%), KOAc (88.3 mg, 0.9 mmol, 3 equiv.), and B_2Pin_2 (229 mg, 0.9 mmol, 3 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. Dioxane (1 mL) was added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 110 °C. After 1 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was poured into water (5 mL) and extracted with EtOAc (3 × 7 mL). The combined organic layers were dried with Na₂SO₄. After the solvent was concentrated by rotatory evaporation, the residue was purified by silica gel chromatography (hexanes/EtOAc = 4:1 v/v) to afford 77.3 mg of compound **1n** as a yellow liquid (55% yield). Rf = 0.44 (hexanes/EtOAc = 2:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.12 (s, 1H), 7.60 (s, 1H), 7.54 (d, J = 7.3 Hz, 1H), 7.32 (d, J = 7.9 Hz, 1H), 7.22 (t, J = 7.6 Hz, 1H), 4.92 (s, 2H), 3.71 (s, 3H), 2.21 (s, 3H), 2.19 (s, 3H), 1.39 (s, 9H), 1.31 (s, 12H); ¹³C NMR (150 MHz, CDCl₃) δ 163.69, 155.17, 154.78, 148.88, 142.09, 132.79, 132.10, 130.03, 127.80, 124.62, 123.97, 83.71, 80.18, 59.81, 53.42, 28.25, 24.85, 13.16, 10.51. HRMS (ESI-TOF) *m/z* calc'd for C₂₆H₃₈BN₂O₅ [M+H]⁺: 469.2868; found: 469.2858.

tert-Butyl (2-bromo-5-methylphenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (Br-1a).

Arene **1a** (1.07 g, 3 mmol, 1 equiv.), $Pd(OAc)_2$ (67.2 mg, 0.3 mmol, 10 mol%), *N*-(2-hydroxypyridin-3-yl)acetamide (45.6 mg, 0.3 mmol, 10 mol%), and NBS (1.07 g, 6 mmol, 2 equiv.) were added to a flame-dried Schlenk tube. DCE (30 mL) was added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 80 °C. After 14 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 15 mL). The filtrate was evaporated under reduced pressure. The residue was purified by silica gel chromatography (hexanes/EtOAc = 6:1 v/v to 4:1 v/v) to afford 811 mg of compound **Br-1a** as a white solid (62% yield). Rf = 0.54 (hexanes/EtOAc = 2:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.14 (s, 1H), 7.35 (d, *J* = 8.5 Hz, 1H), 7.15 (s, 1H), 6.93 (d, *J* = 8.6 Hz, 1H), 4.86 (s, 2H), 3.73 (s, 3H), 2.30 (s, 3H), 2.21 (s, 3H), 2.20 (s, 3H), 1.39 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.70, 154.80, 154.48, 148.98, 142.00, 137.76, 131.96, 128.64, 125.54, 124.76, 123.68, 121.35, 80.53, 59.86, 53.32, 28.22, 22.93, 13.22, 10.39. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₁H₂₈BrN₂O₃ [M+H]⁺: 435.1278; found: 435.1275.

tert-Butyl ((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)(3-methylphenyl-6-d)carbamate (2-D-1a).

Aryl bromide **Br-1a** (610 mg, 1.4 mmol, 1 equiv.), $Pd_2(dba)_3$ (32.1 mg, 35 µmol, 2.5 mol%), XPhos (40.1 mg, 84 µmol, 6 mol%), and K₂CO₃ (580 mg, 4.2 mmol, 3 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. 2-Propanol- d_8 (4 mL) was added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 80 °C. After 14 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 8 mL). The filtrate was evaporated under reduced pressure. The residue was purified by silica gel chromatography (hexanes/EtOAc = 8:1 v/v to 4:1 v/v) to afford 403 mg of compound **2-D-1a** as a white solid (81% yield). Rf = 0.48 (hexanes/EtOAc = 2:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.15 (s, 1H), 7.09 (d, *J* = 8.0 Hz, 1H), 7.06 (s, 1H), 7.02 (d, *J* = 8.2 Hz, 1H), 4.89 (s, 2H), 3.71 (s, 3H), 2.26 (s, 3H), 2.20 (s, 6H), 1.39 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.53, 155.10, 154.69, 148.82, 142.63, 137.84, 127.86, 126.87, 125.90 (t, *J* = 23.9 Hz), 124.48, 123.59, 123.41, 80.03, 59.73, 53.44, 28.16, 21.19, 13.10, 10.31. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₁H₂₈DN₂O₃ [M+H]⁺: 358.2235; found: 358.2230.

Aryl chloride **2a** (587 mg, 1.5 mmol, 1 equiv.), $Pd_2(dba)_3$ (68.7 mg, 75 µmol, 5 mol%), XPhos (85.9 mg, 180 µmol, 12 mol%), and K₂CO₃ (620 mg, 4.5 mmol, 3 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. 2-Propanol-*d*₈ (4 mL) was added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 80 °C. After 24 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 8 mL). The filtrate was evaporated under reduced pressure. The residue was purified by silica gel chromatography (hexanes/EtOAc = 15:1 v/v to 4:1 v/v) to afford 326 mg of compound **3-D-1a** as a white solid (61% yield). R*f* = 0.48 (hexanes/EtOAc = 2:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.15 (s, 1H), 7.06 (s, 1H), 7.01 (s, 1H), 6.91 (s, 1H), 4.90 (s, 2H), 3.72 (s, 3H), 2.27 (s, 3H), 2.20 (s, 6H), 1.39 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.64, 155.18, 154.79, 148.91, 142.68, 138.05, 127.79 (t, J = 24.6 Hz), 126.97, 126.21, 124.60, 123.73, 123.41, 80.17, 59.83, 53.52, 28.25, 21.34, 13.20, 10.41. HRMS (ESI-TOF) *m/z* calc'd for C₂₁H₂₈DN₂O₃ [M+H]⁺: 358.2235; found: 358.2239.

3.2 Preparation of Ligands

Ligand 6 was synthesized following the literature procedures.³

General procedure: Hydroxypyridine (1.65 mmol, 1.1 equiv) was added into a Schlenk tube. Toluene (5 mL), amine (1.5 mmol, 1.0 equiv), pyridine (1 drop) and PCl₃ (65 μ L, 0.75 mmol, 0.5 equiv.) were added in sequence. The tube was sealed and immersed into a pre-heated oil bath at 115 °C. After 12 hours, the oil bath was removed, and the tube was allowed to cool to room temperature. The reaction mixture was poured into water (10 mL) and extracted with EtOAc (5 × 15 mL). The combined organic layers were dried with Na₂SO₄. After the solvent was concentrated by rotatory evaporation, the residue was purified by silica gel chromatography to afford the desired ligands.

N-Benzyl-2-hydroxynicotinamide (L5)

Purification by flash silica gel column chromatography (hexanes/EtOAc = 1:1 v/v to EA) afforded 0.203 g of compound L5 as a white solid (59% yield). Rf = 0.31 (EtOAc).

¹H NMR (600 MHz, DMSO-*d*₆) δ 12.51 (brs, 1H), 10.16 (t, *J* = 6.0 Hz, 1H), 8.41–8.30 (m, 1H), 7.71 (dd, *J* = 6.3, 2.2 Hz, 1H), 7.36–7.28 (m, 4H), 7.25 (t, *J* = 7.0 Hz, 1H), 6.49 (t, *J* = 6.6 Hz, 1H), 4.52 (d, *J* = 5.9 Hz, 2H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 163.32, 162.32, 144.12, 139.50, 139.27, 128.44, 127.33, 126.91, 120.23, 106.34, 42.27. HRMS (ESI-TOF) *m*/*z* calc'd for C₁₃H₁₃N₂O₂ [M+H]⁺: 229.0972; found: 229.0969.

N-(3,5-Bis(trifluoromethyl)phenyl)-2-hydroxynicotinamide (L7)

Purification by flash silica gel column chromatography (hexanes/EtOAc = 1:2 v/v) afforded 0.316 g of compound L7 as a white solid (60% yield). Rf = 0.21 (hexanes/EtOAc = 1:1 v/v).

¹H NMR (600 MHz, DMSO-*d*₆) δ 12.86 (brs, 1H), 12.62 (s, 1H), 8.49–8.39 (m, 1H), 8.39–8.27 (m, 2H), 7.90– 7.80 (m, 1H), 7.79–7.67 (m, 1H), 6.63–6.53 (m, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 162.47, 145.14, 141.01, 140.18, 130.88 (q, J = 32.7 Hz), 123.17 (q, J = 272.7 Hz), 119.72, 119.09, 116.47, 107.08; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ –61.37. HRMS (ESI-TOF) m/z calc'd for C₁₄H₉F₆N₂O₂ [M+H]⁺: 351.0563; found: 351.0554.

2-Hydroxy-N-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)nicotinamide (L8)

Purification by flash silica gel column chromatography (hexanes/EtOAc = 1:1 v/v to EA) afforded 0.275 g of compound **L8** as a white solid (52% yield). Rf = 0.57 (EtOAc).⁴

¹H NMR (600 MHz, DMSO-*d*₆) δ 12.96 (s, 1H), 12.22 (s, 1H), 8.48 (dd, *J* = 7.2, 2.2 Hz, 1H), 7.92 (dd, *J* = 6.3, 2.2 Hz, 1H), 6.62 (dd, *J* = 7.2, 6.2 Hz, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 162.62, 161.40, 145.73, 141.63, 118.18, 107.23; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -54.73 (t, *J* = 21.1 Hz, 3H), -141.87--142.27 (m, 2H), -142.64--142.96 (m, 2H). HRMS (ESI-TOF) *m*/*z* calc'd for C₁₃H₆F₇N₂O₂ [M+H]⁺: 355.0312; found: 355.0302.

5-Chloro-2-hydroxy-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)nicotinamide (L9)

Purification by flash silica gel column chromatography (hexanes/EtOAc = 2:1 v/v to EA) afforded 0.301 g of compound L9 as a white solid (52% yield). Rf = 0.44 (hexanes/EtOAc = 1:1 v/v).⁴

¹H NMR (600 MHz, DMSO-*d*₆) δ 13.36 (s, 1H), 12.04 (s, 1H), 8.37 (d, *J* = 3.0 Hz, 1H), 8.18 (d, *J* = 3.1 Hz, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 161.34, 160.31, 144.94, 139.82, 119.13, 112.30; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -54.77 (t, *J* = 21.2 Hz, 3H), -141.77--142.02 (m, 2H), -142.50--142.85 (m, 2H). HRMS (ESI-TOF) *m*/*z* calc'd for C₁₃H₅ClF₇N₂O₂ [M+H]⁺: 388.9922; found: 388.9917.

