
Supplementary Figure 1:

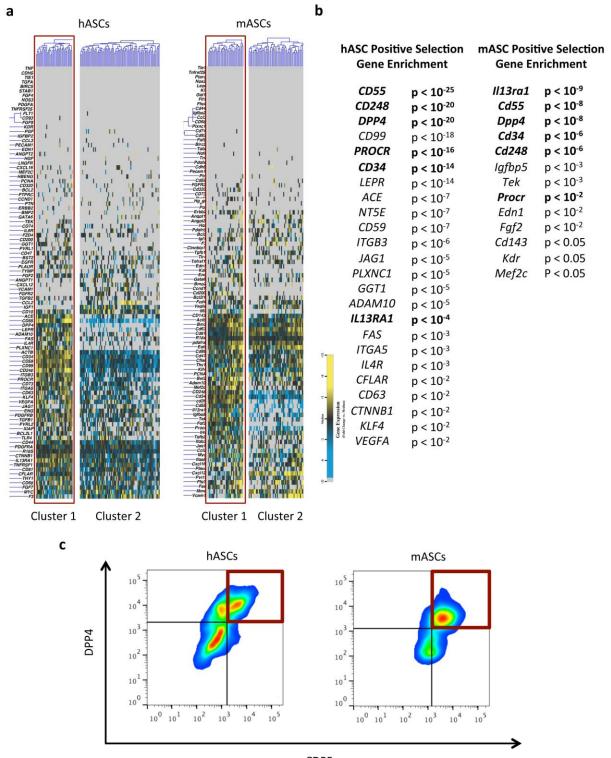
Supplementary Figure 1: Summary of the exclusionary approach to surface marker selection for initial single-cell analysis, with a pragmatic focus on surface markers with the highest potential for protein based sub-fractionation.

Supplementary Figure 2:

Supplementary Figure 2: hASC subpopulation identification across patient samples and

functionalized gene lists. (a-b) Flow cytometry gating scheme for hASCs and subpopulation isolation from the stromal vascular fraction. hASCs were defined as CD45-/CD31-/CD34+ cells within the stromal vascular fraction to exclude contaminating hematopoietic and endothelial cells. DPP4 and CD55 were surface markers used to prospectively isolate the transcriptionally identified hASC subpopulation (%'s reported represent fraction of cells from the parent gate). (c-d) Single cell transcriptional screening of multiple patient samples consistently identifies the hASC subpopulation following k-means clustering (k=2). Gene expression presented as fold change from median (yellow - high expression, 32-fold above median to blue - low expression, 32-fold below median; gray - no expression). (e) Creation of an assay list screening for gene expression related to tissue regeneration, cell stemness, survival and proliferation, in addition to selected surface markers. (f) K-means clustering (k=2) of hASCs with the functionalized gene list re-identifies the cell subpopulation, which displays enhanced expression of multiple genes related to tissue regeneration.

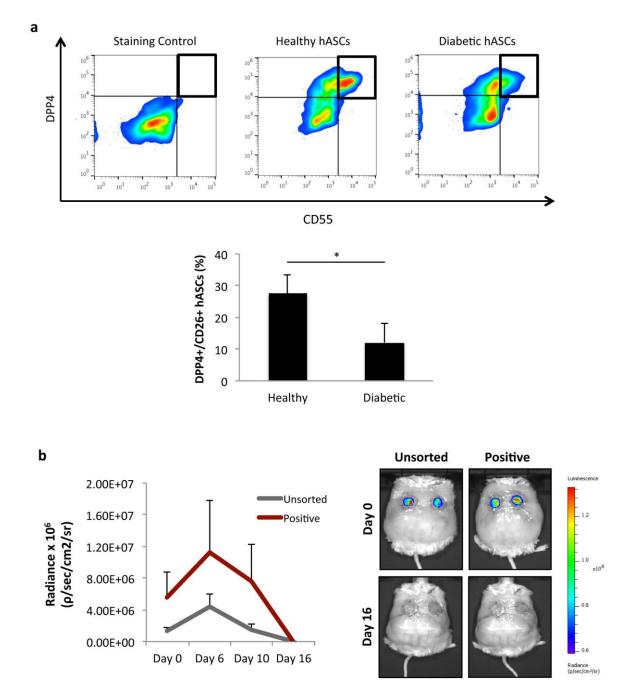
Supplementary Figure 3:


