Supplementary Material



Table S1. Data collection and refinement statistics.

Crystal

K1-K10 Heterodimer

Diffraction Data”

Space Group 1222
Unit Cell Dimensions,
a, b, c(A) 75.19, 75.86, 209.29
a, B, 7 (°) 90, 90, 90
Resolution range (outer shell), A 37.37-3.30 (3.38-3.30)
I/cl 13.76 (0.5)
I/l at 3.58 A resolution 1.41
CC(1/2) in outer shell, % 69.6"
Completeness, % 99.6 (99.4)
Rimeas 0.073 (4.091)
No. of crystals used 1
No. of unique reflections 9336
Redundancy 6.4 (6.6)
Wilson B-factor, A 156.4
Refinement
Rworks % 0.273 (0.471)
Riree, %0 0.277 (0.482)

No. of Non-Hydrogen Atoms
Protein
Ligands/lons
Waters
R.m.s. Deviations
Bond lengths, (A)
Angles, (°)
Chirality
Planarity
Dihedral, (°)

Average B-factor (overall), A?

1722
0
0

0.003
0.609
0.025
0.001
18.809
285.3

* Data collection performed on 06-09-2013.
T Values in parentheses are for highest-resolution (outer) shell.
:‘:CC* = 1000, CCWOI‘k = 0985, CCfree = 0974



Table S2. Key residues contributing to the electrostatic surface potential
differences between the keratin 1-keratin 10 2B complex and the keratin 5-

Kkeratin 14 2B complex.

K1-K10 2Bt K5-K14 2Bt
Patch 1 Basic Basic
Keratin 1: Arg386, His387, | Keratin 5: Lys383, His384,
Arg392, Lys395, Arg403, Arg391, Arg395, Arg397
Arg407, Arg 409, Lys416, Keratin 10: Arg335,
Lys417 Arg336
Patch 2 Acidic Basic
Keratin 10: Glu350, Keratin 5: Lys405
Asp352, Glu356, Glu364, Keratin 14: Lys352
Glu367
Patch 3 Acidic Basic

Keratin 1: Glu397, Glu400

Keratin 5: Arg420
Keratin 14: Lys363

tThe calculated isoelectric points (pl) for each 2B domain are: K1, 4.99; K5, 5.51;

K10, 4.42; K14, 4.59.




Table S3. Distribution of missense mutations in human keratinopathies and
identification of specific keratin 1 and Kkeratin 10 helix 2B mutations
identified from human patients with skin disease.

I. Distribution of missense mutations in human Kkeratinopathies

Keratin Protein Region#§
Head H1A H1B H2A H2B Tail L12
K1 6 11 2 0 16 0 2
K5 17 29 2 1 23 3 17
K6a 1 15 0 0 14 0 0
Ké6b 0 0 0 0 2 1 0
Ké6c 0 0 0 0 1 0 0
K10 0 14 0 0 11 0 0
K14 0 32 2 1 22 0 6
K16 0 13 0 0 2 0 0
K17 2 15 0 0 3 0 0
> 26 129 6 2 94 4 25
II. K1 and K10 mutations identified from human patients with skin disease§
Helix 2B Region
Skin Disease Keratin 1 Keratin 10

Epidermolytic Ichthyosis

Point: E478K, E478D,

Stop: C427X, Q434X

(formerly EHK or BCIE) 1479F,1479T, T481P, Insertion: K439Q
Y482C, L486P, L486R, Point: K439E, R441P,
E489K, E490Q, E490G L442Q, E445K, Q447P,
Y449D, R450P, L452P,

L453P
Deletion: Q434
Cyclic Ichthyosis with Point: E478Q, 1479T, Stop: Q434X

Epidermolytic L485P, E490K Insertion: K439Q

Hyperkeratosis Point: R422E, 1446T,

Y449C

Epidermolytic Palmoplantar

Keratosis

Insertion: Q418-1419
Point: 1479T

Diffuse Palmoplantar

Keratosis#

Point: L437P

Palmoplantar Keratosis

Deletion: A459-Q466

fLinkers 1 and 2 do not have any known missense mutations to date. H1A, helix 1A;
H1B, helix 1B; H2A, helix 2A; H2B, helix 2B; L12, linker between H1B and H2A.
§Data derived from analysis of the Human Intermediate Filament Database
(www.interfil.org) (1-32).