5-Fluoro-2-hydroxy-N-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)nicotinamide (L10)

Purification by flash silica gel column chromatography (hexanes/EtOAc = 2:1 v/v to EA) afforded 0.248 g of compound **L10** as a white solid (44% yield). Rf = 0.34 (hexanes/EtOAc = 1:1 v/v).⁴

¹H NMR (600 MHz, DMSO-*d*₆) δ 13.13 (brs, 1H), 12.26 (s, 1H), 8.47–8.35 (m, 1H), 8.17 (t, J = 3.3 Hz, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 160.94, 160.54, 147.17 (d, J = 229.1 Hz), 135.01 (d, J = 23.6 Hz), 128.31 (d, J = 35.4 Hz), 118.25 (d, J = 5.7 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ –54.85 (t, J = 21.2 Hz, 3H), –141.84–142.14 (m, 2H), –142.49–142.94 (m, 2H), –146.68 (s, 1H). HRMS (ESI-TOF) *m*/*z* calc'd for C₁₃H₅F₈N₂O₂ [M+H]⁺: 373.0218; found: 373.0212.

5-Chloro-N-(4-cyano-2,3,5,6-tetrafluorophenyl)-2-hydroxynicotinamide (L11)

Purification by flash silica gel column chromatography (hexanes/EtOAc = 2:1 v/v to EA) afforded 0.29 g of compound L11 as a white solid (56% yield). R*f* = 0.32 (hexanes/EtOAc = 1:1 v/v).

¹H NMR (600 MHz, DMSO-*d*₆) δ 13.37 (brs, 1H), 12.15 (s, 1H), 8.36 (s, 1H), 8.18 (s, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 161.36, 160.28, 146.97 (dd, *J* = 256.3, 15.9 Hz), 141.31 (dd, *J* = 250.3, 12.9 Hz), 145.04, 139.97, 123.18 (t, *J* = 13.1 Hz), 119.05, 112.38, 108.24, 90.22 (t, *J* = 18.1 Hz); ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -134.39–-134.97 (m, 2H), -141.22–-141.70 (m, 2H). HRMS (ESI-TOF) *m/z* calc'd for C₁₃H₅ClF₄N₃O₂ [M+H]⁺: 346.0001; found: 346.0007.

3.3 Ligand Screening

Procedure: Arene **1p** (36 mg, 0.10 mmol, 1.0 equiv), Pd(PhCN)₂Cl₂ (3.8 mg, 10 µmol, 10 mol%), Ligand (10 µmol, 10 mol%) and Ag₂CO₃ (55.1 mg, 0.20 mmol, 2.0 equiv.) were added into a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. Toluene (1 mL), cyclohexane (1 mL), PhCN (2 µL, 20 µmol, 20 mol%), NBE-CO₂Me (23 µL, 0.15 mmol, 1.5 equiv.), and 2,6-diⁱPr-C₆H₄OSO₂Cl (55 mg, 0.20 mmol, 2.0 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 90 °C. After 14 hours, the oil bath was removed, and the Schlenk tube was allowed to cool to room

temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3×2 mL). The filtrate was evaporated under reduced pressure. The yield was determined by ¹H NMR analysis of the crude product using 1,1,2,2-tetrachloroethane as an internal standard.

3.4 Norbornene Derivatives Screening

Procedure: Arene **1a** (35.6 mg, 0.10 mmol, 1.0 equiv), Pd(PhCN)₂Cl₂ (3.8 mg, 10 µmol, 10 mol%), Ligand **9** (3.9 mg, 10 µmol, 10 mol%), and Ag₂CO₃ (55.1 mg, 0.20 mmol, 2.0 equiv.) were added into a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. Toluene (1 mL), cyclohexane (1 mL), PhCN (2 µL, 20 µmol, 20 mol%), NBE derivative (0.15 mmol, 1.5 equiv.), and 2,6-di^{*i*}Pr-C₆H₄OSO₂Cl (55 mg, 0.20 mmol, 2.0 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 14 hours, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 2 mL). The filtrate was evaporated under reduced pressure. The yield was determined by ¹H NMR analysis of the crude product using 1,1,2,2-tetrachloroethane as an internal standard.

3.5 Loading Screening

Me H H H Me Me Me Me Ia		Pd(Pł 2 2 equiv. :	nCN) ₂ Cl ₂ , Ligand 9 0 mol% PhCN 2,6-di [/] Pr-C ₆ H ₃ OSO	² CI Me		
		NBE tolu	-CO ₂ Me, Ag ₂ CO ₃ ene/cyclohexane 00 °C, 14 h, N ₂	Cl 2a		
	Pd(PhCN) ₂ Cl ₂ /ligand L9	NBE-CO ₂ Me	Ag_2CO_3	additional base	NMR yield	
	10 mol%	1.5 equiv.	2.0 equiv.	none	95%	
	5 mol%	1.5 equiv.	2.0 equiv.	none	72%	
	10 mol%	0.5 equiv.	2.0 equiv.	none	76%	
	10 mol%	1.5 equiv.	0.3 equiv.	none	16%	
	10 mol%	1.5 equiv.	0.3 equiv.	2.0 equiv. Li_2CO_3	34%	
	10 mol%	1.5 equiv.	0.3 equiv.	2.0 equiv. K ₂ CO ₃	7%	

Procedure: Arene **1a** (35.6 mg, 0.10 mmol, 1.0 equiv), Pd(PhCN)₂Cl₂, Ligand **9**, Ag₂CO₃, and additive were added into a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. Toluene (1 mL), cyclohexane (1 mL), PhCN (2 μ L, 20 μ mol, 20 mol%), NBE-CO₂Me, and 2,6-di^{*i*}Pr-C₆H₄OSO₂Cl (55 mg, 0.20 mmol, 2.0 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 14 hours, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 2 mL). The filtrate was evaporated under reduced pressure. The yield was determined by ¹H NMR analysis of the crude product using 1,1,2,2-tetrachloroethane as an internal standard.

3.6 meta-C-H Chlorination of Anilines

General procedure: Arene **1** (0.10 mmol, 1.0 equiv), Pd(PhCN)₂Cl₂ (3.8 mg, 10 µmol, 10 mol%), Ligand (10 µmol, 10 mol%) and Ag₂CO₃ (55 mg, 0.20 mmol, 2.0 equiv.) were added into a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. Toluene (1 mL), cyclohexane (1 mL), PhCN (2 µL, 20 µmol, 20 mol%), NBE-CO₂Me (23 µL, 0.15 mmol, 1.5 equiv.) and 2,6-di^{*i*}Pr-C₆H₄OSO₂Cl (55 mg, 0.20 mmol, 2.0 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C or 110 °C. After 14 hours, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 2 mL). The filtrate was evaporated under reduced pressure. Purification by preparative TLC chromatography afforded the title compound.

tert-Butyl (3-chloro-5-methylphenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2a)

L9 (10 mol%), 100 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 2:1 v/v) afforded 37.2 mg of compound **2a** as a yellow liquid (93% yield). R*f* = 0.19 (hexanes/EtOAc = 6:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.17 (s, 1H), 7.08 (s, 1H), 6.99 (s, 1H), 6.91 (s, 1H), 4.85 (s, 2H), 3.73 (s, 3H), 2.25 (s, 3H), 2.21 (s, 3H), 2.20 (s, 3H), 1.38 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.63, 154.69, 154.35, 148.99, 143.88, 139.40, 133.19, 126.19, 125.13, 124.68, 123.62, 123.44, 80.55, 59.83, 53.25, 28.14, 21.14, 13.17, 10.32. HRMS (ESI-TOF) *m/z* calc'd for C₂₁H₂₈ClN₂O₃ [M+H]⁺: 391.1783; found: 391.1792.

tert-Butyl (3-benzyl-5-chlorophenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2b) L9 (10 mol%), 100 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 3:1 v/v) afforded 40.5 mg of compound 2b as a colorless liquid (87% yield). Rf = 0.59 (hexanes/EtOAc = 2:1 v/v). ¹H NMR (600 MHz, CDCl₃) δ 8.13 (s, 1H), 7.25 (t, *J* = 7.0 Hz, 2H), 7.20 (t, *J* = 7.3 Hz, 1H), 7.16–7.05 (m, 3H), 6.99 (s, 1H), 6.90 (d, *J* = 1.9 Hz, 1H), 4.85 (s, 2H), 3.87 (s, 2H), 3.71 (s, 3H), 2.21 (s, 3H), 2.17 (s, 3H), 1.36 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.69, 154.59, 154.33, 149.03, 143.99, 142.51, 139.99, 133.56, 128.89, 128.47, 126.26, 126.01, 125.45, 124.73, 124.09, 123.56, 80.69, 59.85, 53.23, 41.41, 28.17, 13.22, 10.35. HRMS (ESI-TOF) *m/z* calc'd for C₂₇H₃₂ClN₂O₃ [M+H]⁺: 467.2096; found: 467.2105.

tert-Butyl (3-(((tert-butyldimethylsilyl)oxy)methyl)-5-chlorophenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2c)

L9 (10 mol%), 100 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 7:2 v/v) afforded 45.8 mg of compound **2c** as a colorless liquid (88% yield). Rf = 0.75 (hexanes/EtOAc = 2:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.16 (s, 1H), 7.18 (s, 1H), 7.10 (s, 1H), 7.06 (s, 1H), 4.86 (s, 2H), 4.63 (s, 2H), 3.73 (s, 3H), 2.21 (s, 3H), 2.19 (s, 3H), 1.39 (s, 9H), 0.89 (s, 9H), 0.05 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 163.64, 154.58, 154.38, 149.07, 144.04, 143.21, 133.41, 124.92, 124.69, 123.38, 122.90, 121.70, 80.64, 64.04, 59.85, 53.24, 28.18, 25.85, 18.29, 13.19, 10.31, -5.38. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₇H₄₂ClN₂O₄Si [M+H]⁺: 521.2597; found: 521.2603.

tert-Butyl (7-chloro-2,3-dihydro-1H-inden-5-yl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2d)

L11 (10 mol%), 110 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 3:1 v/v) afforded 30.0 mg of compound **2d** as a colorless liquid (72% yield). R*f* = 0.56 (hexanes/EtOAc = 2:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.16 (s, 1H), 7.03 (s, 2H), 4.84 (s, 2H), 3.73 (s, 3H), 2.88 (p, *J* = 7.5 Hz 4H), 2.22 (s, 3H), 2.20 (s, 3H), 2.04 (p, *J* = 7.5 Hz, 2H), 1.38 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.66, 154.89, 154.68, 148.99, 145.90, 142.37, 139.68, 129.67, 124.67, 124.59, 123.57, 120.98, 80.40, 59.86, 53.59, 33.71, 31.76, 28.22, 24.56, 13.20, 10.38. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₃H₃₀ClN₂O₃ [M+H]⁺: 417.1939; found: 417.1956.

tert-Butyl (5-chloro-[1,1'-biphenyl]-3-yl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2e) L9 (10 mol%), 100 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 5:1 v/v) afforded 37.1 mg of compound 2e as a yellow liquid (82% yield). R*f* = 0.71 (hexanes/EtOAc = 2:1 v/v).

