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Tracking Deceased-Related Thinking with Neural Pattern Decoding  
of a Cortical-Basal Ganglia Circuit 

 
Supplemental Information 

 

 
Preprocessing of Stories and Pictures 

Deceased and living control related stories were allowed to have different levels of valence and 

arousal because we sought to use stories that would provide the strongest representation of the 

characters. To control for the effects of valence and arousal the demographic control stories 

were designed to have equivalent valence and arousal as the deceased stories. This was done 

using a list of 13,915 English lemmas (base words) rated by over 2000 people for valence and 

arousal (1). The ratings for all nouns and verbs in the deceased-related stories were computed 

and a t-test was used to ensure that the overall valence and arousal averages for deceased-

related and demographic control stories were not significantly different (p>0.1). When 

necessary, the demographic control stories were modified to be more similar to the deceased-

related stories.  

All images had a resolution of 72 pixels per inch, and were rescaled to have a height of 

300 pixels. All pictures were gray-scaled, background-stripped, and normalized for intensity and 

luminance.  All images were set to have the same average image intensity and luminance.  Two 

of the three pictures provided by the subject were selected for use in the task.  

 

Imaging 

Blood-oxygen-level dependent (BOLD) images were acquired on a GE 3-T scanner parallel to 

the anterior commissure-posterior commissure (AC-PC) line with a T2*-weighted EPI sequence 

of 45 contiguous slices (TR=2000ms, TE=25ms, flip angle = 77, FoV=192 x 192mm) of 3mm 

thickness and 3x3 in-plane resolution. Structural images were acquired with a T1-weighted 
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SPGR sequence recording 256 slices at a slice thickness of 1mm and in-plane resolution of 

1x1mm. 

 Preprocessing was carried out using FSL version 6 (FMRIB's Software Library, 

www.fmrib.ox.ac.uk/fsl) (2). Preprocessing included slice time correction, motion correction, 

skull stripping and smoothing with a Gaussian kernel of 6mm FWHM. A 120-second high pass 

filter was applied to the data. All data were corrected for head motion by removing the influence 

of six motion time courses. Bias field correction was implemented using FSL-FAST for 

functional and structural images (3). Following preprocessing functional images were registered 

to structural images with 7-degrees of freedom and then structural images were warped to the 

standard MNI space using a 12-degree affine registration followed by a non-linear warp 

implemented in FNIRT (4, 5). 

 

Least Squares Deconvolution 

Our use of five second blocks followed by a 10 second nuisance regressor immediately 

afterwards required the deconvolution of BOLD data for use as input in a multivariate model. We 

therefore applied a least squares deconvolution method (Least Squares – Separate; LS-S) as 

described in (6) implemented in FSL 6.0 (FMRIB, /fsl.fmrib.ox.ac.uk/)(2). In this method 

parameter estimates for each individual trial are calculated and then analyses are conducted on 

the parameter estimates rather than raw BOLD signal. This method is suitable for multivariate 

analyses because it absolves the need to incorporate the hemodynamic response function in 

the multivariate model. Parameter estimates for each trial were calculated by creating a single 

trial regressor and all other trials as well as standard six-degree motion regressors were 

included as covariates. All regressors were convolved with a double gamma hemodynamic 

response function. Parameter estimates were then standardized for each run using the average 

and standard deviation of all parameter estimates for a given run within a given subject. 

Parameter estimates were warped to standard MNI space using FNIRT. Standardization and all 
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following analyses were implemented in MATLAB (MATLAB and Statistics Toolbox Release 

2016, The MathWorks, Inc., Natick, Massachusetts, United States).  

 

Rationale for Using T-Tests 

The univariate analyses in this study were designed for feature selection for the multivariate 

analysis. For this reason, preprocessing and analytic steps were guided by the principle of 

maintaining similarity with the multivariate analysis. This would ensure that the characteristics of 

the univariate feature selection (i.e. deceased >control) would translate best into the multivariate 

analysis. As a result, univariate analyses were performed using T-tests rather than the 

hierarchical mixed effects model employed by standard neuroimaging packages such as FSL. A 

hierarchical model creating subject level means would diverge significantly from the multivariate 

analysis, which uses individual runs as inputs.  

