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ABSTRACT Memory and learning are studied in a model
neural network made from component cells with a variety of
realistic intrinsic dynamic behaviors. Modulation of intrinsic
ceilular characteristics causes a network to switch between two
entirely different modes of operation. In one mode the network
acts as a selective, long-term associative memory, whereas in
the other it is a nonselective, short-term latching memory. Such
functional modulation can be used as a mechanism for initiat-
ing and terminating learning in a network associative memory.

In addition to displaying complex collective phenomena in
networks, biological neurons exhibit a wide variety of intrin-
sic dynamical behaviors, even in isolation. How does intrin-
sic neuronal dynamics affect network behavior and how can
modulation of intrinsic cellular properties be used to modify
and control network function? To address these questions, a
model neuron has been constructed, which displays realistic
dynamic behavior and yet is simple enough to be amenable to
detailed mathematical analysis and computer simulation (1).
I previously demonstrated (1) how a network of these dy-
namic model cells can act as an associative memory with
storage and recall properties similar to those of well-known
attractor network models (2-4) (for reviews, see refs. 5 and
6). Here, I show how modulation of intrinsic cellular prop-
erties can be used to alter and control network function and
to initiate and terminate learning in a network associative
memory.

Attractor network models have provided a fertile testing
ground for ideas about memory and learning. However, the
binary model neuron, which forms the basis ofthese networks,
is essentially devoid ofintrinsic dynamics. To study the impact
of intrinsic behavior and the role of neuromodulation, a richer
model ofthe basic cell must be constructed. The model neuron
used here is based on a solution of a piecewise linear form of
the FitzHugh-Nagumo equations (7, 8) but is formulated much
like attractor models (2-4), especially those with time-
dependent thresholds (9) and hysteresis (10). The model cells
display realistic intrinsic behaviors, such as postinhibitory
rebound, postburst hyperpolarization, fatigue, intrinsic oscil-
lation, plateau behavior, and bistability (1).
The behavior exhibited by a given model neuron depends

of course on the values of various model parameters. A
particularly interesting set of parameter values leads to the
steady-state characteristics shown in Fig. 1. Four different
behaviors are possible depending on the total synaptic cur-
rent entering the cell, I, and on the value of an additional
model parameter, a. Not surprisingly the cell hyperpolarizes
under the influence of negative current and depolarizes for
positive current. In addition two more complex phenomena
are observed. In the absence of synaptic current, the cell
oscillates when 0.5 < a < 1, whereas for 0 < a < 0.5 it is
bistable. Fig. 1 B and C shows both oscillation and bistability.
Since individual action potentials are not modeled, this figure

shows a smoothed membrane potential with spikes removed.
However, when the model cell is depolarized, the average
membrane potential can serve as a measure of the spiking
rate. The waveform for an oscillating model cell is shown in
Fig. 1B. In the bistable mode, the model cell can remain
indefinitely in either a depolarized or a hyperpolarized state.
A brief positive synaptic current pulse will place the cell in
the depolarized state, whereas a negative pulse will cause it
to remain hyperpolarized as shown in Fig. 1C.

Plateau behavior, bistability, and oscillation are closely
related phenomena. It is likely that many cells exhibiting any
one ofthese can be induced through modulation to display the
others as well. Typically, a cell must have a negative resis-
tance region in its fast current-vs.-voltage (I-V) curve to
oscillate. If the negative resistance characteristics are suffi-
ciently enhanced by some modulatory substance, the cell will
become bistable.
Many neuromodulators capable of changing cellular I-V

characteristics have been identified in biological preparations
(11, 12). These can be applied either globally to an entire
network or locally to a particular neuron at a synaptic
junction. Here I will study global neuromodulation, concen-
trating on the effects of a hypothetical neuromodulator that
enhances the negative resistance characteristics of network
cells. These effects are simulated in the model by changing
the value of the parameter a. In the following sections I will
show (i) how a network of oscillatory cells can act as a
selective, long-term, associative memory; (ii) how a modu-
lator that makes these cells bistable can modify the function
ofthis network, making it a nonselective, short-term, latching
memory; and (iii) how this switching can be used to gate the
learning process in a network associative memory.

