# **Supplementary Information Titles**

| Journal: Nature Medicine     |                                                                                                                                   |  |  |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                              |                                                                                                                                   |  |  |  |
| Article Title:               | Interleukin-33-induced expression of progesterone-induced blocking<br>factor 1 by decidual B cells protects against preterm labor |  |  |  |
| <b>Corresponding Author:</b> | Kang Chen                                                                                                                         |  |  |  |

| Supplementary Item &<br>Number | Title or Caption                                                                                                                                                                                                 |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Supplementary Table 1          | Demographic and clinical characteristics of the study subjects.                                                                                                                                                  |
| Supplementary Table 2          | qRT-PCR primers used in this study.                                                                                                                                                                              |
| Supplementary Table 3          | Antibodies used in this study.                                                                                                                                                                                   |
| Supplementary Figure 1         | B cells are present in choriodecidua of women undergoing TL or PTL at delivery.                                                                                                                                  |
| Supplementary Figure 2         | Human choriodecidua harbors B cells with increased activation, class<br>switching and plasmacytoid differentiation compared to peripheral<br>blood B cells.                                                      |
| Supplementary Figure 3         | Human PTL choriodecidua expresses increased B cell-stimulating factors.                                                                                                                                          |
| Supplementary Figure 4         | B cell deficiency in mice causes heightened uterine inflammation and<br>higher uterine neutrophil, but not inflammatory monocyte, infiltration<br>and activation following LPS administration in late gestation. |
| Supplementary Figure 5         | B cells mediate protection against LPS-induced PTL in mice independently of IL-10, TGF- $\beta$ or IL-35.                                                                                                        |
| Supplementary Figure 6         | Human choriodecidual B cells express PIBF1 at term delivery.                                                                                                                                                     |
| Supplementary Figure 7         | B cells are a significant producer of PIBF1 in mouse uterus during late pregnancy.                                                                                                                               |
| Supplementary Figure 8         | B cells are a significant producer of PIBF1 in human choriodecidua at term delivery.                                                                                                                             |
| Supplementary Figure 9         | Full-length PIBF1 administration suppresses uterine inflammation and neutrophil activation in LPS-challenged pregnant µMT mice.                                                                                  |
| Supplementary Figure 10        | A C-terminal fragment of PIBF1 does not protect µMT mice against LPS-induced PTL.                                                                                                                                |
| Supplementary Figure 11        | IFN-γ, TNF, IL-17A, IL-4, IL-10, TGF-β, IL-25 and TSLP do not induce PIBF1 expression by human B cells.                                                                                                          |
| Supplementary Figure 12        | PIBF1 expression is diminished in uterine tissues and uterine B cells in $II33^{-/-}$ mice.                                                                                                                      |
| Supplementary Figure 13        | Mouse uterine PIBF1 expression does not reduce amidst systemic progesterone withdrawal in late gestation.                                                                                                        |
| Supplementary Figure 14        | Peripheral blood and choriodecidual B cells constitutively express IL1RAcP.                                                                                                                                      |
| Supplementary Figure 15        | Diminished ST2L expression on human PTL choriodecidual B cells was not due to lower choriodecidual progesterone.                                                                                                 |

Г

#### Supplementary tables

|                                                           | Spontaneous TL<br>(n = 30) | Spontaneous PTL<br>(n = 15) | Р                      |
|-----------------------------------------------------------|----------------------------|-----------------------------|------------------------|
| Maternal age (year)<br>Median [interquartile range]       | 27.5 [24.75 – 29]          | 24 [23 – 28]                | 0.202 <sup>‡</sup>     |
| Race                                                      |                            |                             | 0.564#                 |
| African-American                                          | 17 (56.6)                  | 10 (66.7)                   |                        |
| White                                                     | 9 (30)                     | 3 (20)                      |                        |
| Hispanic                                                  | 2 (6.7)                    | 2 (13.3)                    |                        |
| Other                                                     | 2 (6.7)                    | 0 (0)                       |                        |
| Gestational length (week)<br>Median [interquartile range] | 39 [38 - 40]               | 34 [33 – 35]                | < 0.0001 <sup>\$</sup> |

Supplementary Table 1 Demographic and clinical characteristics of the study subjects.

<sup>A</sup>: Subjects with current diagnosis of preeclampsia, a prior history or current diagnosis of diabetes, chronic hypertension, asthma, thyroid disease, pyelonephritis, active Chlamydia, Gonorrhea or Syphilis infections, active human papillomavirus (HPV) or herpes simplex virus (HSV) lesions, human immunodeficiency virus (HIV) infection and recreational drug use were excluded.

<sup>‡</sup>: 2-tailed *t*-test.

<sup>\$</sup>: Kruskal–Wallis test.