YEHK, epidermolytic hyperkeratosis; BCIE, bullous congenital ichthyosiform
erythroderma

#The primary article (2) does not provide histological evidence for either
epidermolytic or non-epidermolytic palmoplantar keratoderma (PPK). The L437PK1
mutation is incorrectly listed in the Human Intermediate Filament Database as
causing non-epidermolytic PPK.
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Table S4. Biochemical alterations to the structure of the K1-K10 heterodimer
caused by missense mutations.

Epidermolytic Ichthyosis (formerly EHK or BCIE)

Mutation Structural Impact of Mutation

E478KK1 | Change oflocal surface potential from negative to positive; perturbation of
hydrogen bonding and electrostatic interactions.

E478DK1 | Perturbation of hydrogen bonding and electrostatic interactions, but negative
surface charge preserved.

1479FK1 Major steric clashes introduced with K10 residues (L442, E445, 1446, Y449).
[1479TK1 Loss of stabilizing hydrophobic contacts and hydrogen bonding with K10 (as above)
and K1 (D476, R483) residues.

T481PK1 Proline ring 6-carbon clashes with E478K1 (1.86 A from carbonyl oxygen), leading to
distal helix kinking to relieve clash. This destabilizes C-terminal 2B helix interface.

Y482CK1l | Major elimination of hydrophobic contacts due to loss of aromatic ring; also loss of
hydrogen bonding with K1 (E478, T481) and K10 (1446, R450) residues.

LL486PK1 | Loss of stabilizing hydrophobic interactions and hydrogen bonds with K1 (Y482,
R483,L485) and K10 (Y449) residues. Proline ring 6-carbon clashes with E487X1
(2.0 A from hydrogen), likely leading to distal helix kinking to relieve clash.

L486RK1 | Perturbation of hydrophobic and hydrogen bond interactions and addition of
positive surface charge.

E489KK1 | Alteration of local surface charge at C-terminus of 2B helix.

K439EK10 | Perturbation of hydrophobic contacts from lysine side chain and change of local
surface potential from positive to negative.

R441PK10 | Loss of positive surface potential; proline ring 8-carbon clashes with 1438k10 (1.64 A
from carbonyl oxygen), leading to distal helix kinking to relieve clash. This
destabilizes C-terminal 2B helix interface.

L442QK10 | Loss of hydrophobic interactions (e.g. with L4751 and 1479K1); gain of electrostatic
and hydrogen bonding from polar glutamine.

E445KK10 | Disruption of hydrogen bond and electrostatic network between E445K10 and
1479K1, R441K10, Y449K10 Change from negative to positive surface potential.

Q447PK10 | Loss of hydrogen bonding with R450K10, Proline ring y- and 8-carbons clash with Cq
hydrogen (1.9 A) and carbonyl oxygen (2.0 A) of N444K19, Jeading to distal helix
kinking. This destabilizes C-terminal 2B helix interface.

Y449DK10 | Loss of aromatic ring eliminates stabilizing hydrophobic contacts, especially with
Y482K1, Introduction of a negative local surface potential.

R450PK10 | Loss of positive local surface charge. Proline ring y-carbon clashes with carbonyl
oxygen (2.1 A) of Q447X19, leading to distal helix kinking.

LL452PK10 | Loss of surface-exposed hydrophobic residue. Proline ring 8-carbon may clash with
carbonyl oxygen (2.2 A) of Y449K19, creating distal helix kinking.

