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APPENDIX A: BOUNDS ON THE LAPLACE SPECTRUM

Li and Yau in [1] proved that the Laplace spectrum has the
following universal lower bound

λn ≥
d

d+ 2
4π2

(
n

BdV

)2/d

∀n > 0. (1)

We notice that this lower bound does not depend on the shape.
1) Upper bounds: Several authors have investigated the

upper bounds and the relative growth rate of the eigenvalues
of the Dirichlet spectrum [2]. In [3], Yang provides an upper
bound for the growth rate of the components for n ≥ 1 as

λn+1 <

[
1 +

4

d

]
1

n

n∑
m=1

λm. (2)

This equation can be transformed into a sequence of upper
bounds by only knowing the first eigenvalue λ1. Although
sharp for the first few eigenvalues, the upper bound is too
relaxed for the remaining modes. Cheng and Yang in [4]
provides a much sharper upper bound for larger values of n
and is valid for n ≥ 2.

λn+1 ≤ C0(d, n)n
2
dλ1, (3)

where

C0(d, n) = 1 +
a(min(d, n− 1))

d
a(1) ≤ 2.64 a(2) ≤ 2.27

and a(p) = 2.2− 4 log(1 +
p− 3

50
) for p ≥ 3,

where the bound only depends on the first eigenvalue and
furthermore it is consistent with Weyl’s asymptotic growth
law.

APPENDIX B: PROOFS OF LEMMAS AND COROLLARIES

Before presenting the proofs for the corollaries let us
provide a lemma that will be useful throughout this section.

Lemma 2. For any a, b ∈ R such that a > b > 0 the function
f(a, b) = a−b

ab increases monotonously with increasing a and
decreases monotonously with increasing b.

Proof: Since f is differentiable it suffices to look at its
partial derivatives ∂f

∂a = 1
a2 and ∂f

∂b = − 1
b2 .

Corollary 1. Let Ωλ ⊂ Rd and Ωξ ⊂ Rd be any two closed
domains with piecewise smooth boundaries and {λ}∞n=1 and
{ξ}∞n=1 be their Laplace spectrum. Then the weighted spectral
distance

ρ(Ωλ,Ωξ) =

[ ∞∑
n=1

(
|λn − ξn|
λnξn

)p]1/p

converges for p > d
2 . Furthermore,

ρ(Ωλ,Ωξ) <

{
C +K ·

[
ζ

(
2p

d

)
− 1−

(
1

2

) 2p
d

]} 1
p

, (4)

where ζ(·) is the Riemann zeta function and the coefficients
C and K are given as

C ,
∑
i=1,2

 d+ 2

d · 4π2
·

(
BdV̂

i

) 2
d

− 1

µ
·
(

d

d+ 4

)i−1p

K ,

[
d+ 2

d · 4π2
·
(
BdV̂

) 2
d − 1

µ
· d

d+ 2.64

]p
V̂ , max(V (Ωλ), V (Ωξ)), µ , max(λ1, ξ1),

where V (·) denotes the volume (or area in 2D) of an object.

Proof: The following inequality results from combining
the bounds specified in Section with Lemma -1

|λn − ξn|
λnξn

<
d+ 2

d · 4π2
·

(
BdV̂

n

) 2
d

− 1

µ
·
(

d

d+ 4

)n−1
for n = 1, 2 and for n ≥ 3

|λn − ξn|
λnξn

<
d+ 2

d · 4π2
·

(
BdV̂

n

) 2
d

− 1

µ
· 1

C0(d, n)n
2
d

≤ d+ 2

d · 4π2
·

(
BdV̂

n

) 2
d

− 1

µ
· d

(d+ 2.64)n
2
d

,

Based on this component-wise bound we can write the infinite
sum without the first two terms as

∞∑
n=3

(
|λn − ξn|
λnξn

)p
< K

∞∑
n=3

(
1

n

) 2p
d

,

which for p > d
2 converges to

K

∞∑
n=3

(
1

n

) 2p
d

= ζ

(
2p

d

)
− 1−

(
1

2

) 2p
d

and diverges for p ≤ 2
d . Consequently, ρ(Ωλ,Ωξ) converges

for p > d
2 . Furthermore, extending the sum with the upper

bounds for n = 1, 2 the following upper bound for the distance
between Ωλ and Ωξ holds

ρ(Ωλ,Ωξ) <

{
C +K ·

[
ζ

(
2p

d

)
− 1−

(
1

2

) 2p
d

]} 1
p

.