A Network of Dynamic Model Neurons

The dynamic behavior of any neuronal cell depends on the
voltage and time dependences of its membrane conductance
channels. To deal with large networks of model cells, we
must provide a compact and manageable approximate de-
scription of membrane currents, which is nevertheless accu-
rate enough to produce interesting intrinsic dynamics. To do
this, we will not model individual action potential spikes but
will consider instead a spike-averaged membrane potential.
When the cell is firing, this potential can be used as a measure
of the spiking rate. The dynamic model cell used here is based
on a well-known approach (7, 8). The total membrane current
is divided into two pieces, one consisting of all currents that
respond rapidly, say in a time on the order of a few msec or
less, and another composed of the slow currents responding
in times on the order of tens of msec. The fast set of currents
is then considered to be an instantaneous function of the
spike-averaged membrane potential. Let f(v) be the fast
outward membrane current at cell potential v and let u be the
slow component of the membrane current. All currents and
potentials are in arbitrary units and can be rescaled for

Abbreviation: I-V, current vs. voltage.
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the rapid component of the membrane current can then be
written as

f(v) = v - 2S,

and Eq. 1 can be solved for the spike-averaged potential

v = I + 25 - u.

By using this result, Eq. 3 can be written more compactly as

S = sgn[S + I - u].

I

B oscillates( C bistable (X)
v

I

A network of N model neurons is characterized by N
binary variables Si = + I with i = 1 ... N, which keep track
of which branch of the fast I-V curve is being used for cell i.
Thus, if cell i is hyperpolarized and silent, Si = -1, whereas
if it is depolarized and firing, Si = + 1. Time is divided up into
units of -1 msec, and the state of cell i at time t + 1 is given
in terms of its state at time t by the updating rule

time time
FIG. 1. Phase diagram for a model neuron. (A) I is the total

synaptic current entering the cell and a is a model parameter. With
I = 0, the cell oscillates when a is >0.5 and is bistable for a <0.5.
The spike-averaged cell potential as a function of time in the
oscillatory (B) and bistable modes (C) is shown. In the bistable mode
(C), the cell potential (upper trace) can remain either depolarized or
hyperpolarized indefinitely, and brief current pulses (lower trace)
can cause transitions between these two stable states.

specific applications. It is assumed that the cell capacitance
is small enough so that on the 10-msec time scale of interest
the total current leaving the cell must match that coming
in,

f(v) + u=I, [1]

where I is the total synaptic and external current entering the
cell. The current component u responds slowly to changes in
the membrane potential, and its behavior has traditionally
been modeled (7, 8) by using a linear first-order differential
equation

du
r- = av - (1-aOu. [2]
dt

The parameter a in this equation is the same as the a of Fig.
1. The parameter X sets the time scale for intrinsic dynamical
behavior such as oscillation. For my purposes this time scale
is taken to be on the order of ten or tens of msec.
For the purposes of this paper, it will suffice to use a

piecewise linear form for the fast current f(v), consisting of
two positive resistance regions for hyperpolarized potentials
less than v = -1 and depolarized potentials greater than v =

+ 1 connected by an intermediate negative resistance region.
The choice of the points v = +1 is of course arbitrary, and
these may be moved to any desired values by shifting and
rescaling v. The exact form of the negative resistance region
is not important, but to keep track of the two positive
resistance regions we define a binary variable S satisfying

+1 if v 2: 1
= +-1 if v- -1

We do not need to define S in the region lvi < 1 because in
the limit of small cell capacitance the membrane potential
jumps instantaneously over this region, always remaining > 1
in absolute value. In the relevant regions v < -1 and v - 1,