LL453PK10 | Loss of major hydrophobic interaction with L485KL Proline ring 8-carbon clashes
with carbonyl oxygen (1.96 A) of R450K19, leading to distal helix kinking.

Cyclic Ichthyosis with Epidermolytic Hyperkeratosis

Mutation Structural Impact of Mutation

E478QK! | Loss of negative local surface potential; perturbation of hydrogen bonding and
electrostatic interactions.

1479TK1 Loss of stabilizing hydrophobic contacts and hydrogen bonding with K10 and K1
residues (as above).
L485PK1 Elimination of hydrophobic interaction (L453K1%) and generation of proline ring y-

and §-carbon clashes with carbonyl oxygen (1.68 A) of Y482K1, leading to distal helix
kinking. This destabilizes C-terminal 2B helix interface.




R422EK10 | Loss of contacts with A454%1 and L418K10, Change from positive to negative surface
charge.
[446TK10 | Loss of multiple hydrophobic interactions with K1 (L475, E478, 1479, Y482) and K10
(L442,Y449) residues. Loss of hydrogen bonding with E443K10,
Y449(CK10 | Loss of aromatic ring eliminates stabilizing hydrophobic contacts, especially with
Y482K1,
Epidermolytic Palmoplantar Keratosis
Mutation Structural Impact of Mutation
1479TK1 Loss of stabilizing hydrophobic contacts and hydrogen bonding with K10 and K1
residues (as above).
Diffuse Palmoplantar Keratosis
Mutation Structural Impact of Mutation
L437PK1l | Loss of hydrophobic interactions with Y400K10, Q403K10, and L404X10. Loss of

hydrogen bonds with Q403X10, Proline ring y- and 6-carbon clashes with carbonyl
oxygen (1.67-1.69 A) of E434X1, leading to distal helix kinking. This destabilizes the
2B helix interface.




XDS Data Processing Statistics

Figure S1. Excerpt from the XDS data processing output file showing several metrics for

20 resolution bins (ranging from 14.76 to 3.30 A). Reflections were included to 3.30 A
resolution because the CC(1/2) (blue box) in the highest resolution shell is 69% (yellow
highlight), well above the 10% significance level. To enable more direct comparison with the
K5-K14-2B structure, which was determined utilizing an I/SIGMA cutoff of 1.47 to exclude
weaker reflections, the row corresponding to ~ 3.58 A resolution and I/SIGMA of ~ 1.4 (red box)
is highlighted in yellow. Definitions for several of the metrics are listed above as provided by

the XDS program.

Additional readings on x-ray statistics:

-Karplus and Diederichs, 2012, Linking crystallographic model and data quality, Science, 336(6084):1030-3.

-Diederichs and Karplus, 2013, Better models by discarding data?, Acta Crystallogr D Biol Crystallogr., 69(7):1215-22.

-Wang and Wing, 2014, Diamonds in the rough: a strong case for the inclusion of weak-intensity X-ray diffraction data. Acta Crystallogr
D Biol Crystallogr, 70(5):1491-7.

-Karplus and Diederichs, 2015, Assessing and maximizing data quality in macromolecular crystallography, Curr Opin Struct Biol,
34:60-8.
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Figure S2. Observed electron density throughout the K1-K10-2B crystal structure. (a) The K1-2B (blue) and

K10-2B (magenta) molecules are depicted as ribbons with the electron density (green) for each helix shown. Similar

to flexible loops in many proteins, the N-terminus of K10-2B was more flexible (or had more dynamic

