List of Supplementary Tables

- Supplementary Table 1. G-Quadruplexes in the 3'UTR overlapping with microRNA binding sites
- Supplementary Table 2. Sequences of the primers used.

List of Supplementary figures

- Supplementary Figure 1. In-line probing of ELK1, HDGF, THRB, and WNT3A.
- Supplementary Figure 2. N-methyl Mesoporphyrin IX fluorescence assay of ELK1, HDGF, THRB, and WNT3A.
- Supplementary Figure 3. Other tested G4 do not regulate miRNA binding.
- Supplementary Figure 4. Effect of a mir331 inhibitor on FADS2 reporter expression.

List of Supplementary files

Supplementary File 1. G4 in the 3'UTR of human mRNAs

This file contains the list of G4 found in the 3'UTR of human genes, along with information on the gene, position within the 3'UTR(1 being the first nucleotide after the stop codon), length, sequence of the G4, and the cG/cC score.

Supplementary File 2. G4 overlapping with miRNA binding sites

This file contains the list of G4 predicted to be bound by miRNAs. The alignment was made with the predicted G4 and 10 flanking nucleotides on each side, therefore the alignment position 1 refers to 10 less than the "Position" column in Supplementary File 1.

Supplementary File 3. Gene Ontology analysis of the predicted miRNA bound G4

This file contains the list of enriched biological process in the G4 predicted to be overlapping miRNA binding sites.

Supplementary File 4. Instructions for the miRP scripts

This is the user manual for the mIRP scripts used to predict the miRNA binding sites.

Supplementary Table 1.

G-Quadruplexes in the 3'UTR overlapping with microRNA

binding sites

Genes	Total number of	Genes containing at least	Total number of G4	miRNAs predicted	G4/miRNA pair	miRNA binding
containing at	G4	1 G4 predicted to	predicted to overlap	to bind at least 1		sites predicted
least 1 G4		overlap with 1 miRNA	with at least 1	G4		to bind
		binding site	miRNA binding site			exclusively in
						G4's loop
1,112	2,282	611	1,233	521	44,294	13,361

Supplementary Table 2.

Sequences of the primers used.

Name	Sequence
T7 2G	taatacgactcactatagg
FADS2 WT	TCATGAGGTACCCCCTCCCAGCCCCTCAGGGCAGCCTCCTCGA
	GACTCCCTCCCGCTCTGCCTCCCTGGCCtatagtgagtcgtatta
FADS2 G/A mutant	TCATGAGGTACCTTCTCTTCAGCCCCTCAGGGCAGCCTCCTCGAG
	ACTCTCTCGCTCTGCCTCCCTGGCCtatagtgagtcgtatta
FADS2 Target mutant	TCATGAGGTACCCCCTCCCCACGTTCTCAGGGCAGCCTCCTCCTGA
	GACTCCCTCCCGCTCTGCCTCCCTGGCCtatagtgagtcgtatta
ELK1 WT	TATGTCCCCCATTCCTCCCCAACTCCAGGGACATTGAAAGGGTC
	CTTTGTACCCGCCCGCAGGAAATTGGGGGCCtatagtgagtcgtatta
ELK1 G/A mutant	TATGTCCCCCATTCCTCTCTCAACTCCAGGGACATTGAAAGGGTC
	CTTTGTACTCGCTCGCAGGAAATTGGGGGCCtatagtgagtcgtatta
ElK1 Target mutant	TATGTCCCCCATTCCTCCCCAACTGCGTTGACATTGAAAGGGTC
	CTTTGTACCCGCCCGCAGGAAATTGGGGGCCtatagtgagtcgtatta
HDGF WT	CGCCCTCCTGTGCTGCCCCCACCCCGCATTTGAGGATTGCCCCTCCC
	AGGCCCCACAAGCCCACCCTGCTGTTGATGCTCCtatagtgagtcgtatta
HDGF G/A mutant	CGCCCTCCTGTGCTGCTTTCACTTCGCATTTGAGGATTGCCCCTCCC
	AGGCCCCACAAGCTCACTCTGCTGTTGATGCTCCtatagtgagtcgtatta
HDGF Target mutant	CGCCCTCCTGTGCTGCCCCCACCCCGCATTTGAGGTGTACCCCTCCC
	AGGCCCCACAAGCCCACCCTGCTGTTGATGCTCCtatagtgagtcgtatta
THRB WT	GACTACTTCCCTTTCCCTCCCAAATAATCCCTCCCAACACAAAGAA
	ACCtatagtgagtcgtatta
THRB G/A mutant	GACTACTTCCCTTTCCCTCCCAAATAATCTCTCTCAACACAAAGAA
	ACCtatagtgagtcgtatta
THRB Target mutant	GACTACTCTCTCTCCCCCCAAATAATCCCTCCCAACACAAAGAA
	ACCtatagtgagtcgtatta