SI(t + 1) = sgn[Si(t) + Ii(t) - ui(t)], [7]
which assures that Eq. 6 is satisfied for each cell of the
network. Ii(t) is the total synaptic current entering cell i at
time t. As in attractor models, a matrix element Jij charac-
terizes the synaptic coupling between neuron j and neuron i.
The sign of J1j governs whether this synapse is excitatory or
inhibitory, and its magnitude determines the strength of the
coupling. The total synaptic current entering cell i is (up to a

constant, which can be absorbed into the definition of u)
N

Ii(t)j=I iiSi(t)
J=l

[8]

The function u,{t) representing the slow component ofthe cell
membrane current is determined by an updating rule obtained
by integrating Eq. 2 over one time step

ui(t + 1) = ui(t)e-1/Ti + a(Ii(t) + 2Si(t))(1 - e-l/Ti). [9]

For simplicity, in this discussion all cells of the network have
been given the same value of a, but they are allowed different
intrinsic time constants Ti.

Fig. 2 shows three relevant behaviors exhibited by a

network of model cells. For clarity a network of only five
cells is shown (a much larger network is discussed in the next
section). In Fig. 2 A and B, the model cells are intrinsically
oscillatory, whereas in Fig. 2C they are bistable. In all three
cases the network is initialized by a set ofbrief current pulses
entering each cell. These pulses place the network in an initial
state characterized by a specific pattern of firing and silent
cells. In Fig. 2A the model cells are uncoupled, so after being
initialized they oscillate incoherently, each at its own par-
ticular intrinsic frequency.

Fig. 2B shows coherent oscillation, which forms the basis
of associative memory in the model (1). In an associative
memory, the synaptic couplings are adjusted (through learn-
ing) to pick out certain patterns of network activity as

memory patterns. If the pattern of activity initiated by the
input is close to one of the memory patterns, the network will
respond by phase locking (13-15). As in Fig. 2B, the response
of the network to a recognized input will be coherent oscil-
lation between the memory pattern recalled by that particular
input and its inverse (obtained by making all passive cells
active and all active cells passive). Coherent oscillation
allows for the recovery of stored memory patterns. Phase
locking depends both on the specific form of the synaptic
couplings and on the nature of the input state. Because of
this, the memory is selective; only inputs close to one of the
stored memory patterns will be recognized. In addition, the

A

a

[4]

v

[51

[6]
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FIG. 2. Three modes of operation for a five-cell network. The
horizontal axis is time and the vertical axis gives the number of the
cell being plotted. The depolarized or firing state and the hyperpo-
larized or silent state are denoted by the presence or absence of a
black band, respectively. To begin the simulations an initial pattern
of activity is imposed. In A the cells are uncoupled so they oscillate
independently at their own intrinsic frequencies. Hebb-type cou-
plings have been used in B to produce phase locking. The cells
oscillate in unison at a common frequency between the memory
pattern and its inverse. For C the variable a has been reduced so that
the cells are bistable. The network maintains whatever pattern of
activity was imposed initially. Circuit diagrams show the different
network configurations; open circles represent excitatory synapses,
and solid circles represent inhibitory synapses.

memory is long-term since memory patterns will be retained
as long as synaptic couplings are not modified.
Whether or not a given input state will converge to a

coherent oscillating pattern depends on the basin ofattraction
of the limit-cycle attractor associated with the appropriate
memory pattern. The basin of attraction defines how similar
the input state has to be to a memory pattern in order to be
recognized and mapped to it. Basins of attraction in the
oscillatory model appear to be quite similar to those in
fixed-point attractor networks, but it should be noted that in
both the oscillating and fixed-point cases much remains to be
learned about the nature of the attraction basins.
Phase locking is frequently seen in coupled oscillatory sys-

tems. However, the particular nonlinear oscillator being dis-
cussed here exhibits an extremely robust form of synchronous
behavior in comparison with, for example, phase-coupled os-
cillators (13-15). This is due to the fact that the present model
allows a driven oscillator to alter both the size ofits phase-space
limit cycle and the rate of motion along the limit cycle to
facilitate synchronization with the driving current.