 

Model Training 

We used l2-norm regularized linear logistic regression to maximally separate the projected 

BOLD signal of deceased trials (D_PIC and D_STO) on one hand, and control trials (CLD_PIC 

and CLD_STO) on the other hand. The number of deceased trials was 351 and the number of 

control trials was 698. L2-norm regularized linear logistic regression optimizes the cost function 

∑ ሾݕ࢞ࢼ െ ܰ logሺ1  ሻேࢼ࢞݁
ୀଵ ሿ  ߣ	 ∑ ߚ


ୀଵ , where ܰ is the number of trials, ܭ is the number of 

voxels in the mask, ݕ  is the class label of the i-th trial, encoded as +1 for deceased trials, and 

as -1 for control trials, ࢞ is the vector of BOLD data for the i-th trial, and ࢼ ൌ ሾߚଵ, … ,  ሿ் areߚ

linear regression coefficients mapping BOLD data to class labels. The constant λ implements a 

tradeoff between model fidelity and model complexity as measured by the sum of squared 

regression coefficients. λ was optimized using 10x10 fold cross validation in order to maximize 

the model's prediction accuracy on hold out data. That is, the blocks were randomly split into 10 
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parts (folds), where nine folds were used to train the models (one for each choice of the 

regularization constant), and the tenth fold was used to measure the out-of-sample classification 

accuracy of the model in terms of the area under the receiver operating curve (AUC). Each fold 

served as holdout set once, and the procedure was repeated ten times for different random 

splits of the data, giving rise to 100 out-of-sample AUC scores per regularization constant. AUC 

values were averaged to yield one value per choice of the regularization constant. The entire 

analysis was repeated for 100 randomly permuted vectors of class labels, which allowed us to 

test the statistical significance of the obtained classifications against a null distribution. The 

optimal regularization constant was chosen as the maximizer of this value, and used to train a 

final model based on the data of all trials.  

 

Null MVPA Analyses 

We sought to highlight the specificity of the model training using the conjunction results.  To do 

this, two null regions were selected and both an MVPA model and prediction of deceased-

related thinking were computed with these regions. The null regions were selected by identifying 

two 8mm-spheres with no voxels associated with pictures, stories or thinking about the 

deceased. One sphere was located in the left post central gyrus (Sphere Center= 60, 46, 66) 

and another sphere was identified on the midline in the lingual gyrus (Sphere Center= 46, 22, 

34). Each sphere comprised 257 voxels in order to approximate the conjunction mask, which 

was 243 voxels.  

 To assess the significance of MVPA discrimination we identified a null distribution by 

permuting the labels of deceased vs. control blocks and determined the degree that the MVPA 

model predicted the true labels as compared to permuted labels. For the conjunction mask the 

identification of condition type (deceased vs. control) across a range of lambdas was 

significantly greater for the true labels as compared to randomly permuted labels (p<0.01). By 

contrast, for both null regions the identification of condition type for true labels was no greater 
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than the identification of condition type for the randomly permuted labels (p<0.2) (Supplemental 

Figure S2).  

To further highlight the specificity of our model training we computed the prediction of 

deceased-related thinking during the SART using the output from the null models. Both were 

insignificant (Null1: B203=2.11, SE=1.8, p=0.24, Null2: B203=1.31, SE=1.32, p=0.32).  
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Supplemental Figure S1. Workflow of Present Study: This study incorporated 6 analytic 

steps. In the first steps (1 and 2) voxels were selected based on conjoint activation for both 

deceased pictures and deceased-related stories. These voxels were input into a machine 

learning analysis (3) that produced a model identifying the pattern of activity that optimally 

predicted condition type (Deceased or Control) during the picture and story blocks.  This model 

was then applied to the SART data (4) and used to generate a TR-by-TR prediction of mental 

representations of the deceased occurring during the latter task.  The average model prediction 

per block was computed (5) and used to predict deceased-related thinking in a given block (6).  

  

1.A. 
((D_PIC>CLD_PIC)

Model Training: Representations of Deceased Task

1. B. 
(D_STO>CLD_STO))

2. Conjunction Mask

3. Model Training:
MVPA identifies optimal 

model of voxel weights (W)
within conjunction mask to 
discriminate D>CLD (PIC 

and STO)

S

Thought Prediction: Sustained Attention to 
Response Task (SART)

4. Model Application:
TR by TR neural model prediction 

produced during SART

5. Model Summary:
Model output is averaged within 

each SART block (25-35 seconds)

6. Thought Prediction:
Block-wise model output predicts 
block-wise self-reported thoughts 

of loss
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Supplemental Figure S2. MVPA discrimination. A. Performance of MVPA classifier predicting 

deceased vs. control blocks as compared to randomly permuted labels from a model trained in 

the conjunction mask. Across a range of lambdas there is significant prediction of block type for 

true labels but not permuted labels. B and C. Performance of MVPA classifiers trained in null 

regions of left post central gyrus and midline angular gyrus.  No difference in prediction of true 

labels as compared to permuted labels is seen. 

