Supplementary Information

Imaging mass spectrometry and MS/MS molecular networking reveals chemical interactions among cuticular bacteria and pathogenic fungi associated with fungus-growing ants

Cristopher A. Boya P.^{1,2}, Hermógenes Fernández-Marín¹, Luis C. Mejía¹, Carmenza Spadafora³, Pieter C. Dorrestein^{4,5}, and Marcelino Gutiérrez Guevara^{1,*}

¹Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panamá, Apartado 0843-01103, República de Panamá;

²Department of Biotechnology, Acharya Nagarjuna University, Guntur, Nagarjuna Nagar-522 510, India.

³Centro de Biología Celular y Molecular de Enfermedades, INDICASAT-AIP, Panamá, Apartado 0843-01103, República de Panamá

⁴Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, San Diego, California 92093, United States

⁵Department of Pharmacology, University of California at San Diego, San Diego, California 92093, United Stated

*mgutierrez@indicasat.org.pa

Contents

Supplementary Methods

- Breast cancer bioassay
- P. falciparum bioassay
- T. cruzi bioassay
- Antibiotic susceptibility test
- Antifungal bioassay

Supplementary Figures

- **Figure S1.** MALDI imaging mass spectrometry experiment of the interaction between the bacterium *Streptomyces* CBR53 and the fungus *Escovopsis* TZ49, showing ions from 50 *m/z* to 800 *m/z*
- **Figure S2.** MALDI imaging mass spectrometry experiment of the interaction between the bacterium *Streptomyces* CBR53 and the fungus *Escovopsis* TZ49, showing ions from 800 *m/z* to 2500 *m/z*
- Figure S3. Proton NMR spectra of elaiophylin macrolide, ¹H NMR (400 MHz, METHANOLd₃)
- **Figure S4.** Carbon NMR spectra of elaiophylin macrolide, ¹³C NMR (100 MHz, METHANOL-d₃)
- **Figure S5.** Direct MS-MS comparison of elaiophylin macrolide from the extract of *Streptomyces* sp. (CBR53) with elaiophylin-CDM bronze spectrum from GNPS spectral library (CCMSLIB00000479766)
- Figure S6. Efomycin G from the extract of Streptomyces CBR53.
- Figure S7. Efomycin A from the extract of Streptomyces CBR53.
- **Figure S8.** MS-MS comparison of unknown peaks 1065.6007, 1079.6139 and 1093.6222 from the extract of *Streptomyces* CBR53, with elaiophylin-CDM bronze spectrum from GNPS spectral library (CCMSLIB00000479766).
- Figure S9. Direct MS-MS comparison of shearinine D from the extract of *Escovopsis TZ49* with silver spectrum of Shearinine D_130028 from GNPS spectral library (CCMSLIB00000478461)
- **Figure S10**. Direct MS-MS comparison of shearinine F from the extract of *Escovopsis* TZ49 with silver spectrum of Shearinine F_120146 from GNPS spectral library (CCMSLIB00000478066)
- **Figure S11:** MALDI imaging mass spectrometry experiment of the interaction between the bacterium *Streptomyces* CBR38 and the fungus *Escovopsis* Acro424, showing ions from 50 *m/z* to 2500 *m/z*
- Figure S12: Direct MS-MS comparison of actinomycin D from the extract of *Streptomyces* CBR38 with actinomycin D gold spectrum from GNPS spectral library (CCMSLIB0000006871)
- Figure S13: Direct MS-MS comparison of actinomycin X2 from the extract of *Streptomyces* CBR38 with actinomycin X2 gold spectrum from GNPS spectral library (CCMSLIB00000577607)

• Figure S14. Direct MS-MS comparison of ion 1271.6415 from the extract of *Streptomyces* CBR38

Supplementary Tables

Table S1. ¹³C and ¹H NMR Chemical shifts of compound 1 (400 MHz, DMSO-d6, δ in ppm relative to solvent) and elaiophylin data from literature¹ (360 MHz, DMSO-d6, δ in ppm relative to internal TMS)

Supplementary Methods

Breast cancer bioassay

Activity against the human breast cancer cell line MCF-7 (ATCC, Manassas, VA, USA) was done as described by Higginbotham et al.². In short, the cells were incubated with RPMI-1640 supplemented with gentamicin, L-glutamine, NaHCO₃, HEPES buffer, and FBS at 37°C. Compound was diluted in RPMI-1640 media, added to the cells, and incubated for 48 h at 37°C. After the cells were fixed with trichloroacetic acid, rinsed with water and treated with sulphorhodamine B, the mixture was allowed to react for 15–30 min at 22°C. Then the cells were rinsed with trichloroacetic acid, dried, and treated with Tris-HCI (10 mM; pH 7) for 15 min. Finally color intensity was read at 570 nm, in a color plate reader (Benchmark Bio-Rad). Adriamycin diluted in DMSO was used as positive control (normal IC₅₀ value 20–50 nM).