¹H NMR (600 MHz, CDCl₃, compound exists as a 73:27 mixture of rotamers) δ 8.19 (s, 0.73H), 8.17 (s, 0.27H), 7.48 (d, *J* = 7.5 Hz, 1.5H), 7.44–7.24 (m, 6H), 7.22 (s, 0.25H), 7.17 (t, *J* = 1.7 Hz, 0.27H), 4.93 (s, 1.45H), 4.92 (s, 0.54H), 3.73 (s, 3H), 2.24–2.19 (m, 6H), 1.42 (s, 6.48H), 1.40 (s, 2.51H); ¹³C NMR (150 MHz, CDCl₃, compound exists as a 73:27 mixture of rotamers) δ 163.72, 154.63, 154.55, 154.33, 149.07, 144.31, 143.71, 142.58, 140.49, 139.62, 138.90, 133.91, 133.24, 132.29, 131.15, 129.88, 128.94, 128.75, 127.78, 127.75, 127.04, 126.81, 126.44, 125.88, 125.53, 125.19, 124.83, 124.79, 124.24, 123.59, 80.79, 59.86, 53.27, 53.24, 28.22, 13.20, 10.39. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₆H₃₀ClN₂O₃ [M+H]⁺: 453.1939; found: 453.1946.

tert-Butyl (4-chloronaphthalen-2-yl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2f) L9 (15 mol%), 100 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 2:1 v/v) afforded 28.8 mg of compound 2f as a yellow liquid (67% yield). R*f* = 0.49 (hexanes/EtOAc = 2:1 v/v). ¹H NMR (600 MHz, CDCl₃) δ 8.21–8.12 (m, 2H), 7.72 (d, *J* = 8.1 Hz, 1H), 7.62 (s, 2H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 1H), 5.00 (s, 2H), 3.73 (s, 3H), 2.24 (s, 3H), 2.21 (s, 3H), 1.42 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.72, 154.65, 154.48, 149.08, 140.30, 134.11, 131.10, 128.77, 128.12, 126.71, 126.48, 126.33, 124.81, 124.06, 123.61, 122.69, 80.85, 59.87, 53.46, 28.23, 13.20, 10.42. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₄H₂₈ClN₂O₃ [M+H]⁺: 427.1783; found: 427.1795.

tert-Butyl (3-(benzyl(tert-butoxycarbonyl)amino)-5-chlorophenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2g)

L9 (10 mol%), 100 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 4:1 v/v) afforded 45.2 mg of compound **2g** as a colorless liquid (78% yield). Rf = 0.52 (hexanes/EtOAc = 2:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.11 (s, 1H), 7.25 (t, J = 7.4 Hz, 2H), 7.21 (t, J = 7.2 Hz, 1H), 7.17–7.10 (m, 3H), 7.03 (s, 1H), 6.96 (s, 1H), 4.77 (s, 2H), 4.73 (s, 2H), 3.72 (s, 3H), 2.20 (s, 3H), 2.15 (s, 3H), 1.38 (s, 9H), 1.35 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.65, 154.40, 154.19, 154.15, 149.02, 144.21, 143.53, 138.17, 133.09, 128.37, 127.06, 124.69, 123.71, 123.32, 122.13, 80.94, 80.75, 59.86, 53.74, 53.14, 28.15, 28.14, 13.19, 10.28. HRMS (ESI-TOF) *m/z* calc'd for C₃₂H₄₁ClN₃O₅ [M+H]⁺: 582.2729; found: 582.2739.

tert-Butyl (3-chloro-5-(dimethylamino)phenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2h)

L9 (10 mol%), 100 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 2:1 v/v) afforded 31.0 mg of compound **2h** as a yellow liquid (74% yield). R*f* = 0.40 (hexanes/EtOAc = 2:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.16 (s, 1H), 6.58 (s, 1H), 6.53 (s, 1H), 6.44 (t, J = 2.1 Hz, 1H), 4.86 (s, 2H), 3.72 (s, 3H), 2.85 (s, 6H), 2.21 (s, 3H), 2.19 (s, 3H), 1.40 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.63, 154.98, 154.55, 151.11, 148.93, 144.38, 134.09, 124.63, 123.67, 114.76, 109.78, 109.50, 80.35, 59.82, 53.43, 40.33, 28.25, 13.17, 10.39. HRMS (ESI-TOF) m/z calc'd for C₂₂H₃₁ClN₃O₃ [M+H]⁺: 420.2048; found: 420.2058.

tert-Butyl (3-chloro-5-(methoxymethoxy)phenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2i)

L9 (10 mol%), 100 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 2:1 v/v) afforded 29.8 mg of compound **2i** as a yellow liquid (68% yield). R*f* = 0.40 (hexanes/EtOAc = 2:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.17 (s, 1H), 6.95 (s, 1H), 6.88 (s, 1H), 6.82 (t, *J* = 1.8 Hz, 1H), 5.08 (s, 2H), 4.85 (s, 2H), 3.73 (s, 3H), 3.42 (s, 3H), 2.21 (s, 3H), 2.19 (s, 3H), 1.39 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.67, 157.47, 154.55, 154.23, 149.04, 144.81, 133.92, 124.74, 123.45, 120.04, 113.60, 113.14, 94.50, 80.78, 59.86, 56.01, 53.22, 28.17, 13.20, 10.34. HRMS (ESI-TOF) *m/z* calc'd for C₂₂H₃₀ClN₂O₅ [M+H]⁺: 437.1838; found: 437.1844.

tert-Butyl (5-chloro-2-methoxyphenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2j) L9 (10 mol%), 100 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 2:1 v/v) afforded

30.5 mg of compound **2j** as a colorless liquid (75% yield). Rf = 0.34 (hexanes/EtOAc = 2:1 v/v).

¹H NMR (600 MHz, CDCl₃, compound exists as a 71:29 mixture of rotamers) δ 8.17–8.00 (m, 1H), 7.19 (s, 0.29H), 7.09 (d, *J* = 8.0 Hz, 1H), 6.91 (s, 0.71H), 6.84–6.66 (m, 1H), 5.43–4.20 (m, 2H), 3.76 (s, 3H), 3.72 (s, 3H), 2.23 (s, 3H), 2.20 (s, 3H), 1.47–1.32 (m, 9H); ¹³C NMR (150 MHz, CDCl₃, compound exists as a 71:29 mixture of rotamers) δ 163.80, 154.98, 154.90, 153.97, 148.78, 131.82, 130.46, 129.69, 127.78, 127.54, 125.08, 124.96, 124.80, 124.34, 112.62, 111.82, 80.43, 79.93, 59.79, 55.95, 55.52, 53.10, 52.27, 28.16, 13.17, 10.55. HRMS (ESI-TOF) *m/z* calc'd for C₂₁H₂₈ClN₂O₄ [M+H]⁺: 407.1732; found: 407.1743.

tert-Butyl (3-chloro-5-(methylthio)phenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2k) L9 (10 mol%), 100 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 3:1 v/v) afforded 36.8 mg of compound 2k as a yellow liquid (87% yield). R*f* = 0.63 (hexanes/EtOAc = 2:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.17 (s, 1H), 7.08 (s, 2H), 6.96 (s, 1H), 4.84 (s, 2H), 3.73 (s, 3H), 2.40 (s, 3H), 2.22 (s, 3H), 2.19 (s, 3H), 1.39 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.69, 154.49, 154.19, 149.06, 144.34, 140.03, 133.92, 124.79, 123.44, 123.22, 122.93, 122.62, 80.84, 59.87, 53.14, 28.18, 15.66, 13.20, 10.35. HRMS (ESI-TOF) *m/z* calc'd for C₂₁H₂₈ClN₂O₃S [M+H]⁺: 423.1504; found: 423.1513.

tert-Butyl (3-chloro-5-((triisopropylsilyl)ethynyl)phenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2l)

L9 (10 mol%), 100 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 5:1 v/v) afforded 41.5 mg of compound **2l** as a yellow liquid (79% yield). R*f* = 0.80 (hexanes/EtOAc = 2:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.17 (s, 1H), 7.28 (s, 1H), 7.25 (s, 1H), 7.20 (t, J = 1.5 Hz, 1H), 4.85 (s, 2H), 3.73 (s, 3H), 2.22 (s, 3H), 2.20 (s, 3H), 1.40 (s, 9H), 1.10 (s, 21H); ¹³C NMR (150 MHz, CDCl₃) δ 163.75, 154.38, 154.16, 149.07, 143.98, 133.44, 128.81, 128.20, 127.02, 124.85, 124.68, 123.54, 105.30, 92.04, 80.97, 59.87, 53.03, 28.16, 18.59, 13.19, 11.21, 10.38. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₁H₄₆ClN₂O₃Si [M+H]⁺: 557.2961; found: 557.2976.

tert-Butyl (3-chloro-5-(3-methylbut-2-en-2-yl)phenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2m)

L9 (10 mol%), 100 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 4:1 v/v) afforded 35.5 mg of compound **2m** as a yellow liquid (80% yield). Rf = 0.58 (hexanes/EtOAc = 2:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.14 (s, 1H), 7.10 (s, 1H), 6.85 (s, 2H), 4.88 (s, 2H), 3.72 (s, 3H), 2.20 (s, 6H), 1.84 (s, 3H), 1.75 (s, 3H), 1.49 (s, 3H), 1.39 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.69, 154.72, 154.37, 149.01, 146.59, 143.41, 133.04, 128.59, 128.24, 125.64, 125.32, 124.74, 123.77, 80.55, 59.84, 53.31, 28.22, 22.00, 20.47, 20.43, 13.17, 10.40. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₅H₃₄ClN₂O₃ [M+H]⁺: 445.2252; found: 445.2270.

tert-Butyl (3-chloro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2n)