Corollary 2. ρ(Ωλ,Ωξ) is a pseudometric for d ≥ 2.
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To ease notation we define

%n(Ωλ,Ωξ) ,
|λn − ξn|
λnξn

.

This leads to

ρ(Ωλ,Ωξ) =

[ ∞∑
n=1

%pn(Ωλ,Ωξ)

] 1
p

.

Proof: ∀Ωλ ⊂ Rd, Ωξ ⊂ Rd The first three points for
this proof are trivial:

- ρ(Ωλ,Ωξ) > 0 since %n(Ωλ,Ωξ) > 0 ∀n.
- ρ(Ωλ,Ωλ) = 0 since |λn − λn| = 0 ∀n.
- ρ(Ωλ,Ωξ) = ρ(Ωξ,Ωλ) since |λn− ξn| = |ξn− λn| ∀n

In order to prove the triangle inequality let us proceed with
the case λn ≥ ξn. The inverse case follows exactly the
same way. Now, let Ωη ⊂ Rd be an arbitrary closed domain
with piecewise smooth boundaries whose spectrum is given as
{ηn}∞n=1. Investigating

|λn − ηn|
λnηn

+
|ηn − ξn|
ηnξn

we notice that for each n there are only three possible cases:
1) λn ≥ ηn ≥ ξn, for which

%n(Ωλ,Ωη) + %n(Ωη,Ωξ) = %n(Ωλ,Ωξ),

2) λn ≥ ξn ≥ ηn, for which %n(Ωλ,Ωη) ≥ %n(Ωλ,Ωξ) as
a result of the Lemma -1. Due %n(Ωξ,Ωη) ≥ 0:

%n(Ωλ,Ωη) + %n(Ωη,Ωξ) ≥ %n(Ωλ,Ωξ)

3) ηn ≥ λn ≥ ξn, for which %n(Ωη,Ωξ) ≥ %n(Ωλ,Ωξ)
as a result of the Lemma -1 once again. And as in the
previous case, due to %n(Ωη,Ωλ) ≥ 0 we have

%n(Ωλ,Ωη) + %n(Ωη,Ωξ) ≥ %n(Ωλ,Ωξ).

Thus ∀n %n(Ωλ,Ωη)+%n(Ωη,Ωξ) ≥ %n(Ωλ,Ωξ). Since p > 1
as p > d

2 for d ≥ 2 the Minkowski Inequality states

ρ(Ωλ,Ωη) + ρ(Ωη,Ωξ)

=

[ ∞∑
n=1

%pn(Ωλ,Ωη)

] 1
p

+

[ ∞∑
n=1

%pn(Ωη,Ωξ)

] 1
p

≥

[ ∞∑
n=1

(%n(Ωλ,Ωη) + %n(Ωη,Ωξ))
p

]1/p
.

When combined with the previous results, the outcome is the
triangle inequality:

ρ(Ωλ,Ωη) + ρ(Ωη,Ωξ) ≥ ρ(Ωλ,Ωξ)

Lemma 1. Let ΩλRd represent an object with piecewise
smooth boundary and D(l, t) , e−λlt

Z(t) be the corresponding
influence ratio of mode l at t. Then for any two spectral indices
m > n > 0

D(n, t) > D(m, t), ∀t > 0

and particularly for two t values such that t1 > t2

D(m, t1)

D(n, t1)
<
D(m, t2)

D(n, t2)
.

Proof: The proof follows the properties of the exponential
function and the properties of the spectrum of the Laplace
operator. For n < m we know that λn < λm which leads to
e−λnt > e−λmt ∀t > 0. Since the denominators are the same
for both D(n, t) and D(m, t) then

D(n, t) > D(m, t) ∀t > 0.

For the second part of the lemma, we first compute the ratio

D(m, t)

D(n, t)
= e−(λm−λn)t.

Now based on λm > λn and e−(λm−λn)t is monotonously
decreasing with increasing t, it follows for t1 > t2 that

D(m, t1)

D(n, t1)
= e−(λm−λn)t1 < e−(λm−λn)t2 =

D(m, t2)

D(n, t2)
.

Corollary 3. Let Ωλ and Ωξ be two objects with piecewise
smooth boundaries. Then for any two scalars with p > d/2,
q > d/2, p ≥ q and for all n with |λn − ξn| > 0 there exists
a M > n so that ∀m ≥M(

|λm−ξm|
λmξm

)p
(
|λn−ξn|
λnξn

)p ≤
(
|λm−ξm|
λmξm

)q
(
|λn−ξn|
λnξn

)q
Proof: From Corollary 1 we know that the series

∞∑
m=1

(
|λm − ξm|
λmξm

)q
converges. Then based on Cauchy’s convergence criterion for
series

lim
n→∞

(
|λm − ξm|
λmξm

)q
= 0.