Plasmodium falciparum bioassay

Activity against the causative agent of malaria was performed by culturing human erythrocytes and infecting them with *P. falciparum*, as described by Trager and Jensen, 1976³. Briefly, the HB3 (Chloroquine sensitive) strain of *P. falciparum* was cultured in RPMI 1640, supplemented with 10% human serum (from O+ blood) at a hematocrit of 2% human erythrocytes (O+) at 37°C in a gas mixture of 5% CO₂, 5% O₂, and 90% N₂. Parasites were kept in the same phase of the life cycle through synchronization in a temperature cycling incubator⁴. The parasites were initially tested with 10 μ g/mL of the extract containing the compound, while the IC₅₀ was obtained by adding no more than 10% v/v of the compound to the well, at different concentrations. The culture was incubated further for 24 h after which PicoGreen DNA fluorescent dye (Invitrogen, USA) was added to a final concentration of 1%. After 30 min incubation the signal was read on a fluorescence plate reader⁵. Chloroquine was used as reference positive control (average IC₅₀: 24.3 nM).

Trypanosoma cruzi bioassay

Activity against the causative agent of Chagas disease was performed using a colorimetric method, assessing Tulahuen LacZ clone C4 of *T. cruzi* parasites expressing β galactosidase (ATCC, Manassas, VA, USA)⁶. Concisely, assays were performed in duplicate on amastigotes culture in RPMI-1640 supplemented with L-glutamine, HEPES buffer, NaHCO₃, dilution of a penicillin-streptomycin mix (1:100) and FBS at 37°C, them exposed to different concentrations of the test compounds under an atmosphere of 5% CO₂/95% air². Cleavage of chlorophenol red- β -D-galactoside (CPRG, Roche Applied Science) by β -Gal expressed by the parasite was measured at 570 nm to

detect color intensity, in a color plate reader (Benchmark Bio-Rad). Nifurtimox diluted in RPMI-1640 medium was used as a positive control $(IC_{50} 0.15-13.4 \ \mu M)^{2,6,7}$.

Antibiotic susceptibility test

Assays against strains of *Candida albicans* (ATCC® 10231TM), *Staphylococcus aureus* subsp. *aureus* (ATCC® 43300TM) and *Bacillus subtilis* subsp. *subtilis* (ATCC® 6051TM) were performed using disk diffusion test, in duplicate as described by Boned⁸ with some modifications⁹. Briefly, petri dishes with Müeller-Hinton agar were inoculated with a suspension of each test organism equivalent to 0.5 McFarland solutions, followed by the application of 6 mm papers disk on the surface of the agar and then impregnated with 25 µL of the compound at a concentration of 1024, 768, 512, 384, 256 and 128 µg/mL. Petri dishes were incubated at 30°C for 18-24 hours before inhibitions zone were measured. MIC values were determined using regression analysis of inhibition zones, considering the absorptive model of diffusion⁸.

Antifungal bioassay

Assays against fungal strains *Escovopsis sp.* (CBR53 and CBR38), *A. fumigatus* (ATCC® 1028[™]) were performed in duplicate using 6 mm papers disk containing three different concentrations of the compounds (1024, 512, and 256 µg/MI). Hyphae plugs of fungal strains were placed in the center of the petri dishes containing Müeller-Hinton agar and incubated at 30°C, evaluation of inhibition zones were carried out at 24, 48, 72, 96 and 120 hours¹⁰.

