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APPENDIX A: BOUNDS ON THE LAPLACE SPECTRUM

Li and Yau in [1] proved that the Laplace spectrum has the
following universal lower bound
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We notice that this lower bound does not depend on the shape.
1) Upper bounds: Several authors have investigated the
upper bounds and the relative growth rate of the eigenvalues
of the Dirichlet spectrum [2]. In [3], Yang provides an upper
bound for the growth rate of the components for n > 1 as
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This equation can be transformed into a sequence of upper
bounds by only knowing the first eigenvalue A;. Although
sharp for the first few eigenvalues, the upper bound is too
relaxed for the remaining modes. Cheng and Yang in [4]
provides a much sharper upper bound for larger values of n
and is valid for n > 2.
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where

Cold,n) =1+ w

a(1) < 2.64 a(2) < 2.27
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and a(p) = 2.2 —4log(1 + %) for p > 3,

where the bound only depends on the first eigenvalue and
furthermore it is consistent with Weyl’s asymptotic growth
law.

APPENDIX B: PROOFS OF LEMMAS AND COROLLARIES

Before presenting the proofs for the corollaries let us
provide a lemma that will be useful throughout this section.

Lemma 2. For any a,b € R such that a > b > 0 the function
fla,b) = aa—*bb increases monotonously with increasing a and
decreases monotonously with increasing b.

Proof: Since f is differentiable it suffices to look at its
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Corollary 1. Let Q) C R? and Qe C R? be any two closed
domains with piecewise smooth boundaries and {\}52, and
{£}22, be their Laplace spectrum. Then the weighted spectral

distance
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converges for p > g. Furthermore,
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where ((-) is the Riemann zeta function and the coefficients
C and K are given as
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where V (-) denotes the volume (or area in 2D) of an object.

Proof: The following inequality results from combining
the bounds specified in Section with Lemma -1
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Based on this component-wise bound we can write the infinite
sum without the first two terms as
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which for p > % converges to
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and diverges for p < %. Consequently, p(€2,€2¢) converges

for p > %. Furthermore, extending the sum with the upper

bounds for n = 1, 2 the following upper bound for the distance

between 2, and ()¢ holds
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Corollary 2. p(Q, ) is a pseudometric for d > 2.
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To ease notation we define
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This leads to
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Proof: ¥Q, C R4, Q¢ C R? The first three points for

this proof are trivial:

- p(Q,\795) > ( since Qn(Q)\,Qg) > 0 Vn.

- p(2, Q) = 0 since [A, — Ay| = 0 Vn.

- p(Q/MQS) = p(QﬁvQ/\) since [\, — &n| = [€n — An| V1
In order to prove the triangle inequality let us proceed with
the case A, > &,. The inverse case follows exactly the
same way. Now, let €2, C R? be an arbitrary closed domain
with piecewise smooth boundaries whose spectrum is given as
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we notice that for each n there are only three possible cases:
1) Ap > nn > &, for which
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as a result of the Lemma -1 once again. And as in the
previous case, due to o, (€2, ) > 0 we have
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Thus Vn 0, (2, Q) +0n (2, Q) > 0, (22, Qe). Since p > 1
as p > g for d > 2 the Minkowski Inequality states
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When combined with the previous results, the outcome is the
triangle inequality:

p(Qz\vgn) + p(QW’Qﬁ) > p(QMQS)
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Lemma 1. Let Q)\R¢ represent cm ob]ect with plecewwe
smooth boundary and D(l,t) =
influence ratio of mode l at t. Then for any two spectral indices
m>n>0

D(n,t) > D(m,t), Vt>0

and particularly for two t values such that t1 > to
'D(m,tl) D(m,tg)
D(n,tl) D(TL, tg) '
Proof: The proof follows the properties of the exponential
function and the properties of the spectrum of the Laplace
operator. For n < m we know that \,, < \,, which leads to

e~ At > e=Amt Wt > (). Since the denominators are the same
for both D(n,t) and D(m,t) then

D(n,t) > D(m,t) Vt > 0.

For the second part of the lemma, we first compute the ratio
D(m,t)
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Now based on \,, > )\, and e-(*»~*)t is monotonously

decreasing with increasing t, it follows for ¢; > t, that
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Corollary 3. Let Q) and Q¢ be two objects with piecewise
smooth boundaries. Then for any two scalars with p > d/2,
q > d/2, p > q and for all n with |\, — &,| > 0 there exists
a M > n so that Ym > M

(lAAm—gsmw)” (\Ain—fm\)q
<
(‘)‘nfgn‘)p - (l)‘nfgn|>q
)\ngn )\ngn

Proof: From Corollary 1 we know that the series
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converges. Then based on Cauchy’s convergence criterion for
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In other words, Ve > 0 there exists a M such that
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Let n be an arbitrary index such that |\, — &,] > O.
Consequently, also for |\, — &,|, there exists a M such that
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Since p > ¢ we can find a £ > 1 such that p = kq. Then
based on the above inequality Vm > M
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Corollary 4. Let pN (Qy, Q) be the truncated approximation
of p(Qx, Q) based on the first N modes and p™ (Qx, Q) of
(20, Q). Then ¥p > d/2
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Furthermore, for a given N > 3 the truncation errors |p— pN |
and |p — p™ | can be bounded by

|p—,oN| < {C’+K-
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Proof: As before, to ease notation, let us again define
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Then based on Corollary 1 we know that the sum > -, of
exists and thus also the partial sums converge
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Va,b,d € R with a,b,d >0 and a® = b 5 0=a—-b—0
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As the denominators for both py and p are the same, the
above limit also yields limy_,oo [0 — 7| = 0.

The upper bounds for the truncation errors now is a direct

result of Corollary 1 as
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Proposition 1. Let z,y € R be positive real values such that
y>z Then VA, BER, A, B >0

A+Bx «x

— >
A+ By =y
Proof: Since A, z,y > 0, we can find two positive real
values k1 > 0 and ko > 0 such that A = kjx and A = koy.
Furthermore, iy > x simply implies k; > k5. Using k1 and ko
now we can write

A+Br kizx+Bx _kx+Br @
A+By koy+ By~ koy+By vy
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