L9 (10 mol%), 100 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 2:1 v/v) afforded 26.8 mg of compound **2n** as a colorless solid (53% yield). $\mathbf{R}f = 0.49$ (hexanes/EtOAc = 2:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.15 (s, 1H), 7.52 (s, 1H), 7.52 (s, 1H), 7.37 (s, 1H), 4.88 (s, 2H), 3.72 (s, 3H), 2.20 (s, 3H), 1.39 (s, 9H), 1.31 (s, 12H); ¹³C NMR (150 MHz, CDCl₃) δ 163.72, 154.71, 154.40, 149.01, 145.79, 143.57, 133.40, 131.71, 130.74, 129.86, 124.75, 123.70, 120.18, 84.08, 80.63, 59.85, 53.19, 28.19, 24.82, 13.18, 10.45. HRMS (ESI-TOF) m/z calc'd for C₂₆H₃₇BClN₂O₅ [M+H]⁺: 503.2479; found: 503.2500.

tert-Butyl (5-chloro-2-fluorophenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (20)

L11 (10 mol%), 110 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 3:1 v/v) afforded 24.5 mg of compound **20** as a yellow liquid (62% yield). Rf = 0.62 (hexanes/EtOAc = 2:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.12 (s, 1H), 7.24 (brs, 1H), 7.13–7.05 (m, 1H), 6.93 (t, J = 9.3 Hz, 1H), 4.87 (s, 2H), 3.73 (s, 3H), 2.23 (s, 3H), 2.21 (s, 3H), 1.39 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.84 , 156.83 (d, J = 249.2 Hz), 154.27 , 153.92 , 148.93 , 131.17 (d, J = 14.3 Hz), 129.42 , 128.41 , 127.76 (d, J = 8.0 Hz), 125.10 , 124.73, 116.57 (d, J = 19.5 Hz), 80.97 , 59.83 , 52.60 , 28.05 , 13.20 , 10.46; ¹⁹F NMR (376 MHz, CDCl₃) δ –122.93. HRMS (ESI-TOF) m/z calc'd for C₂₀H₂₅ClFN₂O₃ [M+H]⁺: 395.1532; found: 395.1547.

tert-Butyl (5-chloro-3-fluorophenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2p) L9 (10 mol%), 110 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 7:2 v/v) afforded 33.1 mg of compound **2p** as a yellow liquid (84% yield). R*f* = 0.75 (hexanes/EtOAc = 2:1 v/v). ¹H NMR (600 MHz, CDCl₃) δ 8.18 (s, 1H), 7.13 (s, 1H), 6.99 (dt, *J* = 10.3, 2.2 Hz, 1H), 6.84 (dt, *J* = 8.3, 2.1 Hz, 1H), 4.84 (s, 2H), 3.75 (s, 3H), 2.23 (s, 3H), 2.20 (s, 3H), 1.39 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.73 , 162.14 (d, *J* = 247.6 Hz), 154.20 , 153.98 , 149.15 , 145.40 (d, *J* = 11.2 Hz), 134.11 (d, *J* = 12.2 Hz), 124.88 , 123.30 , 122.09 , 112.97 (d, *J* = 24.9 Hz), 112.02 (d, *J* = 23.5 Hz), 81.18 , 59.91 , 53.06 , 28.13 , 13.23 , 10.31; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.82. HRMS (ESI-TOF) *m/z* calc'd for C₂₀H₂₅ClFN₂O₃ [M+H]⁺: 395.1532; found: 395.1546.

tert-Butyl (3,5-dichlorophenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2q)

L11 (10 mol%), 110 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 4:1 v/v) afforded 33.7 mg of compound **2q** as a yellow liquid (82% yield). Rf = 0.61 (hexanes/EtOAc = 3:1 v/v). ¹H NMR (600 MHz, CDCl₃) δ 8.18 (s, 1H), 7.24 (s, 2H), 7.10 (t, *J* = 1.8 Hz, 1H), 4.83 (s, 2H), 3.75 (s, 3H), 2.23 (s, 3H), 2.20 (s, 3H), 1.38 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.72, 154.17, 153.95, 149.15, 145.09, 134.13, 125.32, 124.89, 124.73, 123.29, 81.18, 59.90, 53.01, 28.11, 13.22, 10.32. HRMS (ESI-TOF) *m/z* calc'd for C₂₀H₂₅Cl₂N₂O₃ [M+H]⁺: 411.1237; found: 411.1249.

tert-Butyl (3-bromo-5-chlorophenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2r) L11 (10 mol%), 110 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 4:1 v/v) afforded 36.0 mg of compound 2r as a colorless liquid (79% yield). Rf = 0.73 (hexanes/EtOAc = 2:1 v/v). ¹H NMR (600 MHz, CDCl₃) δ 8.18 (s, 1H), 7.39 (s, 1H), 7.28 (s, 1H), 7.25 (s, 1H), 4.83 (s, 2H), 3.74 (s, 3H), 2.23 (s, 3H), 2.20 (s, 3H), 1.38 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.74, 154.15, 153.94, 149.15, 145.20, 134.31, 128.07, 127.59, 125.22, 124.91, 123.33, 121.64, 81.21, 59.91, 53.00, 28.12, 13.23, 10.32. HRMS (ESI-TOF) *m/z* calc'd for C₂₀H₂₅BrClN₂O₃ [M+H]⁺: 455.0732; found: 455.0744.

tert-Butyl (3-chloro-5-(trifluoromethyl)phenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2s)

L11 (15 mol%), 110 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 5:1 v/v) afforded 34.5 mg of compound **2s** as a yellow liquid (80% yield). Rf = 0.81 (hexanes/EtOAc = 2:1 v/v). ¹H NMR (600 MHz, CDCl₃) δ 8.17 (s, 1H), 7.53 (s, 1H), 7.50 (s, 1H), 7.34 (s, 1H), 4.87 (s, 2H), 3.74 (s, 3H), 2.23 (s, 3H), 2.21 (s, 3H), 1.39 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.79 , 154.04 , 153.88 , 149.18 , 144.94 , 134.32 , 131.64 (q, *J* = 32.8 Hz), 129.26 , 125.00 , 123.37 , 123.15 (q, *J* = 272.9 Hz), 122.01 (q, *J* = 3.5 Hz), 121.62 , 81.42 , 59.90 , 52.88 , 28.09 , 13.22 , 10.33; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.14. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₁H₂₅ClF₃N₂O₃ [M+H]⁺: 445.1500; found: 445.1515.

tert-Butyl (3-benzoyl-5-chlorophenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2t) L11 (10 mol%), 100 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 3:1 v/v) afforded 35.0 mg of compound 2t as a yellow liquid (73% yield). Rf = 0.53 (hexanes/EtOAc = 2:1 v/v). ¹H NMR (600 MHz, CDCl₃) δ 8.15 (s, 1H), 7.75 (d, J = 7.4 Hz, 2H), 7.65–7.53 (m, 3H), 7.50 (t, J = 1.7 Hz, 1H), 7.46 (t, J = 7.7 Hz, 2H), 4.89 (s, 2H), 3.73 (s, 3H), 2.22 (s, 3H), 2.20 (s, 3H), 1.39 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 194.73, 163.76, 154.21, 154.13, 149.07, 144.31, 138.76, 136.74, 133.85, 132.72, 130.16, 130.00, 128.34, 126.62, 125.91, 124.89, 123.43, 81.16, 59.89, 52.94, 28.14, 13.21, 10.34. Rf = 0.53 (hexanes/EtOAc = 2:1 v/v). HRMS (ESI-TOF) *m*/*z* calc'd for C₂₇H₃₀ClN₂O₄ [M+H]⁺: 481.1889; found: 481.1899.

Methyl 3-((*tert*-butoxycarbonyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)amino)-5-chlorobenzoate (2u)

L11 (15 mol%), 110 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 2:1 v/v) afforded 30.8 mg of compound **2u** as a yellow liquid (71% yield). Rf = 0.47 (hexanes/EtOAc = 2:1 v/v). ¹H NMR (600 MHz, CDCl₃) δ 8.16 (s, 1H), 7.85 (s, 1H), 7.76 (t, J = 1.7 Hz, 1H), 7.54 (s, 1H), 4.88 (s, 2H), 3.88 (s, 3H), 3.74 (s, 3H), 2.22 (s, 3H), 2.21 (s, 3H), 1.39 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 165.63, 163.75, 154.26, 154.10, 149.14, 144.43, 133.88, 131.48, 130.81, 126.39, 125.69, 124.89, 123.45, 81.13, 59.90, 52.96, 52.38, 28.14, 13.22, 10.37. HRMS (ESI-TOF) *m/z* calc'd for C₂₂H₂₈ClN₂O₅ [M+H]⁺: 435.1681; found: 435.1696.

tert-Butyl (3-chloro-4-fluoro-5-methylphenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2v)

L11 (10 mol%), 110 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 3:1 v/v) afforded 33.0 mg of compound **2v** as a yellow liquid (81% yield). Rf = 0.49 (hexanes/EtOAc = 3:1 v/v). ¹H NMR (600 MHz, CDCl₃) δ 8.16 (s, 1H), 7.15 (s, 1H), 7.02 (s, 1H), 4.82 (s, 2H), 3.74 (s, 3H), 2.24–2.21 (m, 6H), 2.20 (s, 3H), 1.38 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 155.28, 154.50, 153.65,

2.24–2.21 (m, 6H), 2.20 (s, 3H), 1.38 (s, 9H); ¹⁵C NMR (150 MHz, CDCl₃) δ 155.28, 154.50, 153.65, 149.01, 138.65, 127.97, 127.94 126.32, 125.88 (q, *J* = 18 Hz), 124.82, 119.92 (q, *J* = 18 Hz), 80.68, 59.87, 53.38, 28.18, 14.86 (q, *J* = 3.0 Hz), 13.21, 10.37; ¹⁹F NMR (376 MHz, CDCl₃) δ –123.23. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₁H₂₇ClFN₂O₃ [M+H]⁺: 409.1689; found: 409.1704.

tert-Butyl (8-chloro-2,3-dihydrobenzo[b][1,4]dioxin-6-yl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2w)

L11 (10 mol%), 110 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 2:1 v/v) afforded 30.9 mg of compound **2w** as a yellow liquid (71% yield). Rf = 0.39 (hexanes/EtOAc = 2:1 v/v). ¹H NMR (600 MHz, CDCl₃) δ 8.16 (s, 1H), 6.88 (s, 1H), 6.76 (s, 1H), 4.80 (s, 2H), 4.36 – 4.25 (m, 2H), 4.25 – 4.14 (m, 2H), 3.73 (s, 3H), 2.21 (s, 3H), 2.18 (s, 3H), 1.38 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.66, 154.65, 149.00, 143.66, 137.95, 136.05, 124.70, 123.57, 121.01, 120.77, 114.64, 80.46, 64.74, 64.07, 59.85, 53.49, 28.20, 13.19, 10.34. HRMS (ESI-TOF) *m/z* calc'd for C₂₂H₂₈ClN₂O₅ [M+H]⁺: 435.1681; found: 435.1696.