movement) than other keratin regions in this crystal structure; this is reflected in the weaker electron density at the
N-terminus of the K10-2B molecule moreso than the K1-2B molecule. (b) Ribbon diagram of K1-K10-2B heterocomplex
with side chains shown in stick format. Three regions are boxed for a higher magnification view in subsequent panels:
one from the N-terminus, one from the center, and one from the C-terminus. (c) Close-up view of the observed electron
density at the N-terminal aspect of the K1-K10-2B coiled-coil. Hydrophobic residues at the interhelical interface align
within the observed density. (d) Close-up views of the observed electron density in the center of the K1-K10-2B coiled-
coil, with labeled residues demonstrating good fit within the density. () Zoomed in view on K1-2B residue R432 showing
it fits well within the observed electron density. (f) Close-up view of the observed electron density at the C-terminal
aspect of the K1-K10-2B coiled-coil, particularly around two tyrosine residues, K1-2B-Y465 and K10-2B-Y432. The view in
this image is down the coiled-coil long axis. N, N-terminus; C, C-terminus. The electron density in all panels is contoured
at 0.80.



Multiple Sequence and Structure-based Alignment of Keratins 1 and 10
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[] Residues that are different between K1 and K5 (26 residues different, 94 residues identical; 78% identity)

D Residues that are different between K10 and K14 (46 residues different, 74 residues identical; 62% identity)

|:| Residues that are conserved between K1 and K5 or K10 and K14, but not across all sequences aligned

[ Residues that are conserved across all sequences aligned

Figure S3. Multiple sequence alignment and structure-based alignment of the 2B region of keratins 1 and 10. The multiple sequence alignment
calculated by Clustal Omega for the 2B region of keratins 1 and 10 was the same as the structure-based alignment produced by Promals3D comparing
K1-2B and K10-2B with K5-2B and K14-2B. Completely conserved residues are denoted by (*). An additional color scheme is illustrated above for the
comparison of K1-K10-2B to K5-K14-2B; it highlights residues unique to K1-2B in green and unique to K10 in blue. The numbering above K1-2B represents
the initial (370) and last (489) residues in the K1-2B crystallization construct. The numbering above K10-2B represents the initial (337) and last (456) residues
in the K10-2B crystallization construct.
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Figure S4. K1-K10-2B purification and biochemical analysis. (a) 4-12% Bis-Tris PAGE showing His -K10-2B
(calculated MW = 15,950) and K1-2B (calculated MW 13,831) proteins after nickel affinity purification (Ni). After

removal of the His-tag from K10 using thrombin, K1-2B and K10-2B (calculated MW = 14,068) migrate similarly (Tr).

(b) 4-12% PAGE showing three fractions of purified K1-2B and K10-2B after size exclusion chromatography (SEC).

(c) Light scattering of K1-2B/K10-2B complex four days after SEC demonstrated predominantly a homogenous Peak 2
(observed MW 28,820) corresponding to the K1-2B/K10-2B heterodimer (calculated MW = 27, 899). A higher MW Peak 1
(observed MW = 57,100) corresponds to a minor fraction of K1-2B/K10-2B tetramer (calculated MW = 55,798). It likely
represents a minor fraction in solution of disulfide-linked heterodimers, given that in panel (d) [non-reducing 3-12% Bis-Tris
PAGE] the addition of 10 mM TCEP (a disulfide reducing agent) led to a substantial reduction in the dimer species. Since
this was a denaturing gel, the dimer must be held together by a covalent bond; the ability for TCEP to reduce the dimer
species suggests there is a disulfide linkage. This is consistent with the observed disulfide bond via Cys401X'° in the crystal
structure. MW, molecular weight. PAGE, polyacrylamide gel electrophoresis.
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Predicted Changes in Folding Free Energy for K10-2B Single-Site Mutations

-110

Figure S6. Predicted changes in folding free energy for K10-2B single-site mutations. Using the computer
algorithm PoPMuSIC, the change in folding free energy (AAG, kcal/mol) of K10-2B for all possible single-site mutations
at each residue position was calculated using as the input structure the disulfide-linked K1-K10-2B heterodimer.