In other words, ∀ε > 0 there exists a M such that(
|λm − ξm|
λmξm

)q
< ε, ∀m > M.

Let n be an arbitrary index such that |λn − ξn| > 0.
Consequently, also for |λn − ξn|, there exists a M such that
∀m > M (

|λm−ξm|
λmξm

)q
(
|λn−ξn|
λnξn

)q < 1.

Since p ≥ q we can find a k ≥ 1 such that p = kq. Then
based on the above inequality ∀m > M(

|λm−ξm|
λmξm

)p
(
|λn−ξn|
λnξn

)p =


(
|λm−ξm|
λmξm

)q
(
|λn−ξn|
λnξn

)q
k

≤

(
|λm−ξm|
λmξm

)q
(
|λn−ξn|
λnξn

)q
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Corollary 4. Let ρN (Ωλ,Ωξ) be the truncated approximation
of ρ(Ωλ,Ωξ) based on the first N modes and ρN (Ωλ,Ωξ) of
ρ(Ωλ,Ωξ). Then ∀p > d/2

lim
N→∞

|ρ− ρN | = 0

and

lim
N→∞

|ρ− ρN | = 0.

Furthermore, for a given N ≥ 3 the truncation errors |ρ−ρN |
and |ρ− ρN | can be bounded by

∣∣ρ− ρN ∣∣ <

{
C +K ·

[
ζ

(
2p

d

)
− 1−

(
1

2

) 2p
d

]} 1
p

(5)

−

{
C +K ·

[
N∑
n=3

(
1

n

) 2p
d

]} 1
p

|ρ− ρN | < 1−


C +K ·

[∑N
n=3

(
1
n

) 2p
d

]
C +K ·

[
ζ
(
2p
d

)
− 1−

(
1
2

) 2p
d

]


1
p

(6)

Proof: As before, to ease notation, let us again define

%n ,
|λn − ξn|
λnξn

. (7)

Then based on Corollary 1 we know that the sum
∑∞
n=1 %

p
n

exists and thus also the partial sums converge

lim
N→∞

∣∣∣∣∣
∞∑
n=1

%pn −
N∑
n=1

%pn

∣∣∣∣∣ = lim
N→∞

∞∑
n=1

%pn −
N∑
n=1

%pn = 0.

Based on

∀a, b, d ∈ R with a, b, d ≥ 0 and ad − bd → 0⇒ a− b→ 0

and
%n � 0

we reach

lim
N→∞

|ρ− ρN | = lim
N→∞

[ ∞∑
n=1

%pn

] 1
p

−

[
N∑
n=1

%pn

] 1
p

= 0

As the denominators for both ρN and ρ are the same, the
above limit also yields limN→∞ |ρ− ρN | = 0.

The upper bounds for the truncation errors now is a direct

result of Corollary 1 as

∣∣ρ− ρN ∣∣ =

[ ∞∑
n=1

%pn

] 1
p

−

[
N∑
n=1

%pn

] 1
p

<

{
C +K ·

[
ζ

(
2p

d

)
− 1−

(
1

2

) 2p
d

]} 1
p

−

{
C +K ·

[
N∑
n=3

(
1

n

) 2p
d

]} 1
p

|ρ− ρN | =
[
∑∞
n=1 %

p]
1/p −

[∑N
n=1 %

p
]1/p

{
C +K

(
ζ(2p/d)− 1− 1/22p/d

)}1/p
< 1−


C +K ·

[∑N
n=3

(
1
n

) 2p
d

]
C +K ·

[
ζ
(
2p
d

)
− 1−

(
1
2

) 2p
d

]


1
p

Proposition 1. Let x, y ∈ R be positive real values such that
y > x. Then ∀A,B ∈ R, A,B > 0

A+Bx

A+By
>
x

y
.

Proof: Since A, x, y > 0, we can find two positive real
values k1 > 0 and k2 > 0 such that A = k1x and A = k2y.
Furthermore, y > x simply implies k1 > k2. Using k1 and k2
now we can write

A+Bx

A+By
=
k1x+Bx

k2y +By
>
k2x+Bx

k2y +By
=
x

y
.
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