tert-Butyl 6-((tert-butoxycarbonyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)amino)-4-chloro-1H-indole-1-carboxylate (2x)

L11 (10 mol%), 110 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 3:1 v/v) afforded 42.8 mg of compound **2x** as a yellow liquid (72% yield). R*f* = 0.56 (hexanes/EtOAc = 2:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.14 (s, 1H), 7.92 (s, 1H), 7.56 (d, J = 3.7 Hz, 1H), 7.21 (s, 1H), 6.59 (d, J = 3.7 Hz, 1H), 4.94 (s, 2H), 3.73 (s, 3H), 2.22 (s, 3H), 2.20 (s, 3H), 1.59 (s, 9H), 1.40 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.71, 154.86, 154.74, 149.22, 148.99, 140.02, 135.26, 127.19, 126.65, 124.98, 124.73, 123.78, 122.25, 112.56, 105.09, 84.06, 80.46, 59.82, 53.96, 28.23, 28.00, 13.16, 10.44. HRMS (ESI-TOF) m/z calc'd for C₂₇H₃₅ClN₃O₅ [M+H]⁺: 516.2260; found: 516.2273.

tert-Butyl 2-(1-acetyl-4-chloroindolin-6-yl)-3-(4-methoxy-3,5-dimethylpyridin-2-yl)propanoate (2y) L11 (10 mol%), 110 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 1:2 v/v) afforded 32.9 mg of compound 2y as a yellow liquid (72% yield). Rf = 0.19 (hexanes/EtOAc = 1:1 v/v). ¹H NMR (600 MHz, CDCl₃, compound exists as a 84:16 mixture of rotamers) δ 8.15 (s, 1H), 8.05 (s, 0.84H), 7.13 (s, 0.16H), 7.06 – 6.89 (m, 1H), 4.85 (s, 2H), 4.15 – 3.98 (m, 2H), 3.72 (s, 3H), 3.11 (t, *J* = 8.5 Hz, 1.70H), 2.99 (t, *J* = 8.3 Hz, 0.28H), 2.31–2.12 (m, 9H), 1.39 (s, 9H); ¹³C NMR (150 MHz, CDCl₃, compound exists as a 84:16 mixture of rotamers) δ 168.62, 168.29, 163.67, 154.74, 154.48, 148.94, 143.75, 143.71, 129.19, 126.81, 124.66, 123.67, 122.13, 121.46, 114.22, 112.09, 80.59, 59.84, 53.39, 48.86, 47.95, 28.19, 27.06, 24.12, 13.19, 10.41. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₄H₃₁ClN₃O₄ [M+H]⁺: 460.1998; found: 460.2007.

tert-Butyl 2-(4-chlorothiophen-2-yl)-3-(4-methoxy-3,5-dimethylpyridin-2-yl)propanoate (2z)

L11 (10 mol%), 110 °C. Purification by preparative TLC chromatography (hexanes/EtOAc = 5:1 v/v)

afforded 24.1 mg of compound **2z** as a yellow solid (63% yield). R*f* = 0.71 (hexanes/EtOAc = 2:1 v/v). ¹H NMR (600 MHz, CDCl₃) δ 8.17 (s, 1H), 6.98 (s, 1H), 6.68 (s, 1H), 4.84 (s, 2H), 3.74 (s, 3H), 2.22 (s, 3H), 2.19 (s, 3H), 1.43 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.75, 154.43, 154.01, 149.10, 139.87, 127.89, 124.86, 124.78, 123.52, 113.34, 81.09, 59.92, 52.99, 28.22, 13.24, 10.30. HRMS (ESI-TOF) *m*/*z* calc'd for C₁₈H₂₄ClN₂O₃S [M+H]⁺: 383.1191; found: 383.1205.

tert-Butyl 2-(4-chloro-1-methyl-1H-indazol-6-yl)-3-(4-methoxy-3,5-dimethylpyridin-2-yl)propanoate (2aa)

L11 (10 mol%), 110 °C. Purijjfication by preparative TLC chromatography (hexanes/EtOAc = 2:3 v/v) afforded 32.0 mg of compound **2aa** as a yellow solid (74% yield). Rf = 0.27 (hexanes/EtOAc = 1:1 v/v). ¹H NMR (600 MHz, CDCl₃) δ 8.17 (s, 1H), 7.94 (d, J = 0.9 Hz, 1H), 7.29 (s, 1H), 7.11 (s, 1H), 4.94 (s, 2H), 3.98 (s, 3H), 3.73 (s, 3H), 2.23 (s, 3H), 2.22 (s, 3H), 1.39 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.78, 154.64, 154.52, 148.99, 142.04, 140.49, 131.24, 125.57, 124.91, 123.71, 121.27, 120.51, 105.36, 80.89, 59.88, 53.74, 35.86, 28.20, 13.22, 10.44. HRMS (ESI-TOF) m/z calc'd for C₂₂H₂₈ClN₄O₃ [M+H]⁺: 431.1844; found: 431.1853.

3.7 meta-C-H Dichlorination of Aniline 1ab

tert-Butyl (3,5-dichlorophenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2q)

Arene **1ab** (34.2 mg, 0.10 mmol, 1.0 equiv), Pd(PhCN)₂Cl₂ (3.8 mg, 10 µmol, 10 mol%), Ligand **9** (3.9 mg, 11 µmol, 10 mol%) and Ag₂CO₃ (55 mg, 0.20 mmol, 2.0 equiv.) were added into a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. Toluene (1 mL), cyclohexane (1 mL), PhCN (2 µL, 20 µmol, 20 mol%), NBE-CO₂Me (23 µL, 0.15 mmol, 1.5 equiv.) and 2,6-di^{*i*}Pr-C₆H₄OSO₂Cl (69 mg, 0.25 mmol, 2.5 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 14 hours, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 2 mL). The filtrate was evaporated under reduced pressure. Purification by preparative TLC chromatography (hexanes/EtOAc = 4:1 v/v) afforded 31.8 mg of compound **2q** as a yellow liquid (77% yield). R*f* = 0.61 (hexanes /EtOAc = 3/1 v/v).

3.8 meta-C-H Chlorination of Phenol 3

2-((3-Chloro-5-methylphenoxy)methyl)-4-methoxy-3,5-dimethylpyridine (4)

Arene **3** (25.7 mg, 0.10 mmol, 1.0 equiv), $Pd(PhCN)_2Cl_2$ (3.8 mg, 10 µmol, 10 mol%), Ligand **11** (3.5 mg, 11 µmol, 10 mol%) and Ag_2CO_3 (55 mg, 0.20 mmol, 2.0 equiv.) were added into a flame-dried Schlenk tube. The

Schlenk tube was evacuated and back-filled with nitrogen. Toluene (2 mL), PhCN (2 μ L, 20 μ mol, 20 mol%), NBE-CO₂Me (23 μ L, 0.15 mmol, 1.5 equiv.) and 2,6-di^{*i*}Pr-C₆H₄OSO₂Cl (69 mg, 0.25 mmol, 2.5 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 110 °C. After 14 hours, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 2 mL). The filtrate was evaporated under reduced pressure. Purification by preparative TLC chromatography (toluene/EtOAc = 10:1 v/v) afforded 17.5 mg of compound **4** as a yellow liquid (60% yield). R*f* = 0.41 (toluene/EtOAc = 10:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.17 (s, 1H), 7.08 (s, 1H), 6.99 (s, 1H), 6.91 (s, 1H), 4.85 (s, 2H), 3.73 (s, 3H), 2.25 (s, 3H), 2.21 (s, 3H), 2.19 (s, 3H), 1.38 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 163.63, 154.69, 154.35, 148.99, 143.88, 139.40, 133.19, 126.19, 125.13, 124.68, 123.62, 123.44, 80.55, 59.83, 53.25, 28.14, 21.14, 13.17, 10.32. HRMS (ESI-TOF) *m/z* calc'd for C₁₆H₁₉ClNO₂ [M+H]⁺: 292.1099; found: 292.1096.

3.9 Gram-Scale meta-C-H Chlorination of Aniline 1a

tert-Butyl (3-chloro-5-methylphenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (2a) Arene 1a (1.25 g, 3.5 mmol, 1.0 equiv), Pd(PhCN)₂Cl₂ (134 mg, 0.35 mmol, 10 mol%), Ligand 9 (136 mg, 0.35 µmol, 10 mol%) and Ag₂CO₃ (818 mg, 4.9 mmol, 1.4 equiv.) were added into a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. Toluene (35 mL), PhCN (72.1 µL, 0.7 mmol, 20 mol%), NBE-CO₂Me (532 mg, 3.5 mmol, 1 equiv.), 2,6-di²Pr-C₆H₄OSO₂Cl (1.94 g, 7 mmol, 2 equiv.) and cyclohexane (35 mL) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 14 hours, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 30 mL). The filtrate was evaporated under reduced pressure. Purification by silica gel chromatography (Hexane/EtOAc = 6:1 v/v to 3:1 v/v) afforded 1.19 g of compound **2a** as a yellow liquid (87% yield).

3.10 Diversification of meta-Chloro Aniline 2a

tert-Butyl ((4-methoxy-3,5dimethylpyridin-2-yl)methyl)(3-methyl-5-(methyl(phenyl)amino)phenyl)carbamate (5a)

Arene **2a** (39.0 mg, 0.1 mmol, 1 equiv.), $Pd_2(dba)_3$ (2.7 mg, 3 µmol, 3 mol%), Davephos (3.5 mg, 9 µmol, 9 mol%), and NaO'Bu (13.4 mg, 0.14 mmol, 1.4 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. Toluene (0.4 mL) and *N*-methylaniline (16 µL, 0.15 mmol, 1.5 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 80 °C. After 18 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 2 mL). The filtrate was evaporated

under reduced pressure. Purification by preparative TLC chromatography (hexane/EtOAc = 2:1 v/v) afforded 39.8 mg of compound **5a** as a yellow liquid (86% yield). $\mathbf{R}f = 0.33$ (hexanes/EtOAc = 2:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.14 (s, 1H), 7.21 (t, *J* = 7.8 Hz, 2H), 6.92–6.82 (m, 3H), 6.70 (d, *J* = 7.8 Hz, 2H), 6.61 (s, 1H), 4.88 (s, 2H), 3.70 (s, 3H), 3.21 (s, 3H), 2.21 (s, 6H), 2.19 (s, 3H), 1.40 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.66, 155.16, 154.71, 148.96, 148.84, 148.65, 143.41, 138.84, 126.96, 124.57, 123.80, 120.62, 120.49, 119.48, 119.38, 117.24, 80.14, 59.79, 53.55, 40.13, 28.27, 21.50, 13.20, 10.42. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₈H₃₆N₃O₃ [M+H]⁺: 462.2751; found: 462.2749.

tert-Butyl ((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)(3-methyl-5-(3-methylbut-2-en-2-yl)phenyl)carbamate (5b).