Wnt3A WT	TTCCCAGGGAAGAGTCCCACCCGCGGAGAGAAGCCCCGCCCATT
	GGAGCCTGGTCCCtatagtgagtcgtatta
Wnt3A G/A mutant	TTCCCAGGGAAGAGTCCCACCCGCGGAGAGAAGCTTCGCTTCATTG
	GAGCCTGGTCCCtatagtgagtcgtatta
Wnt3A Target mutant	TTCCCAGGGACGTTACCCACCCGCGGAGAGAAGCCCCGCCCATTG
	GAGCCTGGTCCCtatagtgagtcgtatta
Mir331	GCCCCUGGGCCUAUCCUAGAA
Control miRNA	UUGUACUACACAAAAGUACUG
hsa-miR-331-3p.SpFwd_RT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATA
	CGACTTCTAG
hsa-miR-16-5p.SpFwd_RT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATA
	CGACCGCCAA
hsa-miR-142-3p.SpFwd_RT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATA
	CGACTCCATA
hsa-let-7a-5p.SpFwd_RT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATA
	CGACAACTAT
hsa-miR-331-3p.SpFwd_qpcr	GCGCCCTGGGCCTATC
hsa-miR-16-5p.SpFwd_qpcr	GCTGTCGTAGCAGCACGTAAATA
hsa-miR-142-3p.SpFwd_qpcr	GCTGTCGTGTAGTGTTTCCTACTT
hsa-let-7a-5p.SpFwd_qpcr	GCTGTCGTGAGGTAGTAGGTTGT
shared-q-pcr_mir_rev	GTGCAGGGTCCGAGGT
Mir331 inhibitor	mU/ZEN/mUmCmUmAmGmGmAmUmAmGmGmCmCmCm
	AmGmGmG/3ZEN/

Supplementary Figure 1. In-line probing of ELK1, HDGF, THRB, and WNT3A.

In-line probing experiments were performed in the presence of either K⁺ (favors G4) or Li⁺ (does not favor G4) for the wild type, the G/A mutant and the target mutant of each gene. Each band was quantified and a K⁺/Li⁺ ratio was calculated for each nucleotide. A ratio >2 for the nucleotides located in the loops indicates G4 folding. The means and standard deviations were calculated from two different experiments. The guanines involved in the G4 are boxed in black and nucleotides mutated in the G/A mutants are shown in red. The miRNA binding sites are boxed in green and the nucleotides mutated in the target mutants are shown in green.

THRB

Supplementary Figure 2. N-methyl Mesoporphyrin IX fluorescence assay of ELK1, HDGF, THRB, and Wnt3A.

The NMM fluorescence measured in the presence of each gene and of both its respective G/A and target mutants are shown. The means and standard deviations were calculated from two different experiments.

Supplementary Figure 3. Other tested G4 do not regulate miRNA binding.

Different ELK1, HDGF, THRB, and Wnt3A constructs (Wild type, G/A mutant, Target mutant, and Double mutant) were transfected into either HEK 293 (ELK1 THRB), Huh7 (HDGF), or HCT116

 $(WNT3A) \ cells \ eitheralone, with a \ control \ synthetic \ miRNA \ or \ the \ appropriate \ synthetic \ miRNA$

and the luciferase activity were measured.

Supplementary Figure 4. Effect of a mir331 inhibitor on FADS2 reporter expression. Various concentrations of Mir331 inhibitor were transfected into HEK 293 cells. On the following day, FADS2 wild type and GA reporter luciferase were transfected. Luciferase activity was assessed on the day after the second transfection.