Supplementary Figures

Figure S1. MALDI imaging mass spectrometry experiment of the interaction between the bacterium *Streptomyces* CBR53 and the fungus *Escovopsis* TZ49, showing ions from 50 m/z to 800 m/z

Figure S2. MALDI imaging mass spectrometry experiment of the interaction between the bacterium *Streptomyces* CBR53 and the fungus *Escovopsis* TZ49, showing ions from 800 m/z to 2500 m/z

Figure S3. ¹H-NMR spectra of elaiophylin (400 MHz, DMSO-d6)

Figure S5. Direct MS-MS comparison of elaiophylin macrolide from the extract of *Streptomyces* CBR53 with elaiophylin-CDM (bronze spectrum) from GNPS spectral library (CCMSLIB00000479766). Picture show a singlet fragment at 729.3878 Da, which correspond to the fragmentation of the symmetrical groups bonded to the macrolactone ring of elaiophylin.

Figure S6. Efomycin G from the extract of *Streptomyces* CBR53. The spectrum show three mayor fragment ions: 411.1819 m/z which correspond to the aglycone; and the ions 715.3734, 729.3860 m/z, which indicate a cleavage of the nonsymmetrical groups between carbons 9-10. and 9"-10".

Figure S7. Efomycin A from the extract of *Streptomyces* CBR53. The spectrum show three mayor fragment ions: 411.1800 m/z which correspond to the aglycone; and the ions 743.3699, 729.3763 m/z, which indicate a cleavage of the nonsymmetrical groups between carbon 9-10 and 9"-10".

Figure S8. MS-MS comparison of unknown nodes 1065.6007, 1079.6139 and 1093.6222 from the extract of *Streptomyces* CBR53, with elaiophylin-CDM bronze spectrum from GNPS spectral library (CCMSLIB00000479766). Spectra show chemical shifts of 18, 32 and 46 Dalton related to elaiophylin.

Figure S9. Direct MS-MS comparison of shearinine D from the extract of *Escovopsis* TZ49 with silver spectrum of Shearinine D_130028 from GNPS spectral library (CCMSLIB00000478461)

Figure S10. Direct MS-MS comparison of shearinine F from the extract of *Escovopsis* TZ49 with silver spectrum of Shearinine F_120146 from GNPS spectral library (CCMSLIB00000478066)

Figure S11. MALDI imaging mass spectrometry experiment of the interaction between the bacterium *Streptomyces* CBR38 and the fungus *Escovopsis* ACRO424, showing ions from 50 m/z to 2500 m/z

Figure S12. Direct MS-MS comparison of actinomycin D from the extract of *Streptomyces* CBR38 with actinomycin D gold spectrum from GNPS spectral library (CCMSLIB0000006871)

Figure S13. Direct MS-MS comparison of actinomycin X2 from the extract of *Streptomyces* CBR38 with actinomycin X2 gold spectrum from GNPS spectral library (CCMSLIB00000577607)

Figure S14. Direct MS-MS comparison of ion 1271.6415 with actinomycin $X_{0\beta}$

(CCMSLIB00000577768), result show twenty five shared peak (25) and less than 10 ppm of error for the calculated molecular formula.

Supplementary Table

Table S1. Comparison of ¹³C and ¹H NMR spectra of compound 1 (400 MHz, DMSO-d6, δ in ppm relative to solvent) and elaiophylin data from literature¹ (360 MHz, DMSO-d6, δ in ppm relative to internal TMS); Carbon numbers represent the lower and upper half portion of the molecule.