In Fig. 2C the parameter a has been decreased, causing the
network cells to become bistable. This simulates the effect of
a globally applied neuromodulator. As a result, the network
maintains a fixed pattern of activity identical to that imposed
initially by the input current pulses. In this mode any input
presented to the network will result in a fixed pattern of
network activity identical to the initial state. The network
therefore functions as a nonselective, short-term, latching
memory. If the value of a is increased back to its original
value, simulating the clearing ofthe neuromodulator, the type
of behavior shown in Fig. 2B will resume.

Classes of behavior other than those shown in Fig. 2 can
also be seen in network simulations. For example phase
locking in various ratios other than 1:1 and chaotic behavior
have been observed. These are discussed more fully in ref. 1
but will not be discussed here as they play no role in the
memory and learning tasks being considered.

Gated Learning

The behavior shown in Fig. 2 B and C can be used to produce
either long-term, associative or short-term, latching memory.
A particularly interesting application of the ability of net-
works of dynamic model cells to switch between these two
functions is gated learning. Learning is the process by which
network connections appropriate for performing a given task
are established. In oscillatory networks, as in attractor net-
works, learning is accomplished through modification of
synaptic strengths (long-term potentiation) (16-26) in re-
sponse to the activity of pre- and/or postsynaptic cells. The
learning process requires that a fixed pattern of network
activity be maintained long enough for significant synaptic
modification to take place. However, while a network is
acting as an associative memory, uncontrolled synaptic
changes cannot be allowed since this could result in loss of
stored information. Therefore learning must be gated. In
conventional attractor networks this is done by assuming that
external latching circuitry is available and by regulating
synaptic plasticity. In the example considered here, the
oscillating associative memory can act as its own latch.
Furthermore, it will not be necessary to regulate the plasticity
of the synapses. Learning can be initiated and terminated
solely by modulating intrinsic cellular characteristics.
This form of gated learning relies on a key assumption

about a temporal threshold for synaptic plasticity. We as-
sume that synaptic modification requires that a fixed pattern
of pre- and postsynaptic activity be maintained over a rela-
tively long (on the order of 100 msec) period of time. For
example, in order for Hebb-type modifications to take place,
both the pre- and postsynaptic cells must fire continuously
for on the order of 100 msec. Such a temporal threshold
assures that no unwanted synaptic modification will take
place while the oscillatory network is acting as an associative
memory because in this case cells continually oscillate be-
tween active and passive states with periods on the order of
tens of msec (see Fig. 2B). However, when learning is
desired, synaptic modification can be induced by modulating
the network so that it becomes a short-term, latching mem-
ory. Then any subsequent input will lead to a fixed pattern of
network activity (see Fig. 2C) and, after the required 100
msec or so, synaptic modification will occur.
Memory recovery and gated learning in a 100-cell network

are illustrated in Fig. 3. In preparation for this figure, a 100
x 100 synaptic coupling matrix encoding nine different
patterns ofactivity was constructed using a generalized Hebb
learning rule. Specifically, denoting the nine patterns by{ =
±1 with i = 1 ... Nandu = 1 ... 9, the coupling matrix was
taken to be

1 9

4N IA=l S
[10]

One of the learned patterns was taken to be all cells firing at
once (ei = 1 for all i). Recall of this pattern by the network
is shown in Fig. 3A. When the all-firing pattern is imposed as
an initial state, the network phase locks, oscillating coher-
ently between this pattern and its inverse. At this point, some
readout mechanism similar to what is needed in ordinary
attractor neural networks could be used to extract the rec-
ognized pattern. This mechanism is not included as a part of
the present model. Another pattern consisting of alternating
regions of firing and silent cells is used as the input state in
Fig. 3B. The network has not yet learned this pattern, so it is
not recognized, and the result is a pattern of activity com-
pletely unrelated to the initial input.