AAG values < 0 predict a stabilizing mutation, whereas AAG values > 0 predict destabilizing mutations. The data above
depicts the sum of the stabilizing mutations at each residue position; for example, K10-2B residue GIn403 had two
predicted stabilizing mutations, GIn-> Leu (-0.16 kcal/mol) and GIn -> Met (-0.08 kcal/mol). This chart shows the sum of
this prediction at -0.24 kcal/mol. The black box indicates K10-2B residues 391-405, which make up the longest
contiguous stretch in K10-2B having the fewest predicted stabilizing mutations. In other words, this region of K10-2B is
less tolerable of mutation and more likely to become destabilized with mutation. For reference, Cys401 is marked with

an asterix.
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Figure S7. Predicted changes in folding free energy for K10-2B mutations at Gly398, Val402 and Ser405. (a) The
amino acid sequence surrounding K10-Cys401. (b) Plot showing the change in folding free energy (AAG, kcal/mol) of the
disulfide-linked K1-K10-2B heterodimer when Gly398, Val402 and Ser405 are mutated to all possible other amino acids.
For Gly398, one mutation to Ala is predicted to be stabilizing, while all others are destabilizing (black bars). All mutations
forVal402 are predicted to be destabilizing (gray bars). Six mutations for Ser405 are predicted to stabilize the structure
(yellow bars); these mutations are to hydrophobic residues. (c) Structure of the K1-K10-2B heterodimer around the
disulfide site highlighting key residues at the interface. (d) Diagram showing the K17 and K18 residues at equivalent
positions to K10-2B 398 and 405. It is also shown whether analysis by PoPMuSiC predicted a K10-2B mutation to the K17

or K18 residue was stabilizing or destabilizing.




Point Mutations Identified in 2B Region of Keratins 1 & 10

Skin Disease Keratin 1 Keratin 10

Epidermolytic Ichthyosis = E478K, E478D, 1479F, 1479T, KA439E, L442Q, E445K, Q447P,
TA81P, YA82C, LA86P, L486R, Y449D, RA50P, LA52P, L453P
E489K, E490Q, E490G

Cyclic Ichthyosis with E478Q, 1479T, L485P, E490K R422E, 1446T, Y449C
Epidermolytic
Hyperkeratosis
Epidermolytic 1479T
Palmoplantar Keratosis
Non-Epidermolytic L437P

Palmoplantar Keratosis

K1-K10-2B crystal structure
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Figure S8. Mapping missense mutations identified in the 2B region of K1 and K10 onto the K1/K10-2B

x-ray crystal structure. (Top) Table showing the K1 or K10 missense mutations identified from patients with
phenotypic skin disease. The color scheme indicates that K1 will be colored blue, and K10 magenta, in the structure
below. Mutations occurring in K1 are colored orange and in K10 colored yellow. (Middle) Full-length K1/K10-2B
structure with mutations mapped onto it; a couple mutations exist in the central aspect of the 2B helix, but the majority
cluster at the C-terminus. (Bottom) Zoomed in view of the K1/K10 heterodimer C-terminus highlighting the interactions
between residues whose mutations lead to K1 or K10 keratinopathies.
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a Superposition of K1/K10-2B and K5/K14-2B Heterodimers
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Figure S15. Superposition of the K1/K10-2B structure with K5/K14-2B structure. (a) The K1/K10-2B heterodimer
(K1, blue; K10, pink) is presented in ribbon diagram with the K5/K14-2B structure (PDB Code 3TNU; K5, gold; K14, yellow)
superimposed using Chimera to highlight subtle differences in helical conformation. The root mean square deviation
(RMSD) between the structures is 1.74 A. Cys401 in K10 (red) and Cys367 in K14 (green) are marked by the asterix.

(b) The K10-2B helix (pink) is shown in ribbon diagram disulfide bonded (the disulfide is represented as yellow spheres)
to its crystal lattice symmetry mate. The K14-2B helix (green) is shown in ribbon diagram disulfide bonded to its
symmetry mate (gold spheres) and superimposed on the K10-2B helix from the K1-K10-2B crystal structure. The K1 and
K5 molecules have been omitted for clarity. The RMSD between these disulfide linked structures is 2.49 A.