Carbon	Compound 1, δ_{c}	Elaiophylin, δ_{C}	Compound 1, δ(m. Lin Hz)	Elaiophylin S(m. Lin Hz)
1	167 0966	167 22		
2	121.3408	121.33	5 70 (d. <i>J</i> =15 14)	5 66 (d. <i>J</i> =15)
3	144.8549	144.86	6.82 (dd, <i>J</i> =15.38, 10.99)	6.80 (dd, <i>J</i> =15, 11)
4	130.5782	130.65	6.11 (dd, <i>J</i> =15.14, 11.23)	6.08 (dd, <i>J</i> =15, 11)
5	144.8549	144.86	5.64 (m)	5.61 (dd, <i>J</i> =16, 10)
6	41.1816	41.26	2.50 (m)	2.50 (m)
7	75.8113	75.9	5.09 (d, <i>J</i> =10.25)	5.06 (d, J=11)
8	36.2769	36.31	1.80 (m)	1.82 (m)
9	69.4062	69.53	3.76 (m)	3,70 (m)
10	42.9404	42.82	1.59 (m)	1.6 (m)
11	99.2291	99.19		
12	36.6180	36.98	2.27 (m)	2.27 (m)
13	66.4224	66.42	3.76 (m)	3,70 (m)
14	47.9491	48.05	1.08 (d, <i>J</i> =6.35)	1.1 (m)
15	65.8198	65.93	3.76 (m)	3,70 (m)
16*	19.1800	19.14	1.05 (d, <i>J</i> =5.86)	1.07 (m)
17*	15.5370	15.49	0.97 (d, <i>J</i> =6.84)	1.01 (d, <i>J</i> =6)
18	8.7940	8.81	0.81 (m)	0.83 (d, <i>J</i> =6)
19	6.9848	6.90	0.81 (m)	0.83 (d, <i>J</i> =6)
20	19.1800	19.14	1.38 (d, <i>J</i> =4.88) 1.61 (m)	1.41 (m) 1.60 (m)
21	9.5663	9.47	0.81 (m)	0.83 (d, <i>J</i> =6)
1'	92.5197	92.68	4.92 (d, <i>J</i> =3.42)	4.90 (d, <i>J</i> =4Hz)
2'	32.6890	32.7	1.40 (m); 1.80 (m)	1.41(m) 1.82 (m)
3'	64.9420	65.04	3.76 (m)	3,70 (m)
4'	70.2872	70.39	3.38 (br. s.)	3.36 (br.s.)
5'	68.3556	68.56	3.76 (m)	3,70 (m)
6'	17.1215	17.10	1.07 (d, <i>J</i> =6.35)	1.07 (d, <i>J</i> =6)

* Carbon numeration corrected established by COSY correlations and literature^{11,12}

Supplementary References

- 1. Kaiser, H. & Keller-Schierlein, W. Structure elucidation of elaiophylin: spectroscopic studies and degradation. *Helv. Chim. Acta* **64**, 407–424 (1981).
- 2. Higginbotham, S. J. *et al.* Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. *PLoS One* **8**, e73192 (2013).
- 3. Trager, W. & Jensen, J. B. Human malaria parasites in continuous culture. *Science* **193**, 673–5 (1976).
- 4. Almanza, A., Coronado, L., Tayler, N., Herrera, L. & Spadafora, C. Automated synchronization of *P. falciparum* using a temperature cycling incubator. *Curr. Trends Biotechnol. Pharm.* **5**, 1130–1133 (2011).
- 5. Corbett, Y. *et al.* A novel DNA-based microfluorimetric method to evaluate antimalarial drug activity. *Am. J. Trop. Med. Hyg.* **70**, 119–24 (2004).
- Martínez-Luis, S., Gómez, J. F., Spadafora, C., Guzmán, H. M. & Gutiérrez, M. Antitrypanosomal alkaloids from the marine bacterium Bacillus pumilus. *Molecules* 17, 11146– 55 (2012).
- 7. Díaz-Chiguer, D. L. *et al.* In vitro and in vivo trypanocidal activity of some benzimidazole derivatives against two strains of Trypanosoma cruzi. *Acta Trop.* **122**, 108–12 (2012).
- 8. Bonev, B., Hooper, J. & Parisot, J. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. *J. Antimicrob. Chemother.* **61**, 1295–1301 (2008).
- 9. Ericsson, H., Tunevall, G. & Wickman, K. The paper disc method for determination of bacterial sensitivity to antibiotics: relationship between the diameter of the zone of inhibition and theminimum inhibitory concentration. *Scand. J. Clin. Lab. Invest.* **12**, 414–422 (1960).
- 10. Mejia, L. C. *et al.* Endophytic fungi as biocontrol agents of *Theobroma cacao* pathogens. *Biol. Control* **46**, 4–14 (2008).
- 11. Nair, M. G. *et al.* Gopalamicin, an antifungal macrodiolide produced by soil actinomycetes. *J. Agric. Food Chem.* **42**, 2308–2310 (1994).
- 12. Nakakoshi, M., Kimura, K., Nakajima, N., Yoshihama, M. & Uramoto, M. SNA-4606-1, a new member of elaiophylins with enzyme inhibition activity against testosterone 5 alpha-reductase. *J. Antibiot. (Tokyo).* **52**, 175–7 (1999).