Fig. 3C shows learning. The same input pattern used in Fig.
3B is initially imposed on the network, but now the cells are

I
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FIG. 3. Learning in a model network. A network of 100 model
cells is shown using the same conventions and procedures as in Fig.
2. To compress the figure, the spaces between cell traces and
individual cell baselines have been removed. (A) Recovery of a

learned pattern (all cells firing) through phase locking. (B) An initial
pattern of activity, which has not been learned yet, results in
behavior unrelated to the input. (C) Modulation of cellular charac-
teristics results in latching behavior, and the same input used in B
now leads to a fixed pattern of network activity. This induces
synaptic modification governed by the Hebb learning rule. (D) When
the network cells regain their oscillatory characteristics, the pattern
recognized in A is still recognized. (E) In addition, the network now
recognizes the pattern it did not identify in B due to the learning that
occurred in C.

bistable rather than oscillatory because the parameter a has
been reduced from a = 0.6 to a = 0.1. As a result, the network
maintains this particular pattern of activity, and synaptic
modification, which did not occur in Fig. 3 A and B due to the
continual oscillations, now takes place. The only modifica-
tion made to initiate and terminate learning in this example is
a change in the value of the parameter a simulating the effect
of a modulatory substance. Once the threshold condition is
satisfied, learning is accomplished with the same rule used
originally to store the initial nine patterns. That is, after the
threshold period, while the network is latched in the state Si,
the synaptic couplings are modified by the rule

1

Although this rule was used for the results being shown, any
of a host of other synaptic modification rules (6) [including
more realistic ones (27)] could be employed just as well.
When a is increased back to 0.6 (simulating the clearing of

the modulator) and the cells become oscillatory again, the
original pattern used in Fig. 3A is still recognized, as seen in
Fig. 3D. In addition, because of the synaptic modification
that occurred during learning, Fig. 3C, the pattern that was
not identified in Fig. 3B is now recognized and results in a

coherent pattern of oscillatory activity, Fig. 3E. (The two
patterns used were chosen for visual clarity. Any uncorre-

lated patterns could have been used. The 100 oscillators were
given random intrinsic periods that varied by 50% over the
population, and the average value of the ri was 25.) It should
be stressed that the only modification made to initiate and
terminate learning was a change in the value of the parameter
a. In particular the synaptic modification rule (Eq. 11) is

applicable at all times to be performed whenever the temporal
threshold condition is satisfied.

Discussion

Fig. 3 shows clearly that a network of oscillators can exhibit
memory recall through phase locking as well as modulation
of function and gated learning through modification of intrin-
sic cellular characteristics. There is both speculation and
experimental evidence that oscillating or bursting neurons
and their temporal correlations play a significant role in
various perceptual processes (28-39). The use of oscillatory
rather than tonically firing elements has obvious advantages.
The temporal information contained in an oscillating pattern
of activity can be used for timing information, and phase
locking of oscillating subgroups can be used to label related
patterns. This idea has been discussed in other oscillatory
models (ref. 41; D. Horn and M. Usher, personal communi-
cation) and is also being incorporated into the model pre-
sented here.

In the discussion up to now I have taken the position that
the oscillators from which the network is constructed repre-
sent individual neurons. However, this is not the only pos-
sible interpretation. It has been shown (40) that populations
of excitatory and inhibitory neurons can exhibit oscillation
and bistability as collective phenomena. This group behavior
can be treated mathematically much as the analogous neu-
ronal behavior was treated here. Therefore a possible alter-
nate interpretation of the present work is that the individual
oscillators of the network are actually themselves popula-
tions of nonoscillatory neurons. Of course in some cases
oscillations in neuronal populations may result from both
individual and collective phenomena.
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