Negative Postive Selection Selection

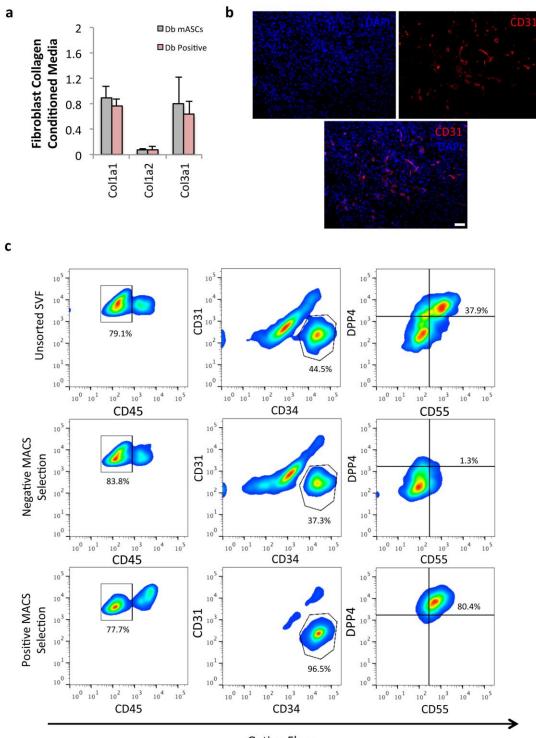
hASC

Supplementary Figure 3: Prospective hASC subpopulation enrichment enhances cell survival. (a)

Light micrograph images of cells following exposure to an apoptotic stimulus (FasL; as seen in **Fig. 2a**) reveals enhanced survival in positively selected cells. (b) Analysis of downstream apoptotic signaling (Annexin V) following exposure to FasL confirms the survival benefit of hASC positive subpopulation selection. * indicates $p \le 0.05$ via Student's t-test. Error bars represent SEM. Scale bar = 50µm.

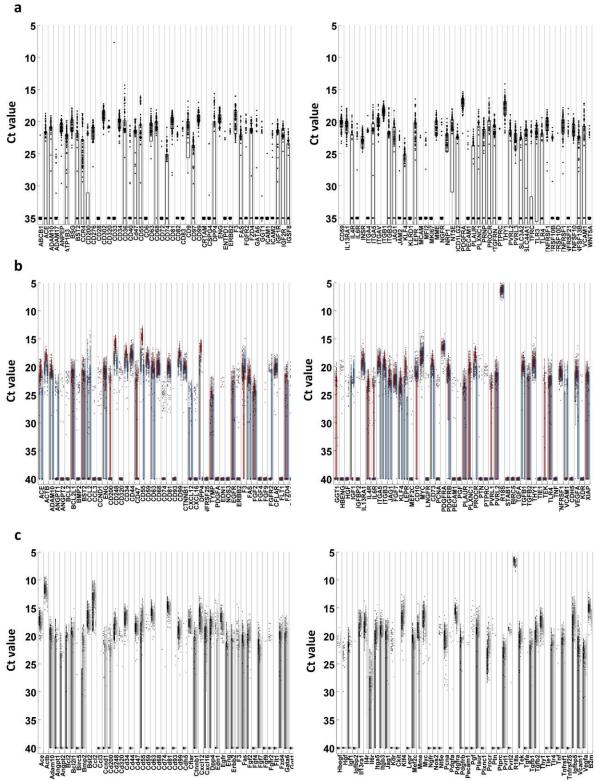

Supplementary Figure 4:

CD55


Supplementary Figure 4: The transcriptionally identified ASC subpopulation is present in both humans and mice. (a) Single cell transcriptional analysis for human and murine ASCs reveals the presence of a similar cell subpopulation. (b) Kolmogorov-Smirnov analysis of positively selected hASCs and mASCs reveals similar gene distribution profiles across species (list of non-control hASC and mASC genes positively regulated following subpopulation enrichment, with common genes bolded). (c) Flow cytometic confirmation of cross-species presence of the ASC subpopulation, as defined by the surface markers DPP4 and CD55.