N, N-terminus; C, C-terminus.



Ei NetPhos 2.8: predicted phosphorylation sites in K1
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Figure S16. Predicted phosphorylation potential for residues in K1/K10-2B. Using the NetPhos 2.0 Server
(at www.expasy.org), phosphorylation potential was calculated for all sequence positions in K1 (a) and

K10 (b) and plotted. Eight residues in K1 and nine in K10 scored above threshold (red horizontal line). Below
each plot is the corresponding 2B region amino acid sequence, with specific phosphorylation sites scoring above
the threshold colored sea-green (K1) or yellow (K10). (c) These residues are mapped onto the molecular surface
of the K1/K10-2B crystal structure to indicate the positions of putative phosphorylation sites. Phosphorylation at
any of these sites could further alter, and diversify, the surface charge of K1/K10-2B compared to other keratins.
[NetPhos reference: Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites.
Blom, N., Gammeltoft, S., and Brunak, S. Journal of Molecular Biology: 294(5):1351-1362, 1999].
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Figure S17. Unbiased simulated annealing composite omit map electron density for the K1-K10-2B crystal
structure. (a) The K1-2B (blue) and K10-2B (magenta) molecules are depicted as ribbons with the electron density
(cyan) for each helix shown (calculated using PHENIX). Similar to flexible loops in many proteins, the N-terminus of
K10-2B was more flexible (or had more dynamic movement) than other keratin regions in this crystal structure,
correlating with its weaker electron density. (b) Robust electron density exists at the Cys401¢'°-mediated disulfide
linkage. (c) Close-up view of the unbiased electron density at the C-terminal aspect of the K1-K10-2B coiled-coil,
particularly around two tyrosine residues, K1-2B-Y465 and K10-2B-Y432. (d) Close-up view of the unbiased electron
density at K10 residue Y400. (e) Zoomed in view on K1-2B residue R432 showing it fits well within the unbiased
electron density. N, N-terminus; C, C-terminus. The electron density is contoured at 2.00 for panel b, and at 0.8c for
the other panels.
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Figure S18. Feature enhanced electron density for the K1-K10-2B crystal structure.

(a) The K1-2B (blue) and K10-2B (magenta) molecules are depicted as ribbons with the feature enhanced electron
density (gold) for each helix shown (calculated using PHENIX). (b) Robust electron density exists at the
Cys401%"°-mediated disulfide linkage. (c) Close-up view of the feature enhanced electron density of two C-terminal
tyrosine residues, Y465%" and Y432¢°. Close-up views of the feature enhanced electron density of Y400¢'° (d), R432
(e), and two additional C-terminal tyrosine residues, Y482 and Y449 (f). N, N-terminus; C, C-terminus. The electron
density is contoured at 2.00 for panel b, and at 0.8-1.0c for the other panels.



Figure Legends for select Supplemental Figures

Fig. S5. Mutation of glycine 398K10 to asparagine generates steric clash adjacent to the
disulfide bond site. (a) The wild-type K1-K10 2B structure surrounding the disulfide bond
site (left) demonstrates appropriate structural stereochemistry and no atomic clashes between
adjacent glycine 398 residues. When incorporating a Gly398Asn mutation in K10
computationally, making the 398 position similar to that seen in K17, there is new steric clash
between the Asn398 residues (right, within red box). (b) Focused view of Gly398AsnK10
rotated 70° about the y-axis compared to panel ‘a’, showing atomic clash between Cg hydrogen
atoms.

Fig. S9. Structural consequences of Keratin 1 mutations T481P and Y482C. (a) The left
panel shows wild-type T481K1 in a relatively surface-exposed position at the distal end of the
K1-2B helix. T481PK! mutation (green) introduces a steric clash between the proline ring §-
carbon and the carbonyl oxygen on E478X! (1.86 A). To relieve this clash, the K1-2B helix must
adopt a kinked form. (b) The left panel demonstrates wild-type K1-K10 packing at the distal
end of the 2B region, where Y482X! has hydrophobic interactions with Y449K10 and [446X10
(magenta). Y482CK! mutation (green) disrupts these stabilizing interactions.