Arene **2a** (39.0 mg, 0.1 mmol, 1 equiv.), $Pd(OAc)_2$ (0.9 mg, 4 µmol, 4 mol%), XPhos (3.8 mg, 8 µmol, 8 mol%), and K₃PO₄ aqueous solution (0.5 M, 600 µL, 0.3 mmol, 3 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. THF (1 mL) and 4,4,5,5-tetramethyl-2-(3-methylbut-2-en-2-yl)-1,3,2-dioxaborolane (44 µL, 0.2 mmol, 2 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 60 °C. After 4 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. Water (3 mL) was added into the Schlenk. The reaction mixture was extracted with EtOAc (3 × 3 mL). The combined organic layers were dried with Na₂SO₄. After the organic solvent was concentrated by rotatory evaporation, the residue was purified by preparative TLC chromatography (hexane/EtOAc = 3:1 v/v) to afford 37.2 mg of compound **5b** as a yellow liquid (88% yield). R*f* = 0.48 (hexanes/EtOAc = 3:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.11 (s, 1H), 6.86 (s, 1H), 6.68–6.65 (m, 2H), 4.91 (s, 2H), 3.71 (s, 3H), 2.24 (s, 3H), 2.20 (s, 3H), 2.19 (s, 3H), 1.83 (s, 3H), 1.74 (s, 3H), 1.46 (s, 3H), 1.39 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.64, 155.27, 154.79, 148.83, 145.14, 141.95, 137.55, 129.69, 126.90, 126.45, 124.59, 124.22, 80.03, 59.77, 53.59, 28.28, 21.99, 21.33, 20.64, 20.39, 13.18, 10.46. HRMS (ESI-TOF) *m*/*z* calc'd for $C_{26}H_{37}N_2O_3 [M+H]^+$: 425.2799; found: 425.2796.

tert-Butyl ((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)(3-methyl-5-(1-oxo-1-phenylpropan-2-yl)phenyl)carbamate (5c).

Arene **2a** (39.0 mg, 0.1 mmol, 1 equiv.), Pd(OAc)₂ (1.1 mg, 5 µmol, 5 mol%), MePhos (3.6 mg, 10 µmol, 10 mol%), and NaO'Bu (12.4 mg, 0.13 mmol, 1.3 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. Toluene (0.2 mL) and propiophenone (16 µL, 0.12 mmol, 1.2 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 80 °C. After 18 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3×2 mL). The filtrate was evaporated under reduced pressure. Purification by preparative TLC chromatography (hexane/EtOAc = 2:1 v/v) afforded 37.1 mg of compound **5c** as a yellow liquid (76% yield). R*f* = 0.40 (hexanes/EtOAc = 2:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.07 (s, 1H), 7.89 (d, *J* = 7.8 Hz, 2H), 7.45 (t, *J* = 7.8 Hz, 1H), 7.43 (t, *J* = 7.8 Hz, 2H), 6.93 (s, 1H), 6.88 (s, 1H), 6.82 (s, 1H), 4.85 (s, 2H), 4.54 (q, *J* = 6.6 Hz, 1H), 3.70 (s, 3H), 2.21 (s, 3H), 2.18 (s, 3H), 2.16 (s, 3H), 1.42 (d, *J* = 6.6 Hz, 3H), 1.34 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 200.06, 163.62, 155.00, 154.55, 148.80, 143.07, 141.14, 138.79, 136.46, 132.61, 128.72, 128.33, 125.46, 124.95, 124.57, 123.72, 123.42, 80.2, 59.79, 53.37, 47.70, 28.18, 21.33, 19.44, 13.17, 10.36. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₀H₃₇N₂O₄ [M+H]⁺: 489.2748; found: 489.2739.

tert-Butyl ((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)(3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)carbamate (5d)

Arene **2a** (39.0 mg, 0.1 mmol, 1 equiv.), Pd(OAc)₂ (1.1 mg, 5 µmol, 5 mol%),, XPhos (4.8 mg, 10 µmol, 10 mol%), KOAc (29.4 mg, 0.3 mmol, 3 equiv.), and B₂Pin₂ (50.7 mg, 0.2 mmol, 2 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. Dioxane (0.4 mL) was added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 110 °C. After 1 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 2 mL). After evaporated under reduced pressure, the residue was purified by silica gel chromatography (hexanes/EtOAc = 10:1 to 3:1 v/v) to afford 34.0 mg of compound as a white solid (71% yield). R*f* = 0.32 (hexanes/EtOAc = 3:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.12 (s, 1H), 7.39 (s, 1H), 7.37 (s, 1H), 7.15 (s, 1H), 4.89 (s, 2H), 3.71 (s, 3H), 2.25 (s, 3H), 2.20 (s, 3H), 2.19 (s, 3H), 1.38 (s, 9H), 1.30 (s, 12H); ¹³C NMR (150 MHz, CDCl₃) δ 163.62, 155.24, 154.72, 148.80, 142.06, 137.39, 132.74, 130.48, 129.80, 124.50, 123.85, 83.59, 80.03, 59.75, 53.44, 28.19, 24.79, 21.02, 13.11, 10.46. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₇H₄₀BN₂O₅ [M+H]⁺: 483.3025; found: 483.3020.

tert-Butyl ((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)(3-methoxy-5-methylphenyl)carbamate (5e)

Arene **2a** (39.0 mg, 0.1 mmol, 1 equiv.), $Pd_2(dba)_3$ (2.7 mg, 3 µmol, 3 mol%), 'BuXPhos (5.1 mg, 12 µmol, 12 mol%), and NaO'Bu (13.4 mg, 0.14 mmol, 1.4 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. Dioxane (0.4 mL) and MeOH (41 µL, 1.0 mmol, 10 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 4 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 2 mL). The filtrate was evaporated under reduced pressure. Purification by preparative TLC chromatography (hexane/EtOAc = 3:1 v/v) afforded 33.1 mg of compound **5e** as a yellow liquid (86% yield). Rf = 0.43 (hexanes/EtOAc = 3:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.16 (s, 1H), 6.67 (s, 1H), 6.62 (d, 1H), 6.48 (s, 1H), 4.87 (s, 2H), 3.72 (s, 3H), 3.70 (s, 3H), 2.24 (s, 3H), 2.21 (s, 3H), 2.20 (s, 3H), 1.39 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.62, 159.33, 155.10, 154.68, 148.87, 143.76, 138.92, 124.57, 123.62, 119.51, 112.13, 109.48, 80.20, 59.82, 55.16, 53.51, 28.25, 21.53, 13.18, 10.37. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₂H₃₁N₂O₄ [M+H]⁺: 387.2278; found: 387.2283.

tert-Butyl (3-(3,3-dimethylbut-1-yn-1-yl)-5-methylphenyl)((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)carbamate (5f).

Arene **2a** (39.0 mg, 0.1 mmol, 1 equiv.), Pd(MeCN)₂Cl₂ (1.6 mg, 6.0 µmol, 6 mol%), XPhos (8.9 mg, 18 µmol, 18 mol%), Cs₂CO₃ (81.5 mg, 0.25 mmol, 2.5 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. MeCN (0.4 mL) was added to the mixture. After stirring for 30 minutes at room temperature, 3,3-dimethylbut-1-yne (17.5 µL, 0.14 mmol, 1.4 equiv.) was added to the reaction mixture. The Schlenk tube was immersed into a pre-heated oil bath at 90 °C. After 6 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. The reaction mixture was filtered through Celite and eluted with EtOAc (3×2 mL). The filtrate was evaporated under reduced pressure. Purification by preparative TLC chromatography (hexane/EtOAc = 3:1 v/v) afforded 41.2 mg of compound **5f** as a yellow liquid (94% yield). R*f* = 0.61 (hexanes/EtOAc = 3:1 v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.16 (s, 1H), 7.05 (s, 1H), 6.97 (s, 2H), 4.92 (s, 2H), 3.72 (s, 3H), 2.21 (d, J = 3.4 Hz, 6H), 2.20 (s, 3H), 1.38 (s, 9H), 1.27 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 163.64, 155.05, 154.60, 148.94, 142.52, 137.90, 129.65, 126.77, 126.69, 124.61, 123.84, 123.72, 97.96, 80.24, 76.86, 59.82, 53.40, 31.01, 28.22, 27.84, 21.08 13.18, 10.43. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₇H₃₇N₂O₃ [M+H]⁺: 437.2799; found: 437.2790.

3-Chloro-5-methylaniline (s2).

HBr aqueous solution (48 wt%, 0.5 mL) was added to arene **2a** (39.0 mg, 0.1 mmol, 1 equiv.) in a round flask. The reaction mixture was stirred at 100 °C overnight. Then the flask was allowed to cool to room temperature. Saturated NaHCO₃ aqueous solution (10 mL) was added to the mixture and extracted with EtOAc (3×10 mL). The combined organic layers were dried with Na₂SO₄. After the organic solvent was concentrated by rotatory evaporation, the residue was purified by preparative TLC chromatography (hexane/EtOAc = 5:1 v/v) afforded 13.5 mg of compound s2 as a yellow liquid (95% yield). R*f* = 0.31 (hexanes/EtOAc = 6:1 v/v).

3.11 KIE Studies and Competition Experiments

A. Measurement of the Kinetic Isotope Effect

Kinetic studies on the meta-chlorination of 1a, 2-D-1a, and 3-D-1a were conducted in separate vessels.