  

A

B
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Supplemental Figure S3. Effects of Controlling for Arousal and Valence. A. Green mask 

displays clusters associated with stories of deceased versus control conditions when not 

accounting for valence/arousal. Red mask displays significant clusters when controlling for 

valence/arousal. Activity in bilateral hippocampus, superior temporal gyrus and left superior 

frontal gyrus is seen in green but not red mask. B. Effect of valence/arousal for picture contrast.  

A larger extent of voxels is seen in green but not red mask. 

 
   

A. 
B. 
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Table S1. Clusters activated by deceased-related stories as compared to control stories. 
Regions Activated by Stories of the Deceased: Regions across which clusters showing 
greater response to deceased-related as compared to control stories (D_STO>CLD_STO) were 
identified. 

Region #Voxels X Y Z 

Angular Gyrus 164 17.05 34.76 52.55 

Central Opercular Cortex 29 40.07 66.69 37.45 

Anterior Cingulate 577 43.58 74.25 47.26 

Posterior Cingulate 1126 44.00 43.93 45.51 

Frontal Medial Cortex 62 41.40 88.66 31.77 

Frontal Operculum Cortex 295 24.41 72.19 37.50 

Frontal Orbital Cortex 868 34.13 74.77 29.27 

Frontal Pole 782 35.94 88.93 38.42 

Inferior Frontal Gyrus 669 19.82 73.66 38.44 

Inferior Temporal Gyrus 63 22.73 61.08 18.29 

Insular Cortex 730 40.46 68.31 35.04 

Intracalcarine Cortex 139 43.64 29.24 41.01 

Lateral Occipital Cortex 161 17.32 30.25 48.94 

Left Amygdala 69 32.55 60.58 28.04 

Left Caudate 125 38.60 69.14 37.81 

Left Hippocampus 152 33.39 46.76 32.75 

Left Putamen 159 32.69 64.76 35.68 

Left Thalamus 344 42.33 54.90 38.19 

Lingual Gyrus 551 42.66 35.15 35.55 

Middle Frontal Gyrus 231 30.17 76.45 55.30 

Occipital Fusiform Gyrus 46 49.22 21.91 22.85 

Paracingulate Gyrus 834 42.19 83.61 44.48 

Parahippocampal Gyrus 269 34.31 48.08 29.42 

Precentral Gyrus 21 15.86 66.95 40.57 

Precuneous Cortex 875 43.87 34.95 43.34 

Right Amygdala 37 58.57 62.78 28.38 

Right Caudate 60 51.93 73.22 36.95 

Right Hippocampus 32 55.03 44.25 37.09 

Right Pallidum 12 56.58 60.08 36.58 

Right Putamen 262 57.92 64.79 35.08 

Right Thalamus 197 47.76 54.57 37.93 

Subcallosal Cortex 14 41.64 72.29 34.36 

Superior Frontal Gyrus 343 37.86 79.03 57.64 

Supracalcarine Cortex 38 41.13 30.79 43.58 

Supramarginal Gyrus 221 15.89 39.51 52.88 
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Region #Voxels X Y Z 

Temporal Fusiform Cortex 12 29.67 45.75 27.50 

Temporal Pole 248 33.94 70.23 24.77 
Clusters are significant at a voxel-wise threshold of t523=3.1, p<0.001 and cluster corrected with a 
threshold of p<0.05. 
 
 

 

Table S2. Clusters activated by deceased-related pictures as compared to control 
pictures. Regions Activated by Pictures of the Deceased: Regions across which clusters 
showing greater response to deceased-related as compared to control pictures 
(D_PIC>CLD_PIC) were identified. 

Region #Voxels X Y Z 

Right Frontal Orbital Cortex 19 152 58.89 67.89 

Right Insula  28 224 60.64 69.25 

Right Caudate 16 128 52.69 73.06 

Right Putamen 109 872 56.95 68.13 
Clusters are significant at a voxel-wise threshold of t522=3.1, p<0.001, cluster-p <0.05. 
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