#: 2-tailed Chi-square test.

| Target gene |    | Primer sequence                   |
|-------------|----|-----------------------------------|
| Human       |    |                                   |
| CADDII      | S  | 5'- GAAGGTGAAGGTCGGAGTC -3'       |
| GAFDII      | AS | 5'- GAAGATGGTGATGGGATTTC -3'      |
| PIBF1       | S  | 5'- CTTACAAAGATTGAAGAATTGGAGG -3' |
|             | AS | 5'- AATTCTTGATATTTGCTGGCATCTT -3' |
| TNESE12     | S  | 5'- CTGCACCTGGTTCCCATTAAC -3'     |
| 1NFSF15 -   | AS | 5'- AAGAGCTGGTTGCCACATCAC -3'     |
|             | S  | 5'- ACCGCGGGACTGAAAATCT -3'       |
| INFSFI3B -  | AS | 5'- CACGCTTATTTCTGCTGTTCTGA -3'   |
|             | S  | 5'- CCCAGGCTATTCGGAAACTCAG -3'    |
| ISLP -      | AS | 5'- CGCCACAATCCTTGTAATTGTG -3'    |
| Mouse       |    |                                   |
| Gapdh       | S  | 5' – AGGTCGGTGTGAACGGATTTG –3'    |
|             | AS | 5' - TGTAGACCATGTAGTTGAGGTCA -3'  |
| T. C        | S  | 5' - GGAACACGTCGTGGGATAATG -3'    |
| Inf –       | AS | 5' - GGCAGACTTTGGATGCTTCTT -3'    |
|             | S  | 5' - GCAACTGTTCCTGAACTCAACT -3'   |
| 1110 -      | AS | 5' - ATCTTTTGGGGTCCGTCAACT -3'    |
| 116         | S  | 5' - TAGTCCTTCCTACCCCAATTTCC -3'  |
| 110         | AS | 5' - TTGGTCCTTAGCCACTCCTTC -3'    |
| Marino      | S  | 5' - GGACCCGAAGCGGACATTG -3'      |
| мтрэ        | AS | 5' - CGTCGTCGAAATGGGCATCT -3'     |
| Crell       | S  | 5' - CTGGGATTCACCTCAAGAACATC -3'  |
| CACII       | AS | 5' - CAGGGTCAAGGCAAGCCTC -3'      |
| Crels       | S  | 5' - GCGGCTATGACTGAGGAAGG -3'     |
| CACIS       | AS | 5' - GTTCCATCTCGCCATTCATGC -3'    |
| Pihfl       | S  | 5' - GCTGACAGAAGAGCAGTATG -3'     |
| 1 10/1      | AS | 5' - CGAGCTCATAGAAGCGAATAG -3'    |
| Crcl?       | S  | 5' - CCAACCACCAGGCTACAGG -3'      |
|             | AS | 5' - GCGTCACACTCAAGCTCTG -3'      |
| $C_{c}$     | S  | 5' - TTCTCTGTACCATGACACTCTGC -3'  |
| CCIS -      | AS | 5' - CGTGGAATCTTCCGGCTGTAG -3'    |

### Supplementary Table 2 qRT-PCR primers used in this study

| Cxcl10 —  | S  | 5' - CCAAGTGCTGCCGTCATTTTC -3'   |
|-----------|----|----------------------------------|
|           | AS | 5' - GGCTCGCAGGGATGATTTCAA -3'   |
| $C_{all}$ | S  | 5' - TTAAAAACCTGGATCGGAACCAA -3' |
|           | AS | 5' - GCATTAGCTTCAGATTTACGGGT -3' |
| Cxcl9 —   | S  | 5' - TCCTTTTGGGCATCATCTTCC -3'   |
|           | AS | 5' - TTTGTAGTGGATCGTGCCTCG -3'   |
| Eh;2      | S  | 5' - CTCTCCCCTGGTTACACTG -3'     |
| EDIS      | AS | 5' - CCACGGGATACCGAGAAGC -3'     |
| 1110      | S  | 5' - GCTCTTACTGACTGGCATGAG -3'   |
| 1110 —    | AS | 5' - CGCAGCTCTAGGAGCATGTG -3'    |
| Tgfb1 —   | S  | 5' - CTTCAATACGTCAGACATTCGGG -3' |
|           | AS | 5' - GTAACGCCAGGAATTGTTGCTA -3'  |

| Antigen | Conjugation  | Isotype     | Clone   | Manufacturer                    | Use           |
|---------|--------------|-------------|---------|---------------------------------|---------------|
| Human   |              |             |         |                                 |               |
| APRIL   | _            | Goat IgG    | _       | Santa Cruz sc-5737              | IF            |
| BAFF    | PE           | Mouse IgG1  | 1D6     | eBioscience 12-9017             | IF            |
| BAFFR   | PE           | Mouse IgG1  | 11C1    | Biolegend 316906                | FC            |
| BCMA    | PE           | Goat IgG    | _       | R&D FAB193P                     | FC            |
| CCR10   | APC          | Rat IgG2a   | 314305  | R&D FAB3478A                    | FC            |
| CCR6    | PE           | Mouse IgG2b | G034E3  | Biolegend 353409                | FC            |
| CCR7    | PE-Cy7       | Rat IgG2a   | 3D12    | BD 557648                       | FC            |
| CCR9    | AF647        | Mouse IgG2a | BL/CCR9 | Biolegend 346301                | FC            |
| CD10    | PE           | Mouse IgG1  | MEM-78  | Thermo Fisher Scientific CD1004 | FC            |
| CD11c   | PE           | Mouse IgG1  | B-ly6   | BD 555392                       | FC            |
| CD138   | PE           | Mouse IgG1  | DL-101  | BD 555805                       | FC            |
| CD14    | PerCP-Vio700 | Mouse IgG2a | TÜK4    | Miltenyi Biotec 130-097-539     | FC            |
| CD15    | FITC         | Mouse IgM   | HI98    | BD 555401                       | FC            |
| CD16    | APC-Cy7      | Mouse IgG1  | 3G8     | BD 557758                       | FC            |
|         | APC-Cy7      | Mouse IgG1  | HIB19   | Biolegend 302218                | FC            |
|         | PE-Cy7       | Mouse IgG1  | HIB19   | eBioscience 25-0199             | FC            |
| CD19    | Biotin       | Mouse IgG1  | HIB19   | Biolegend 302204                | MACS, IF, IHC |
|         | PE-CF594     | Mouse IgG1  | HIB19   | BD 562321                       | FC            |
|         | QDot655      | Mouse IgG1  | SJ25C1  | Thermo Fisher Scientific Q10179 | FC            |
| CD1d    | PE           | Mouse IgG2b | 51.1    | Biolegend 350305                | FC            |
| CD20    | PE-Cy7       | Mouse IgG2b | 2H7     | Biolegend 302312                | FC            |
| CD20    | APC          | Mouse IgG2b | 2H7     | Biolegend 302310                | FC            |