Arene (0.05 mmol, 1.0 equiv), Pd(PhCN)₂Cl₂ (1.9 mg, 5 µmol, 10 mol%), Ligand **9** (2.0 mg, 5 µmol, 10 mol%) and Ag₂CO₃ (27.6 mg, 0.10 mmol, 2.0 equiv.) were added into a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. Toluene (0.5 mL), cyclohexane (0.5 mL), PhCN (1 µL, 10 µmol, 20 mol%), NBE-CO₂Me (12 µL, 0.075 mmol, 1.5 equiv.) and 2,6-di[']Pr-C₆H₄OSO₂Cl (27.7 mg, 0.10 mmol, 2.0 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After indicated time, the oil bath was removed, and the Schlenk tube was cooled by ice water. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 2 mL). The filtrate was evaporated

under reduced pressure. The yield was determined by ¹H NMR analysis of the crude product using 1,1,2,2-tetrachloroethane as an internal standard.

B. Competition Experiments

Arenes **1a** (35.6 mg, 0.10 mmol, 1.0 equiv), arenes **1ac** (37.2 mg, 0.10 mmol, 1.0 equiv), Pd(PhCN)₂Cl₂ (3.8 mg, 10 µmol, 10 mol%), Ligand **9** (3.9 mg, 10 µmol, 10 mol%) and Ag₂CO₃ (55.1 mg, 0.20 mmol, 2.0 equiv.) were added into a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. Toluene (1 mL), cyclohexane (1 mL), PhCN (2 µL, 20 µmol, 20 mol%), NBE-CO₂Me (23 µL, 0.15 mmol, 1.5 equiv.) and 2,6-di^{*i*}Pr-C₆H₄OSO₂Cl (27.7 mg, 0.10 mmol, 1.0 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After indicated time, the oil bath was removed, and the Schlenk tube was cooled by ice water. The reaction mixture was filtered through Celite and eluted with

EtOAc (3 × 2 mL). The filtrate was evaporated under reduced pressure. Purification by preparative TLC chromatography afforded the corresponding products **2a** (16 mg, 41%) and **2ac** (11 mg, 27%). **2ac**: ¹H NMR (600 MHz, CDCl₃) δ 8.17 (s, 1H), 6.90 (s, 1H), 6.77 (s, 1H), 6.66 (s, 1H), 4.85 (s, 2H), 3.73 (s, 3H), 3.72 (s, 3H), 2.21 (s, 3H), 2.19 (s, 3H), 1.39 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 164.26, 160.48, 155.18, 154.86, 149.64, 145.47, 134.57, 125.32, 124.03, 119.65, 111.98, 111.68, 81.32, 60.46, 56.08, 53.85, 28.78, 13.79, 10.93. HRMS (ESI-TOF) *m/z* calc'd for C₂₁H₂₈ClN₂O₄ [M+H]⁺: 407.1732; found: 407.1739.

Arenes **1a** (35.6 mg, 0.10 mmol, 1.0 equiv), arenes **1t** (44.7 mg, 0.10 mmol, 1.0 equiv), Pd(PhCN)₂Cl₂ (3.8 mg, 10 µmol, 10 mol%), Ligand **9** (3.9 mg, 10 µmol, 10 mol%) and Ag₂CO₃ (55.1 mg, 0.20 mmol, 2.0 equiv.) were added into a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. Toluene (1 mL), cyclohexane (1 mL), PhCN (2 µL, 20 µmol, 20 mol%), NBE-CO₂Me (23 µL, 0.15 mmol, 1.5 equiv.) and 2,6-di^{*i*}Pr-C₆H₄OSO₂Cl (27.7 mg, 0.10 mmol, 1.0 equiv.) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After indicated time, the oil bath was removed, and the Schlenk tube was cooled by ice water. The reaction mixture was filtered through Celite and eluted with EtOAc (3 × 2 mL). The filtrate was evaporated under reduced pressure. Purification by preparative TLC chromatography afforded the corresponding products **2a** (15.6 mg, 40%) and **2t** (11.6 mg, 24%).

4. X-ray Crystallographic Data of Compound 2aa

2aa

Table 1. Crystal data and structure refinement.

Report date	2016-08-01	
Identification code	Yu_SH160727-1	
Empirical formula	C22 H27 Cl N4 O3	
Molecular formula	C22 H27 Cl N4 O3	
Formula weight	430.92	
Temperature	100.0 K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a = 14.7646(4) Å	□=90°.
	b = 8.9396(2) Å	$\Box = 90.0910(10)^{\circ}.$
	c = 16.5413(4) Å	$\square = 90^{\circ}.$
	26	

Volume	2183.28(9) Å ³
Z	4
Density (calculated)	1.311 Mg/m ³
Absorption coefficient	1.803 mm ⁻¹
F(000)	912
Crystal size	0.2 x 0.12 x 0.12 mm ³
Crystal color, habit	colorless block
Theta range for data collection	5.348 to 68.292°.
Index ranges	-17<=h<=17, -10<=k<=9, -19<=l<=19
Reflections collected	20152
Independent reflections	3973 [R(int) = 0.0405]
Completeness to theta = 67.500°	99.3 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.5210 and 0.4208
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3973 / 0 / 278
Goodness-of-fit on F^2	1.063
Final R indices [I>2sigma(I)]	R1 = 0.0370, wR2 = 0.0908
R indices (all data)	R1 = 0.0382, wR2 = 0.0915
Extinction coefficient	n/a
Largest diff. peak and hole	0.475 and -0.328 e.Å ⁻³

	X	у	Z	U(eq)	
Cl(1)	5863(1)	2590(1)	9193(1)	23(1)	
O(1)	6023(1)	1526(1)	6281(1)	21(1)	
O(2)	7169(1)	1774(1)	5370(1)	18(1)	
O(3)	7820(1)	5663(1)	2896(1)	22(1)	
N(1)	5412(1)	7631(1)	8744(1)	21(1)	
N(2)	5746(1)	7597(1)	7976(1)	19(1)	
N(3)	6998(1)	3528(1)	6302(1)	16(1)	
		27	7		

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

N(4)	6324(1)	5184(1)	5003(1)	18(1)
C(1)	5480(1)	6251(2)	9021(1)	18(1)
C(2)	5864(1)	5282(2)	8438(1)	16(1)
C(3)	6090(1)	3769(2)	8377(1)	16(1)
C(4)	6474(1)	3218(2)	7688(1)	16(1)
C(5)	6610(1)	4164(2)	7007(1)	15(1)
C(6)	6385(1)	5665(2)	7031(1)	17(1)
C(7)	6028(1)	6201(2)	7764(1)	17(1)
C(8)	5790(1)	8931(2)	7485(1)	22(1)
C(9)	6666(1)	2198(2)	6003(1)	15(1)
C(10)	6847(1)	591(2)	4816(1)	21(1)
C(11)	7601(1)	546(2)	4190(1)	32(1)
C(12)	6769(1)	-897(2)	5253(1)	28(1)
C(13)	5956(1)	1088(2)	4439(1)	28(1)
C(14)	7620(1)	4412(2)	5799(1)	16(1)
C(15)	7214(1)	4895(1)	4997(1)	15(1)
C(16)	7758(1)	5028(1)	4307(1)	15(1)
C(17)	7331(1)	5541(2)	3606(1)	17(1)
C(18)	6405(1)	5863(2)	3593(1)	20(1)
C(19)	5939(1)	5641(2)	4311(1)	20(1)
C(20)	5935(1)	6405(2)	2840(1)	32(1)
C(21)	8248(1)	7093(2)	2804(1)	27(1)
C(22)	8748(1)	4597(2)	4292(1)	21(1)

Table 3. Bond lengths [Å] and angles [°].

Cl(1)-C(3)	1.7459(14)	N(1)-C(1)	1.3197(19)
O(1)-C(9)	1.2150(17)	N(2)-C(7)	1.3617(18)
O(2)-C(9)	1.3401(16)	N(2)-C(8)	1.4433(18)
O(2)-C(10)	1.4765(16)	N(3)-C(5)	1.4194(17)
O(3)-C(17)	1.3838(16)	N(3)-C(9)	1.3773(17)
O(3)-C(21)	1.4340(19)	N(3)-C(14)	1.4700(17)
N(1)-N(2)	1.3638(17)	N(4)-C(15)	1.3391(17)

N(4)-C(19)	1.3414(19)	C(18)-C(19)	1.388(2)
C(1)-H(1)	0.9500	C(18)-C(20)	1.505(2)
C(1)-C(2)	1.4161(19)	C(19)-H(19)	0.9500
C(2)-C(3)	1.397(2)	C(20)-H(20A)	0.9800
C(2)-C(7)	1.4057(19)	C(20)-H(20B)	0.9800
C(3)-C(4)	1.3662(19)	C(20)-H(20C)	0.9800
C(4)-H(4)	0.9500	C(21)-H(21A)	0.9800
C(4)-C(5)	1.4229(19)	C(21)-H(21B)	0.9800
C(5)-C(6)	1.3826(19)	C(21)-H(21C)	0.9800
C(6)-H(6)	0.9500	C(22)-H(22A)	0.9800
C(6)-C(7)	1.4072(19)	C(22)-H(22B)	0.9800
C(8)-H(8A)	0.9800	C(22)-H(22C)	0.9800
C(8)-H(8B)	0.9800		
C(8)-H(8C)	0.9800	C(9)-O(2)-C(10)	120.65(10)
C(10)-C(11)	1.522(2)	C(17)-O(3)-C(21)	113.06(11)
C(10)-C(12)	1.518(2)	C(1)-N(1)-N(2)	106.06(11)
C(10)-C(13)	1.521(2)	N(1)-N(2)-C(8)	121.47(11)
C(11)-H(11A)	0.9800	C(7)-N(2)-N(1)	111.73(11)
C(11)-H(11B)	0.9800	C(7)-N(2)-C(8)	126.79(12)
C(11)-H(11C)	0.9800	C(5)-N(3)-C(14)	120.22(11)
C(12)-H(12A)	0.9800	C(9)-N(3)-C(5)	119.73(11)
C(12)-H(12B)	0.9800	C(9)-N(3)-C(14)	118.92(11)
C(12)-H(12C)	0.9800	C(15)-N(4)-C(19)	117.87(11)
C(13)-H(13A)	0.9800	N(1)-C(1)-H(1)	124.3
C(13)-H(13B)	0.9800	N(1)-C(1)-C(2)	111.38(12)
C(13)-H(13C)	0.9800	C(2)-C(1)-H(1)	124.3
C(14)-H(14A)	0.9900	C(3)-C(2)-C(1)	137.52(13)
C(14)-H(14B)	0.9900	C(3)-C(2)-C(7)	117.85(12)
C(14)-C(15)	1.5169(19)	C(7)-C(2)-C(1)	104.63(12)
C(15)-C(16)	1.4022(18)	C(2)-C(3)-Cl(1)	118.86(10)
C(16)-C(17)	1.396(2)	C(4)-C(3)-Cl(1)	120.54(11)
C(16)-C(22)	1.5112(18)	C(4)-C(3)-C(2)	120.60(12)
C(17)-C(18)	1.3971(19)	C(3)-C(4)-H(4)	119.8