Supplementary Figure 5:

Supplementary Figure 5: Effect of diabetes on the transcriptionally identified hASC subpopulation and *in vivo* cell dynamics following application of enriched hASCs. (a) The transcriptionally identified hASC subpopulation is significantly depleted in patients with diabetes as compared to healthy, nondiabetic controls (bar graph represents total number of DPP4+/CD55+ ASCs as a fraction of total ASCs within the SVF). (b) hASCs persist for up to 16 days *in vivo* (assessed via IVIS tracking), with trends toward improved early engraftment/survival of enriched versus unsorted hASCs. * indicates $p \le 0.05$ via Student's t-test. Error bars represent SEM.


Supplementary Figure 6:

Gating Flow

Supplementary Figure 6: Need for allogenic cell sourcing, treated wound vascularity, and demonstration of rapid subpopulation enrichment of hASCs via magnetic assisted cell sorting (MACS). (a) Unlike healthy ASCs, enrichment of diabetic mASCs failed to improved secondary fibroblast collagen production. (b) Diabetic wounds treated with enriched mASCs demonstrate robust vascularity immediately after closure via immunohistochemical staining for the endothelial cell marker CD31. Representative images; scale bar = 100μ m. (c) Flow cytometic analysis of unsorted and subpopulation enriched and depleted hASCs via dual-antibody MACS confirms the ability to efficiently and rapidly isolate the identified hASC subpopulation for potential clinical application (%'s reported represent fraction of cells from the parent gate). Error bars represent SEM.

Supplementary Figure 7:

Supplementary Figure 7: Whisker plots. (a) Whisker plots presenting raw qPCR cycle threshold values for each gene across all cells for the initial single-cell gene distribution subpopulation analysis of hASCs. Informed by the n= 386 surface marker screen, high copy number, differentially expressed surface markers (>5 and <95% cell expression, with a cycle threshold [Ct] < 21) were preferentially included to distinguish biologically important cell subsets, in addition to selected control and cell-cycle related probes (full gene list available in Supplementary Table 2). Individual dots represent single gene/cell qPCR reactions, with increased cycle threshold values corresponding to decreased mRNA content. Cycle threshold values of 40 represent failed amplifications. (b) Whisker plots for functionalized single-cell gene distribution analyses of unsorted and enriched hASCs (gray = hASCs, red = positively selected cells, and blue = negatively selected cells). Genes specifically relating to tissue regeneration, cell stemness, survival, and proliferation were chosen, in addition to selected control and surface marker related probes (full gene list available in Supplementary Table 3). (c) Whisker plots for single-cell gene distribution analyses of mASCs (black = healthy mASCs, dark gray = aged mASCs, and light gray = diabetic mASCs). Genes specifically relating to tissue regeneration, cell stemness, survival, and proliferation were chosen, in addition to selected control and surface marker related probes (full gene list available in Supplementary Table 4).

Supplementary Table 1:

Differentially Distributed Subpopulation Genes

CD55	p < 10 ⁻⁸
PROCR	p < 10 ⁻⁶
ACE	p < 10 ⁻⁴
DPP4	p < 10 ⁻⁴
ITGB3	p < 10 ⁻³
IL4R	p < 10 ⁻²
CD34	p < 10 ⁻²
CD99	p < 10 ⁻²
CD73	p < 0.05
PTGFRN	p < 0.05
GGT1	p < 0.05

Significance determined via Kolmogorov-Smirnov analysis.