### Supplementary Table 3 Antibodies used in this study

| CD22          | PE           | Mouse IgG2b | S-HCL-1  | BD 347577                   | FC |
|---------------|--------------|-------------|----------|-----------------------------|----|
| CD23          | FITC         | Mouse IgG1  | 9P25     | Beckman Coulter IM0529      | FC |
| CD24          | PE           | Mouse IgG2a | ML5      | BD 555428                   | FC |
| CD24          | APC-eF780    | Mouse IgG1  | eBioSN3  | eBioscience 47-0247         | FC |
| CD25          | FITC         | Mouse IgG1  | M-A251   | BD 555431                   | FC |
| CD27          | AF647        | Mouse IgG1  | O323     | Biolegend 302812            | FC |
| CD27          | PE           | Mouse IgG1  | M-T271   | BD 555441                   | FC |
| CD3           | PerCP-Vio700 | Mouse IgG2a | BW264/56 | Miltenyi Biotec 130-100-458 | FC |
| CD29          | PE-Cy7       | Mouse IgG1  | HIT2     | Biolegend 303510            | FC |
| CD38          | APC          | Mouse IgG1  | HIT2     | Biolegend 303516            | FC |
| CD4           | FITC         | Mouse IgG1  | RPA-T4   | eBioscience 25-0049         | FC |
| CD40          | FITC         | Mouse IgG1  | 5C3      | Biolegend 334305            | FC |
| CD43          | FITC         | Mouse IgG1  | 84-3C1   | eBioscience 11-0439         | FC |
| CD44          | PE           | Rat IgG2b   | IM7      | Biolegend 103009            | FC |
| CD45          | eF450        | Mouse IgG1  | 2D1      | eBioscience 48-9459         | FC |
| CD5           | PE           | Mouse IgG1  | UCHT2    | BD 555353                   | FC |
| CD56          | PE-Cy7       | Mouse IgG2a | MEM 188  | Biolegend 304628            | FC |
| CD69          | PE           | Mouse IgG1  | FN50     | BD 555531                   | FC |
| CD70          | PE           | Mouse IgG1  | 113-16   | Biolegend 355103            | FC |
| CD8           | PE           | Mouse IgG1  | RPA-T8   | BD 555367                   | FC |
| CD80          | PE           | Mouse IgG1  | L307.4   | BD 557227                   | FC |
| CD86          | PE           | Mouse IgG1  | FUN-1    | BD 555658                   | FC |
| CD95          | PE           | Mouse IgG1  | DX2      | BD 555674                   | FC |
| Cytokeratin-7 | _            | Mouse IgG1  | RCK105   | Abcam ab9021                | IF |
| GAPDH         | _            | Mouse IgG   | _        | Bioss bsm-0978M             | WB |