C(3)-C(4)-C(5)	120.35(12)	C(10)-C(12)-H(12B)	109.5
C(5)-C(4)-H(4)	119.8	C(10)-C(12)-H(12C)	109.5
N(3)-C(5)-C(4)	118.05(12)	H(12A)-C(12)-H(12B)	109.5
C(6)-C(5)-N(3)	120.63(12)	H(12A)-C(12)-H(12C)	109.5
C(6)-C(5)-C(4)	121.31(12)	H(12B)-C(12)-H(12C)	109.5
C(5)-C(6)-H(6)	121.8	C(10)-C(13)-H(13A)	109.5
C(5)-C(6)-C(7)	116.50(12)	C(10)-C(13)-H(13B)	109.5
C(7)-C(6)-H(6)	121.8	C(10)-C(13)-H(13C)	109.5
N(2)-C(7)-C(2)	106.21(12)	H(13A)-C(13)-H(13B)	109.5
N(2)-C(7)-C(6)	130.45(13)	H(13A)-C(13)-H(13C)	109.5
C(2)-C(7)-C(6)	123.30(13)	H(13B)-C(13)-H(13C)	109.5
N(2)-C(8)-H(8A)	109.5	N(3)-C(14)-H(14A)	108.8
N(2)-C(8)-H(8B)	109.5	N(3)-C(14)-H(14B)	108.8
N(2)-C(8)-H(8C)	109.5	N(3)-C(14)-C(15)	113.69(11)
H(8A)-C(8)-H(8B)	109.5	H(14A)-C(14)-H(14B)	107.7
H(8A)-C(8)-H(8C)	109.5	C(15)-C(14)-H(14A)	108.8
H(8B)-C(8)-H(8C)	109.5	C(15)-C(14)-H(14B)	108.8
O(1)-C(9)-O(2)	126.16(12)	N(4)-C(15)-C(14)	115.74(11)
O(1)-C(9)-N(3)	124.73(12)	N(4)-C(15)-C(16)	123.58(12)
O(2)-C(9)-N(3)	109.11(11)	C(16)-C(15)-C(14)	120.68(11)
O(2)-C(10)-C(11)	101.87(11)	C(15)-C(16)-C(22)	123.15(12)
O(2)-C(10)-C(12)	110.90(11)	C(17)-C(16)-C(15)	116.42(12)
O(2)-C(10)-C(13)	108.76(12)	C(17)-C(16)-C(22)	120.40(12)
C(12)-C(10)-C(11)	110.94(13)	O(3)-C(17)-C(16)	119.61(12)
C(12)-C(10)-C(13)	112.64(13)	O(3)-C(17)-C(18)	118.88(12)
C(13)-C(10)-C(11)	111.20(13)	C(16)-C(17)-C(18)	121.43(12)
C(10)-C(11)-H(11A)	109.5	C(17)-C(18)-C(20)	121.92(13)
C(10)-C(11)-H(11B)	109.5	C(19)-C(18)-C(17)	116.36(13)
C(10)-C(11)-H(11C)	109.5	C(19)-C(18)-C(20)	121.72(13)
H(11A)-C(11)-H(11B)	109.5	N(4)-C(19)-C(18)	124.30(12)
H(11A)-C(11)-H(11C)	109.5	N(4)-C(19)-H(19)	117.9
H(11B)-C(11)-H(11C)	109.5	C(18)-C(19)-H(19)	117.9
C(10)-C(12)-H(12A)	109.5	C(18)-C(20)-H(20A)	109.5

C(18)-C(20)-H(20B)	109.5	H(21A)-C(21)-H(21C)	109.5
C(18)-C(20)-H(20C)	109.5	H(21B)-C(21)-H(21C)	109.5
H(20A)-C(20)-H(20B)	109.5	C(16)-C(22)-H(22A)	109.5
H(20A)-C(20)-H(20C)	109.5	C(16)-C(22)-H(22B)	109.5
H(20B)-C(20)-H(20C)	109.5	C(16)-C(22)-H(22C)	109.5
O(3)-C(21)-H(21A)	109.5	H(22A)-C(22)-H(22B)	109.5
O(3)-C(21)-H(21B)	109.5	H(22A)-C(22)-H(22C)	109.5
O(3)-C(21)-H(21C)	109.5	H(22B)-C(22)-H(22C)	109.5
H(21A)-C(21)-H(21B)	109.5		

Table 4. Anisotropic displacement parameters (Å²x 10³). The anisotropic displacement factor exponent takes the form: $-2\Box^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
Cl(1)	30(1)	19(1)	19(1)	6(1)	8(1)	4(1)	
O(1)	25(1)	18(1)	20(1)	-1(1)	5(1)	-6(1)	
O(2)	22(1)	17(1)	16(1)	-5(1)	4(1)	-1(1)	
O(3)	25(1)	26(1)	15(1)	-1(1)	6(1)	-1(1)	
N(1)	22(1)	21(1)	19(1)	-3(1)	2(1)	2(1)	
N(2)	24(1)	15(1)	18(1)	-1(1)	2(1)	2(1)	
N(3)	18(1)	14(1)	14(1)	-1(1)	4(1)	-2(1)	
N(4)	15(1)	18(1)	19(1)	0(1)	3(1)	-1(1)	
C(1)	18(1)	19(1)	16(1)	-1(1)	2(1)	1(1)	
C(2)	14(1)	20(1)	15(1)	0(1)	-1(1)	-1(1)	
C(3)	15(1)	19(1)	15(1)	2(1)	0(1)	-1(1)	
C(4)	16(1)	15(1)	18(1)	0(1)	0(1)	0(1)	
C(5)	14(1)	17(1)	14(1)	-2(1)	0(1)	-1(1)	
C(6)	19(1)	16(1)	15(1)	1(1)	0(1)	-2(1)	
C(7)	15(1)	14(1)	20(1)	-2(1)	-2(1)	0(1)	
C(8)	27(1)	14(1)	23(1)	6(1)	-1(1)	-1(1)	
C(9)	18(1)	14(1)	13(1)	1(1)	1(1)	2(1)	
C(10)	28(1)	18(1)	17(1)	-7(1)	0(1)	-1(1)	

C(11)	37(1)	35(1)	23(1)	-12(1)	7(1)	1(1)	
C(12)	38(1)	17(1)	30(1)	-5(1)	-2(1)	2(1)	
C(13)	32(1)	32(1)	21(1)	-2(1)	-5(1)	-1(1)	
C(14)	16(1)	18(1)	16(1)	0(1)	3(1)	-3(1)	
C(15)	16(1)	11(1)	17(1)	-2(1)	2(1)	-2(1)	
C(16)	16(1)	13(1)	18(1)	-2(1)	2(1)	-2(1)	
C(17)	19(1)	16(1)	15(1)	-3(1)	4(1)	-3(1)	
C(18)	18(1)	21(1)	19(1)	-1(1)	-2(1)	-2(1)	
C(19)	14(1)	23(1)	23(1)	0(1)	1(1)	-1(1)	
C(20)	22(1)	50(1)	24(1)	6(1)	-3(1)	1(1)	
C(21)	28(1)	33(1)	21(1)	3(1)	6(1)	-6(1)	
C(22)	17(1)	26(1)	20(1)	2(1)	4(1)	2(1)	

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3).

	X	У	Z	U(eq)	
H(1)	5294	5947	9546	21	
H(4)	6652	2197	7663	19	
H(6)	6469	6300	6577	20	
H(8A)	5557	9783	7794	32	
H(8B)	5424	8792	6997	32	
H(8C)	6421	9123	7333	32	
H(11A)	7683	1546	3958	48	
H(11B)	7440	-160	3761	48	
H(11C)	8166	225	4449	48	
H(12A)	7311	-1058	5586	43	
H(12B)	6715	-1706	4856	43	
H(12C)	6232	-887	5600	43	
H(13A)	5500	1210	4864	43	
H(13B)	5751	331	4052	43	
H(13C)	6044	2043	4160	43	
H(14A)	8170	3813	5693	20	
H(14B)	7806	5314	6104	20	

H(19)	5305	5824	4312	24
H(20A)	5979	5639	2418	48
H(20B)	6225	7328	2652	48
H(20C)	5296	6602	2960	48
H(21A)	8642	7074	2327	41
H(21B)	8611	7313	3286	41
H(21C)	7785	7867	2735	41
H(22A)	9112	5417	4513	31
H(22B)	8933	4397	3733	31
H(22C)	8839	3696	4620	31

 $\int_{-\infty}^{7.361} 7.347$ -7.260 1.7.150 1.6.942- 8.143 -- 4.865 3.727 2.304 2.212 2.201 L.385 Ŗr Boc .Me Ŵе **`**OMe Ŵе Br-1a 0.994 1.004 1.004 2.03H 3.08J 3.22_¥ 6.09∡ 8.99₌ 199₁ 5.0 4.5 f1 (ppm) 0.0 9.5 9.0 . 8.5 8.0 7.5 . 7.0 6.5 6.0 . 5.5 . 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 . 0.0 -C $\sublength{\abovedisplaystylength{\belowdisplaystylength{\blaystylength{\blaystylength{\belowdisp$ 80.53 77.21 77.00 76.79 — 28.22 — 22.93 --- 59.86 -- 53.32 ~ 13.22 ~ 10.39 Br Boc Me Ьe **`**OMe Иe Br-1a 110 100 f1 (ppm) 220 210 200 190 180 170 160 150 140 130 120 90 80 70 60 50 40 30 20 10 0

110 100 f1 (ppm) !20 -1

65

-10 -100 f1 (ppm) -190 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -2

References

1. Shen, P.-X.; Wang, X.-C.; Wang, P.; Zhu, R.-Y.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137, 11574.

2. Wang, P.; Farmer, M. E.; Huo, X.; Jain, P.; Shen, P.-X.; Ishoey, M.; Bradner, J. E.; Wisniewski, S. R.; Eastgate, M. D.; Yu, J.-Q. *J. Am. Chem. Soc.* **2016**, *138*, 9269.

- 3. Cativiela, C.; Fernandez, J.; Melendez, E. J. Heterocycl. Chem. 1982, 19, 1093.
- 4. Due to the high number of fluorine atoms, the ¹³C peaks of heptafluoro-tolyl group were difficult to observe.