Supplementary Table 2:

Gene list for initial hASC single-cell analysis

		,,	
Assay ID	Gene Name	Assay ID	Gene Name
Hs00184500_m1	ABCB1	Hs00364603_m1	IGSF8
Hs00174179_m1	ACE	Hs00609817_m1	IL13RA1
Hs00153853_m1	ADAM10	Hs00166237_m1	IL4R
Hs01041915_m1	ADAM17	Hs01075667_m1	IL6R
Hs00174265_m1	ANPEP	Hs00961554_m1	INSR
Hs00740857_mH	ATP1B3	Hs00168433_m1	ITGA4
Hs00936295_m1	BSG	Hs01547673_m1	ITGA5
Hs00171632_m1	BST2	Hs00233808_m1	ITGAV
Hs999999919_m1	CCR4	Hs01127543_m1	ITGB1
Hs01033303_m1	CD200	Hs01001469_m1	ITGB3
Hs00987207_m1	CD276	Hs01070036_m1	JAG1
Hs00174796_m1	CD28	Hs01022013_m1	JAM2
Hs00994886_m1	CD302	Hs00358836_m1	KLF4
Hs00213164_m1	CD320	Hs00233844_m1	KLRD1
Hs00233544_m1	CD33	Hs00174497_m1	LEPR
Hs02576480_m1	CD34	Hs00174838_m1	MCAM
Hs00169627_m1	CD36	Hs00195551_m1	MFI2
Hs00374176_m1	CD40	Hs01032443_m1	MKI67
Hs00179953_m1	CD47	Hs00153510_m1	MME
Hs00892618_m1	CD55	Hs00609976_m1	NGFR
Hs00174141_m1	CD59	Hs00826128_m1	NRP1
Hs00198752_m1	CD6	Hs01573922_m1	NT5E
Hs00156390_m1	CD63	Hs00228839_m1	PDCD1LG2
Hs00154355_m1	CD68	Hs00998018_m1	PDGFRA
Hs00233564_m1	CD72	Hs01065282_m1	PECAM1
Hs00269961_m1	CD74	Hs00182181_m1	PLAUR
Hs00174717_m1	CD81	Hs00955621_m1	PLXNC1
Hs01017982_m1	CD82	Hs00175591_m1	PRNP
Hs00188486_m1	CD83	Hs00941182_m1	PROCR
Hs00233521_m1	CD9	Hs01385989_m1	PTGFRN
Hs00173542_m1	CD97	Hs00898488_m1	PTPRC
Hs00365982_m1	CD99	Hs01071562_m1	PVRL2
Hs00219699_m1	CRTAM	Hs00210043_m1	PVRL3
Hs00426981_m1	CSPG4	Hs00374243_m1	SLC3A2
Hs00175210_m1	DPP4	Hs00223114_m1	SLC44A1
Hs00923996_m1	ENG	Hs00951083_m1	TFRC
Hs00969559_m1	ENTPD1	Hs00174816_m1	THY1
Hs01001580_m1	ERBB2	Hs01551078_m1	TLR3
Hs01076029_m1	F3	Hs00152939_m1	TLR4
Hs00531110_m1	FAS	Hs01042313_m1	TNFRSF1
Hs01552926_m1	FGFR2	Hs00366278_m1	TNFRSF10B
Hs00201853_m1	FZD4	Hs00388742_m1	TNFRSF10D
Hs00934682_m1	GATA6	Hs01042313_m1	TNFRSF1A
Hs00980756_m1	GGT1	Hs00205419_m1	TNFRSF21
Hs00164932_m1	ICAM1	Hs00921974_m1	TNFSF10
Hs00609563_m1	ICAM2	Hs00198106_m1	TNFSF13B
Hs00609566_m1	IGF1R	Hs01003372_m1	VCAM1
Hs00974474_m1	IGF2R	Hs00998537_m1	WNT5A

Supplementary Table 3:

Gene list for functionalized single-cell analyses of unsorted and enriched hASCs

Assay ID	Gene Name	Assay ID	Gene Name
Hs00174179 m1	ACE	Hs00181813 m1	HB-EGF
Hs99999903 m1	ACTB	Hs00300159 m1	HGF
Hs00153853 m1	ADAM10	Hs01547656 m1	IGF1
Hs00375822 m1	ANGPT1	Hs01040719 m1	IGFBP2
Hs01048042 m1	ANGPT2	Hs00609817 m1	IL13RA1
Hs99999018 m1	BCL2	Hs00166237 m1	ILISKAI IL4R
Hs00236329 m1	BCL2L1	Hs01075667 m1	ILGR
Hs00153353 m1	BIRC5	Hs01547673 m1	ITGA5
Hs00153555_m1 Hs00154192 m1	BMP2	Hs01001469 m1	ITGA3
Hs00171632_m1	BST2	Hs01070036 m1	JAG1
Hs00234140 m1	CCL2	Hs00176676 m1	KDR
Hs00234140_m1 Hs00234142 m1		Hs00358836 m1	KLF4
	CCL3		
Hs00765553_m1	CCND1	Hs00174497_m1	LEPR
Hs01033303_m1	CD200	Hs01554597_m1	MEF2C
Hs00535586_s1	CD248	Hs00153510_m1	MME
Hs00213164_m1	CD320	Hs00905030_m1	MYC
Hs02576480_m1	CD34	Hs00609976_m1	NGFR
Hs01075861_m1	CD44	hs01574659_m1	NOS3
Hs00179953_m1	CD47	Hs01573922_m1	NT5E
Hs00892618_m1	CD55	Hs00696862_m1	PCNA
Hs00174141_m1	CD59	Hs00964426_m1	PDGFA
Hs00156390_m1	CD63	Hs00998018_m1	PDGFRA
Hs00154355_m1	CD68	Hs01019580_m1	PDGFRB
Hs00269961_m1	CD74	Hs00169777_m1	PECAM1
Hs00174717_m1	CD81	Hs00182176_m1	PGF
Hs00362607_m1	CD93	Hs00182181_m1	PLAUR
Hs00365982_m1	CD99	Hs00955621_m1	PLXNC1
Hs00174344_m1	CDH5	Hs00941182_m1	PROCR
Hs00153439_m1	CFLAR	Hs00383235_m1	PTN
Hs00355049_m1	CTNNB1	Hs00898488_m1	PTPRC
Hs00930455_m1	CXCL12	Hs00161050_m1	PVRL1
Hs00222859_m1	CXCL16	Hs01071562_m1	PVRL2
Hs00175210_m1	DPP4	Hs99999901_s1	R185
Hs00174961_m1	EDN1	Hs01109068_m1	STAB1
Hs01076078_m1	EGFR	Hs00945146_m1	TEK
Hs00923996_m1	ENG	Hs00608187_m1	TGFA
Hs01001580_m1	ERBB2	Hs00998133_m1	TGFB1
Hs01076029_m1	F3	Hs00234244_m1	TGFB2
Hs00531110_m1	FAS	Hs00174816_m1	THY1
Hs00266645_m1	FGF2	Hs00178500_m1	TIE1
Hs00999691_m1	FGF4	Hs00152939_m1	TLR4
Hs00940253_m1	FGF7	Hs99999043_m1	TNF
Hs00181829_m1	FGF9	Hs01042313_m1	TNFRSF1
Hs01552926_m1	FGFR2	Hs00237054_m1	TNFRSF25
Hs01052961_m1	FLT1	Hs00157317_m1	TYMP
Hs00201853_m1	FZD4	Hs00174239_m1	VCAM1
Hs00934682_m1	GATA6	Hs00900055_m1	VEGFA
Hs00980756_m1	GGT1	Hs00236913_m1	XIAP

Supplementary Table 4:

Gene list for single-cell gene distribution analyses of mASCs

Assay ID	Gene Name	Assay ID	Gene Name
Mm00802048 m1	Ace	Mm00492322 m1	Ggt1
Mm00607939 s1	Actb	Mm00439306 m1	Hg-egf
Mm00545742 m1	Adam10	Mm01135193 m1	Hqf
Mm00456503 m1	Angpt1	Mm00439560 m1	laf1
Mm00545822 m1	Angpt2	Mm00492632 m1	lgfbp2
Mm00437762 m1	B2m	Mm00516037 m1	Iqfbp5
Mm00477631 m1	Bcl2	Mm00446726 m1	ll13ra1
Mm00437783 m1	Bcl2l1	Mm01275139 m1	ll4r
Mm00599749 m1	Birc5	Mm00439653 m1	ll6r
Mm01340178 m1	Bmp2	Mm00439797 m1	Itga5
Mm01609165 g1	Bst2	Mm00443980 m1	Itqb3
Mm00441242 m1	Ccl2	Mm00496902 m1	Jag1
mm00441259 g1	Ccl3	Mm01222421 m1	Kdr
Mm00432359 m1	Ccnd1	Mm00445212 m1	Kit
Mm00487740 m1	Cd200	Mm00516104 m1	KIf4
Mm00547485 s1	Cd248	Mm00440181 m1	Lepr
Mm00507988 m1	Cd320	Mm01340842 m1	Mef2c
Mm00519283 m1	Cd34	Mm00485028 m1	Mme
Mm00681165 m1	Cd44	Mm00487803_m1	Myc
Mm00495005 m1	Cd47	Mm00446296 m1	Ngfr
Mm00438377 m1	Cd55	Mm00440502 m1	Nos2
Mm00483149 m1	Cd59	Mm00501910 m1	Nt5e
Mm01966817_g1	Cd63	Mm00448100 g1	Pcna
Mm03047340 m1	Cd68	Mm01205760 m1	Pdgfa
Mm00658576 m1	Cd74	Mm00440701 m1	Pdgfra
Mm00504869 m1	Cd81	Mm00435546 m1	Pdgfrb
Mm00440239 g1	Cd93	Mm01242584 m1	Pecam1
Mm04214669 u1	Cd99	Mm01302896 m1	Paf
Mm00486938 m1	Cdh5	Mm00440911 m1	Plaur
Mm01255578_m1	Cflar	Mm01236713 m1	Plxnc1
Mm00517812 m1	Ctnnb1	Mm00440992_m1	Procr
Mm00445552 m1	Cxc/12	Mm01132688 m1	Ptn
Mm00469712 m1	Cxc/12	Mm01292575 m1	Ptprc
Mm00494538 m1	Dpp4	Mm00445392 m1	Pvrl1
Mm00438656 m1	Edn1	Mm00436144 m1	Pvrl2
Mm00433023 m1	Egfr	Mm03928990 g1	R18s
Mm00468256 m1	Eng	Mm00443243 m1	Tek
Mm00658541 m1	Erbb2	Mm00446232 m1	Tafa
mm00438853 m1	F3	Mm00440232_m1 Mm01178820 m1	Tgfb1
mm01204974 m1	Fas	Mm001178820_m1 Mm00436955 m1	Tgfb2
Mm00433287 m1	Ffg2	Mm00493681 m1	Thy1
Mm00433287_m1 Mm00438917_m1	Ffg4	Mm004433081_m1 Mm00441786 m1	Tie2
Mm00433291 m1	Ffq7	Mm00441788_m1 Mm00445273 m1	Tlr4
Mm00433291_m1 Mm00442795 m1	Fjg7 Fqf9	Mm00443275_m1 Mm00443258 m1	Thr4
Mm00442795_m1 Mm01269930 m1	FgJ9 Fgfr2	Mm00443258_m1 Mm00441875 m1	Tnfrsf1
Mm01269930_m1 Mm00438980 m1	Fgjr2 Flt1	Mm00441875_m1 Mm01263821 m1	Tnfrsf25
Mm00433382 m1	Fzd4	Mm01203821_m1 Mm01320970 m1	Vcam1
Mm00433382_m1 Mm01235633 m1	Gata6	Mm01320970_m1 Mm01281447_m1	Vegfa