| I_D                     | Biotin      | Goat IgG F(ab) <sub>2</sub> | _        | Southern Biotech 2032-08                            | FC, MACS |
|-------------------------|-------------|-----------------------------|----------|-----------------------------------------------------|----------|
| IgD                     | FITC        | Mouse IgG2a                 | IA6-2    | BD 555778                                           | FC       |
| IgM                     | FITC        | Goat IgG F(ab)2             | _        | Thermo Fisher Scientific AHI1608                    | FC       |
| IL-10                   | PE          | Rat IgG1                    | JES3-9D7 | eBioscience 12-7108                                 | FC       |
| IL-17RB                 | AF488       | Rabbit IgG                  | _        | Bioss bs-2610R-FITC                                 | FC       |
| IL1RAcP                 | PE          | Recombinant Human IgG       | REA558   | Miltenyi Biotec 130-108-756                         | FC       |
| IL-33                   | _           | Mouse IgG1                  | 12B3C4   | Thermo Fisher Scientific MA5-15772                  | WB       |
| PD-L1                   | FITC        | Mouse IgG1                  | MIH1     | BD 558065                                           | FC       |
| DIDE1                   | _           | Sheep IgG                   | _        | R&D AF5559                                          | WB, FC   |
| PIBFI                   | _           | Rabbit IgG                  | _        | Antibodies-online ABIN2426350                       | WB       |
| ST2                     | _           | Goat IgG                    | _        | R&D AF523SP                                         | WB       |
| ST2L                    | FITC        | Mouse IgG1                  | B4E6     | MDBioproducts 101002F                               | FC       |
| TACI                    | PE          | Mouse IgG1                  | 165604   | R&D FAB1741P                                        | FC       |
| TSLP                    | _           | Rabbit IgG                  | _        | Rockland 600-401-FR6                                | IF       |
| TSLPR                   | PE          | Mouse IgG1                  | 1B4      | Biolegend 322806                                    | FC       |
| α <sub>4</sub> integrin | APC         | Mouse IgG1                  | 9F10     | Biolegend 304308                                    | FC       |
| β7 integrin             | eF650NC     | Rat IgG2a                   | FIB504   | eBioscience 95-5867                                 | FC       |
| β-Actin                 | _           | Mouse IgG1                  | AC-15    | Sigma Aldrich A5441                                 | WB       |
| Mouse                   |             |                             |          |                                                     |          |
| B220                    | APC-Cy7     | Rat IgG2a                   | RA3-6B2  | Biolegend 103224                                    | FC       |
| CD11b                   | APC-Cy7     | Rat IgG2b                   | M1/70    | Biolegend 101226                                    | FC       |
| CD11c                   | PE-Cy7      | Hamster IgG                 | N418     | Tonbo Biosciences 60-0114                           | FC       |
| CD16/CD32               | _           | Rat IgG2b                   | 2.4G2    | Tonbo Biosciences 70-0161,<br>BD Biosciences 553141 | Fc Block |
| CD18                    | PerCP-Cy5.5 | Rat IgG1                    | H155-78  | Biolegend 141007                                    | FC       |

| PE-CF               | PE-CF594           | Rat IgG2a    | 1D3         | BD 562291                       | FC     |
|---------------------|--------------------|--------------|-------------|---------------------------------|--------|
| CD19                | BV650              | Rat IgG2a    | 6D5         | Biolegend 115541                | FC     |
|                     | FITC               | Rat IgG2a    | 1D3         | Tonbo Biosciences 35-0193       | FC     |
| CD3                 | APC-Cy7            | Rat IgG2b    | 17A2        | Tonbo Biosciences 25-0032       | FC     |
| CD44                | PE-Cy7             | Rat IgG2b    | IM7         | BD 560569                       | FC     |
| CD45                | violetFluor45<br>0 | Rat IgG2b    | 30-F11      | Tonbo Biosciences 75-0451       | FC     |
| CD62L               | PE-Cy7             | Rat IgG2a    | MEL-14      | Biolegend 104418                | FC     |
| CD86                | AF700              | Rat IgG2a    | GL-1        | Biolegend 105024                | FC     |
| CD95                | PE                 | Hamster IgG2 | Jo2         | BD 554258                       | FC     |
| F4/80               | PE                 | Rat IgG2a    | BM8         | eBioscience 12-4801             | FC     |
| ICAM-1              | Biotin             | Rat IgG2b    | YN1/1.7.4   | Biolegend 116103                | FC     |
| IL-10               | PE                 | Rat IgG2b    | JES6-16E3   | eBioscience 12-7101             | FC     |
| IL-33               | _                  | Rabbit IgG   | 13H20L1     | Thermo Fisher Scientific 700268 | WB     |
| iNOS                | PE                 | Rat IgG2a    | CXNFT       | eBioscience 12-5920             | FC     |
| Ly-6C               | PerCP-Cy5.5        | Rat IgG2c    | HK1.4       | Biolegend 128012                | FC     |
| Ly-6G               | FITC               | Rat IgG2a    | 1A8         | Tonbo Biosciences 35-1276       | FC     |
| MHC-II<br>(I/A-I/E) | Biotin             | Rat IgG2b    | M5/114.15.2 | Biolegend 107603                | FC     |
| NIZ 1 1             | PE-Cy7             | Mouse IgG2a  | PK136       | Biolegend 108718                | FC     |
| 1 <b>NN1.1</b>      | FITC               | Mouse IgG2a  | PK136       | Biolegend 108714                | FC     |
| Pibf1               | _                  | Sheep IgG    | _           | R&D AF5559                      | WB, FC |
| β-Actin             | _                  | Mouse IgG1   | AC-15       | Sigma-Aldrich A5441             | WB     |

| Isotype controls | Conjugation | Clone     | Manufacturer                | Use     |
|------------------|-------------|-----------|-----------------------------|---------|
| ContlaC          | _           | _         | Santa Cruz sc-2028          | IF      |
| Goat IgG         | PE          | Poly24030 | Biolegend 403004            | FC      |
| Cast IcC E(sh')  | Biotin      | _         | Southern Biotech 0110-08    | FC      |
| Goat IgG F(ab')2 | FITC        | _         | Southern Biotech 0110-02    | FC      |
| Hamster IgG2     | PE          | B81-3     | BD 550085                   | FC      |
|                  | _           | MOPC-21   | BD 556648                   | IF      |
|                  | AF647       | MOPC-21   | Biolegend 400155            | FC      |
|                  | APC         | MOPC-21   | BD 555751, Biolegend 400120 | FC      |
| Mouse IgG1       | Biotin      | MOPC-21   | Biolegend 400103            | FC, IHC |
|                  | FITC        | MOPC-21   | BD 555748                   | FC      |
|                  | PE          | MOPC-21   | BD 555749                   | FC      |
|                  | PE-Cy7      | MOPC-21   | BD 555872, Biolegend 400126 | FC      |
|                  | AF647       | MOPC-173  | Biolegend 400234            | FC      |
| Mouse IgG2a      | FITC        | X39       | BD 349051                   | FC      |
|                  | PE          | MOPC-173  | Biolegend 400212            | FC      |
|                  | FITC        | MPC-11    | Biolegend 400310            | FC      |
|                  | APC         | 27-35     | BD 555745                   | FC      |
| Mouse IgG2b      | PE          | eBMG2b    | eBioscience 12-4732         | FC      |
|                  | PE-Cy7      | MPC-11    | Biolegend 400326            | FC      |
|                  | APC-eF780   | eBMG2b    | eBioscience 47-4732         | FC      |
| Dabbit IaC       | _           | _         | Santa Cruz sc-2027          | IF      |
| Kabult Igo       | FITC        | _         | Bioss bs-0295P-FITC         | FC      |
| Det IcC1         | PE          | eBRG1     | eBioscience 12-4301         | FC      |
| Kat IgO1         | PerCP-Cy5.5 | A110-1    | BD 551072                   | FC      |

|                       | AF700  | RTK4530 | Biolegend 400628            | FC      |
|-----------------------|--------|---------|-----------------------------|---------|
|                       | APC    | RTK2758 | Biolegend 400511            | FC      |
| Dat IgC 2a            | eF660  | eBR2a   | eBioscience 50-4321         | FC      |
| Kat IgG2a             | FITC   | R35-95  | BD 554688                   | FC      |
|                       | PE     | eBR2a   | eBioscience 12-4321         | FC      |
|                       | PE-Cy7 | RTK2758 | Biolegend 400521            | FC      |
|                       | Biotin | RTK4530 | Biolegend 400603            | FC      |
| Rat IgG2b             | PE     | A95-1   | BD 553989                   | FC      |
|                       | PE-Cy7 | RTK4530 | Biolegend 400617            | FC      |
| Recombinant human IgG | PE     | REA293  | Miltenyi Biotec 130-104-613 | FC      |
| Sheep IgG             | _      | _       | R&D 5-001-A                 | FC, IHC |

| Secondary antibody/reagent               | Conjugation         | Manufacturer                       | Use     |
|------------------------------------------|---------------------|------------------------------------|---------|
| Anti-biotin IgG                          | Magnetic microbeads | Miltenyi Biotec 130-090-485        | MACS    |
| Donkey anti-goat IgG                     | HRP                 | Santa Cruz sc-2020                 | WB      |
| Donkey anti-mouse IgG                    | AF594               | Thermo Fisher Scientific A21203    | IF      |
|                                          | CF647               | Sigma-Aldrich SAB4600176           | IF      |
|                                          | HRP                 | Santa Cruz sc-2318                 | WB      |
| Donkey anti-sheep IgG                    | HRP                 | Santa Cruz sc-2473                 | WB, IHC |
| Donkey F(ab')2 anti-sheep IgG            | AF647               | Jackson Immunoresearch 713-606-147 | IF      |
| Coat E(ab <sup>2</sup> ), anti manza IaC | Cy3                 | Jackson Immunoresearch 115-166-006 | IF      |
| Goat F(ab') <sub>2</sub> anti-mouse IgG  | FITC                | Southern Biotech 1032-02           | IF      |
| Goat F(ab')2 anti-rabbit IgG             | Cy3                 | Jackson Immunoresearch 111-166-047 | IF      |
| Goat anti-rabbit IgG                     | HRP                 | Santa Cruz sc-2004                 | WB      |

| Streptavidin | AF488       | Thermo Fisher Scientific S11223   | FC, IF |
|--------------|-------------|-----------------------------------|--------|
|              | AF647       | Thermo Fisher Scientific S21374   | FC, IF |
|              | ALP         | Vector Laboratories SA-5100       | IHC    |
|              | HRP         | R&D 890803                        | IHC    |
|              | PerCP-Cy5.5 | BD 551419                         | FC     |
|              | QDot605     | Thermo Fisher Scientific Q10101MP | FC     |

#### Supplementary figures and legends



Supplementary Figure 1 B cells are present in choriodecidua of women undergoing TL or PTL at delivery. Immunohistochemical analysis of CD19 in the choriodecidual tissue of a woman undergoing TL (left) and a woman undergoing PTL (right). Nuclei were countered stained with hematoxylin. The dotted lines outline chorioamniotic membranes. Scale bars, 50 µm.



Supplementary Figure 2 Human choriodecidua harbors B cells with increased activation, class switching and plasmacytoid differentiation compared to peripheral blood B cells. (a) The flow cytometry gating strategy for the identification of choriodecidual CD19<sup>+</sup> B cells and CD19<sup>+</sup>CD20<sup>+</sup>CD70<sup>-</sup>CD27<sup>+</sup>CD43<sup>+</sup> cells. (b) The expression of CD1d, CD5, CD10, CD11c, CD24,

CD25, CD40, CD44, CD69, CD70, CD80, CD86, CD95, BAFF-R, TACI, CCR6, CCR9, CCR10,  $\alpha_4$  integrin and  $\beta_7$  integrin on viable PB B cells (black histograms), choriodecidual B cells of women with TL (blue histograms) and PTL (red histograms). Shaded histograms indicate the fluorescence signals of the respective gated B cells generated by isotype-matched control antibodies. The results represent the staining profiles of 20 healthy blood donors, 16 women with TL and 12 women with PTL.



Supplementary Figure 3 Human PTL choriodecidua expresses increased B cell-stimulating factors. (a) Immunofluorescence analysis of choriodecidual tissues of a woman with TL and a woman with PTL for Cytokeratin-7 (green), BAFF, APRIL or TSLP (red) and DAPI-stained DNA (blue). Dotted lines mark the boundary between chorioamniotic epithelia and choriodecidual stroma. Scale bars, 50  $\mu$ m. (b) Relative expression of *TNFSF13B* (BAFF), *TNFSF13* (APRIL) and *TSLP* transcripts in choriodecidual tissues of women with spontaneous TL (n = 7) or spontaneous PTL (n = 7). \*P < 0.05; \*\*P < 0.01, by 2-tailed *t*-test.



Supplementary Figure 4 B cell deficiency in mice causes heightened uterine inflammation and higher uterine neutrophil, but not inflammatory monocyte, infiltration and activation following LPS administration in late gestation. (a) Fold change of Cxcl2, Cxcl3, Ccl3, and Cxcl10 transcripts in uterine tissues of gd 17.5 WT and µMT mice after receiving 2.5, 5 or 10 µg LPS, relative to the gene transcripts in uterine tissues of the respective mice that did not receive LPS. \*P < 0.05; \*\*P < 0.01, by 2-tailed *t*-test. (b) Flow cytometric analysis of the frequency of CD11b<sup>+</sup>Ly-6G<sup>+</sup> neutrophils in CD45<sup>+</sup> cells in uterine tissues of representative WT and µMT mice 24 hours after receiving LPS. (c) Statistical comparison of the frequencies of neutrophils in uterine CD45<sup>+</sup> leukocytes in WT and  $\mu$ MT mice after receiving LPS. \*P < 0.05; \*\*\*P < 0.001, by 2-tailed t-test. (d) Expression of surface ICAM-1, MHC-II, CD86, CD44 and CD95 by viable neutrophils in uterine tissues of a representative WT or µMT mouse 24 hours after receiving 5 µg LPS. (e) Flow cytometric analysis of the frequency of CD11b<sup>+</sup>Ly-6C<sup>+</sup> inflammatory monocyte in CD45<sup>+</sup> cells in uterine tissues of representative WT and µMT mice 24 hours after receiving LPS. (f) Statistical comparison of the frequencies of inflammatory monocytes in uterine CD45<sup>+</sup> leukocytes in WT and µMT mice after receiving LPS. (g) Fold change of Ccl2 transcript in uterine tissues of gd 17.5 WT and µMT mice after receiving LPS, relative to the gene transcripts in uterine tissues of the respective mice that did not receive LPS. Data in a and g represent the results of 5 mice per group. Data in **b** and **c** represent the results of 3 WT mice (PBS group), 4 WT mice (20 µg LPS group), 5 WT mice (0.5 and 10 µg LPS groups), 6 WT mice (2.5 µg LPS group), 7 WT mice (5 µg LPS group), 4 µMT mice (2.5 and 20 µg LPS groups), 5 µMT mice (10 µg LPS group), 6 µMT mice (PBS and 0.5 µg LPS groups) or 9 µMT mice (5 µg LPS group) per group. Data in d represent the results of 7 WT mice and 9 µMT mice. Data in e and f represent the results of 3 WT mice (PBS group), 4 WT mice (20 µg LPS group), 5 WT mice (10 µg LPS group), 6 WT mice (0.5, 2.5 and 5 μg LPS groups), 4 μMT mice (20 μg LPS groups), 6 μMT mice (PBS group), 7 μMT mice (0.5, 2.5 and 10 µg LPS groups) or 9 µMT mice (5 µg LPS group) per group.



Supplementary Figure 5 B cells mediate protection against LPS-induced PTL in mice independently of IL-10, TGF- $\beta$  or IL-35. (a,b) Fold change of *ll10*, *Tgfb1* and *Ebi3* transcripts in uterine tissues of gd 17.5 WT and  $\mu$ MT mice after receiving LPS, relative to the gene transcripts in uterine tissues of gd 17.5  $\mu$ MT mice after receiving either PBS, or WT or *ll10<sup>-/-</sup>* B cells on gd 14.5 and LPS on gd 16.5, relative to the gene transcripts in uterine tissues of the respective to the gene transcripts in uterine tissues of the respective to the gene transcripts in uterine tissues of gd 17.5  $\mu$ MT mice after receiving either PBS, or WT or *ll10<sup>-/-</sup>* B cells on gd 14.5 and LPS on gd 16.5, relative to the gene transcripts in uterine tissues of the respective mice that did not receive LPS. \**P* < 0.05; \*\**P* < 0.01; \*\*\**P* < 0.001, by 2-tailed *t*-test. Data represent the results of 5 mice per group.



Supplementary Figure 6 Human choriodecidual B cells express PIBF1 at term delivery. (a) Cytospin followed by immunofluorescence analysis of PIBF1 expression by sorted CD19<sup>+</sup>CD20<sup>+</sup> B cells and CD19<sup>+</sup>CD20<sup>-</sup> PCs in choriodecidual tissue of a TL subject. Scale bars, 10  $\mu$ m. (b) Imaging flow cytometry analysis of PIBF1 expression by TL choriodecidual CD19<sup>+</sup> B cells. Isotype control antibody-stained B cells were analyzed in parallel. Arrow heads point to concentrated perinuclear PIBF1 staining. Scale bar, 7  $\mu$ m.



**Supplementary Figure 7 B cells are a significant producer of Pibf1 in mouse uterus during late pregnancy.** (a) The flow cytometric gating strategy for the identification of mouse uterine B

cells, T cells, NK cells, NKT cells, macrophages, DCs, neutrophils and CD45<sup>-</sup> resident cells. (b) Expression of Pibf1 and IL-10 by mouse uterine viable T cells, B cells, NK cells, NKT cells, neutrophils, DCs, macrophages and CD45<sup>-</sup> resident cells on gd 16.5. The quadrants were drawn based on the staining with isotype control antibodies. (c,d) Statistical comparisons of the frequencies of Pibf1<sup>+</sup> cells and ratios of mean fluorescence intensity (MFI) of Pibf1 to isotype control staining of the various uterine cell populations to that of B cells. \**P* < 0.05; \*\**P* < 0.01; \*\*\**P* < 0.001, by 2-tailed *t*-test. Data represent the results from 4 WT C57BL/6 mice at each time point.





Supplementary Figure 8 B cells are a significant producer of PIBF1 in human choriodecidua at term delivery. (a) The flow cytometric gating strategy for the identification of human

choriodecidual B cells, CD4<sup>+</sup>, CD8<sup>+</sup> and CD4<sup>-</sup>CD8<sup>-</sup> T cells, CD16<sup>+</sup> and CD56<sup>+</sup> NK cells, CD16<sup>-</sup> monocytes and CD16<sup>+</sup> monocytes/macrophages, CD15<sup>+</sup>CD16<sup>+</sup> neutrophils and CD45<sup>-</sup> resident non-hematopoietic cells. (**b**) Expression of PIBF1 by human choriodecidual viable B cells, CD4<sup>+</sup>, CD8<sup>+</sup> and CD4<sup>-</sup>CD8<sup>-</sup> T cells, CD16<sup>+</sup> and CD56<sup>+</sup> NK cells, CD14<sup>+</sup>CD16<sup>-</sup> monocytes and CD14<sup>+</sup>CD16<sup>+</sup> monocytes/macrophages, CD15<sup>+</sup>CD16<sup>+</sup> neutrophils and CD45<sup>-</sup> resident nonhematopoietic cells at term delivery. The gates were drawn based on the staining with an isotype control antibody. (**c**,**d**) Statistical comparisons of the frequencies of PIBF1<sup>+</sup> cells and ratios of mean fluorescence intensity (MFI) of PIBF1 to isotype control staining of the various choriodecidual cell populations to that of B cells. \**P* < 0.05; \*\**P* < 0.01, by 2-tailed *t*-test. (**e**) Western Blot analysis (*n* = 4) of PIBF1 expression by PBMCs, PBMCs depleted of CD19<sup>+</sup> B cells and CD19<sup>+</sup> B cells of a representative healthy donor. Data in **c** and **d** represent the results of 5 subjects. Data in **e** represent the results of cells from 4 donors.



Supplementary Figure 9 Full-length PIBF1 administration suppresses uterine inflammation and neutrophil activation in LPS-challenged pregnant  $\mu$ MT mice. (a) Fold change of *Il1b*, *Cxcl10*, *Ccl3*, *Cxcl1*, *Ccl2* and *Cxcl9* transcripts in uterine tissues of gd 17.5  $\mu$ MT mice after receiving 1  $\mu$ g fPIBF1 and 5  $\mu$ g LPS, relative to the gene transcripts in uterine tissues of the respective mice that received 1  $\mu$ g fPIBF1 but not LPS. (b) Expression of surface ICAM-1, MHC-II, CD86, CD44 and CD95 by viable neutrophils in uterine tissues of a representative  $\mu$ MT mouse 24 hours after receiving PBS and 5  $\mu$ g LPS (black histograms) or 1  $\mu$ g fPIBF1 and 5  $\mu$ g LPS (green histograms). Shaded histograms indicate the staining with isotype control antibodies. Data represent the results of 9 mice per group.



Supplementary Figure 10 A C-terminal fragment of PIBF1 does not protect  $\mu$ MT mice against LPS-induced PTL. (a) Western Blot analysis (n = 2) of fPIBF1 and cPIBF1 using a C-terminus-specific and an N-terminus-specific antibody. (b,c) Rates of preterm delivery and neonatal/fetal mortality on gd 17.5 of  $\mu$ MT mice that received either intravenous PBS or C-terminal fragment of PIBF1 (cPIBF1) and 5  $\mu$ g intraperitoneal LPS on gd 16.5. (d,e) Frequency of CD11b<sup>+</sup>Ly-6G<sup>+</sup> neutrophils in CD45<sup>+</sup> cells in uterine tissues of gd 17.5  $\mu$ MT mice after receiving either intravenous PBS or C-terminal PIBF1 and intraperitoneal LPS on gd 16.5. (f) Expression of surface CD11b, CD18, CD62L, ICAM-1, MHC-II, CD86, CD44, CD95 and intracellular iNOS by viable neutrophils in uterine tissues of a  $\mu$ MT mouse 24 hours after receiving intravenous PBS or cPIBF1 and intraperitoneal LPS. Data represent the results from 9 mice per group. \*P < 0.05; \*\*P < 0.01; \*\*\*P < 0.001, by Fisher's exact test (a), 1-tailed Mann–Whitney U test (b), or 1-tailed t-test (d).



Supplementary Figure 11 IFN- $\gamma$ , TNF, IL-17A, IL-4, IL-10, TGF- $\beta$ , IL-25 and TSLP do not induce PIBF1 expression by human B cells. (a) Fold change of *PIBF1* transcript in purified human peripheral blood IgD<sup>+</sup> B cells after 2 days of treatment with medium (control), IFN- $\gamma$ , TNF, IL-17A, IL-4 or IL-10, TGF- $\beta$ , IL-25, TSLP, IL-33 or progesterone. \*\**P* < 0.01; \*\*\**P* < 0.001, by 2-tailed *t*-test. (b) Flow cytometric analysis of the expression of the IL-25 receptor subunit IL-17RB and TSLP receptor (TSLPR) on peripheral blood, TL and PTL choriodecidual B cells. Data in **a** are representative of 3 independent experiments. Data in **b** represent the results of 10 blood donors, 10 women with TL and 10 women with PTL.



Supplementary Figure 12 Pibf1 expression is diminished in uterine tissues and uterine B cells in  $II33^{-/-}$  mice. (a) Schematic representation of the disruption of the II33 locus in the  $II33^{-/-}$  lacZ reporter mouse. The targeting vector  $II33^{Tm1a}$  contains an En2/IRES/LacZ/Neo/pA cassette preceding exons 5–7 of the II33 gene that are flanked by LoxP sites. This targeting vector was introduced into the C57BL/6 mouse ES cell line B6-13. The  $II33^{tm1b}$  allele was generated by breeding  $II33^{tm1a}$  mice with CMV-*Cre* transgenic mice of the C57BL/6 background, resulting in the deletion of exons 5–7 and the Neo cassette. The *Cre* transgene was subsequently bred out. SA: splicing acceptor. Open boxes represent untranslated regions in mouse II33 mRNA. (b) Flow cytometry of Pibf1 expression in uterine cells of a pregnant  $II33^{-/-}$  mice on gd 16.5. (c,d) Statistical comparisons of the frequencies of Pibf1<sup>+</sup> uterine B cells and ratios of MFI of Pibf1 to isotype control staining of uterine B cells of pregnant WT and  $II33^{-/-}$  mice on gd 16.5. \*\**P* < 0.01, by 2tailed *t*-test. Data represent the results of 3 mice in each group.



Supplementary Figure 13 Mouse uterine Pibf1 expression does not reduce amidst systemic progesterone withdrawal in late gestation. (a) Western Blot analysis (n = 2) of Pibf1 expression in non-pregnant mouse uterus and the uterus of pregnant mice on gd 12.5, 14.5, 17.5 or immediately after delivery. (b) ELISA of serum progesterone concentration at the corresponding time point. The result represents 3 mice per time point.



Supplementary Figure 14 Peripheral blood and choriodecidual B cells constitutively express IL1RAcP. (a) Flow cytometric analysis of the expression of IL1RAcP on peripheral blood, TL and PTL choriodecidual B cells. Shaded histograms indicate the staining with an isotype control antibody. (b,c) Statistical comparison of the frequencies of IL1RAcP<sup>+</sup> B cells and the ratios of MFI of IL1RAcP to isotype control staining of B cells in peripheral blood (n = 24), TL choriodecidua (n = 19) and PTL choriodecidua (n = 12). \*\*\*P < 0.001, by 2-tailed Mann–Whitney U test (for Term vs. PB and Preterm vs. PB in b) or 2-tailed *t*-test (all other comparisons).



Supplementary Figure 15 Diminished ST2L expression on human PTL choriodecidual B cells was not due to lower choriodecidual progesterone. (a) ELISA of progesterone levels in choriodecidual tissues of TL (n = 14) and PTL (n = 11) subjects at delivery, normalized to per µg of choriodecidual protein. (b) Flow cytometric analysis of ST2L expression by human PB IgD<sup>+</sup> B cells treated for 3 days with medium (Control), progesterone, IL-33, or progesterone and IL-33. Shaded histograms indicate the staining with an isotype control antibody. Results represent the B cells of 3 donors.

### **Full-length blots**

















IL-33

|     | β-Actin |   |
|-----|---------|---|
|     | -       |   |
|     |         |   |
| 130 |         |   |
| 93  |         |   |
| 73  |         |   |
| 57  |         |   |
| 43  |         | A |
| 31  |         |   |
| 22  |         |   |







## Fig. S10a



Fig. S13a