Fig. $10. Structural consequences of Keratin 1 mutations E478K, E478D, E478Q, L486P,
L486R, and E489K. (a) The left panel demonstrates wild-type K1-K10 packing at the distal
end of the 2B helix, where E478X! has electrostatic and hydrogen bond interactions with
neighboring residues T481K1, Y482K1, and [446X10, E478KX! mutation (green) disrupts these
interactions and causes a negative to positive charge change on the molecular surface. E478DX!
and E478QK! mutations (green) both disrupt the electrostatic and hydrogen bond interactions,
but E478DKl preserves the local negative surface charge whereas E478QK! reduces the
negative surface potential. (b) L486PX! and L486RK! mutations (green) cause the loss of
stabilizing hydrophobic and hydrogen bond interactions with K1 (Y482, R483, L485) and K10
(Y449) residues. L486PX1 mutation also causes the proline ring §-carbon to clash with E487K1,
whereas L486RX! mutation introduces a new positive charge. (c) E489KK! mutation (green)
causes alteration of the local surface charge at the C-terminus of helix 2B.

Fig. S11. Structural perturbations caused by Keratin 10 mutations R422E, K439E, and
R441P. (a) The left panel shows wild-type R422K10 interactions with A454K1 and L418K10,
R422EK10 mutation (green, center panel) disrupts hydrophobic interactions with those two
residues, and causes a positive (blue) to negative (red) charge alteration on the molecular
surface (right panel). (b) The left panel shows wild-type K439K10 has hydrophobic side chain
interactions with L468K! and L475K1. K439EX10 mutation (green, center panel) reduces these
interactions and causes a positive (blue) to negative (red) charge alteration on the molecular
surface (right panel). (c) The left and right panels show wild-type R441K10 in a surface-exposed
location where it forms a positively charged patch (blue). R441PX10 mutation (green, center
panel) eliminates the positive surface patch and will introduce helix kinking due to the proline
ring 6—carbon clashing with the carbonyl oxygen of 1438K10 (black dashed line).



Fig. S12. Structural perturbations caused by Keratin 10 mutations L442Q, E445K, and
Q447P. (a) The left panel shows wild-type L442K10 forming hydrophobic interactions with
L475K! and 1479K1. These interactions are diminished by the L442QX10 mutation (green), with
introduction of electrostatic and hydrogen bond interactions from the polar glutamine. (b)
Wild-type E445K10 forms electrostatic and hydrogen bonds (dashed lines) with [479X1,
R441K10, and Y449K10, These interactions are disrupted by E445KK10 mutation (green), and also
lead to change of surface potential from negative to positive. (c) The left panel shows wild-type
Q447K10, which forms hydrogen bonds with R450K10, Q447PX10 mutation (green) disrupts
these hydrogen bonds and the proline ring y- and 6-carbons clash with N444K10 atoms
(dashed lines), leading to helix kinking.

Fig. S13. Structural perturbations caused by Keratin 10 mutations 1446T, Y449D, Y449C,
R450P, and L453P. (a) The left panel shows wild-type Y449X10, which forms stabilizing
contacts with Y482K1, Y449DK10 and Y449CK10 mutations (green) eliminate this stabilizing Tyr-
Tyr contact, and the former also introduces negative surface potential. (b) R450PX10 mutation
(green) eliminates positive surface charge and introduces a proline ring y-carbon clash with
the carbonyl oxygen (2.1 A) of Q447K10 (dashed line), leading to helix 2B kinking. (c) In the top
panel, wild-type L453K10 forms a major stabilizing hydrophobic interaction with L4851
L453PK10 mutation (green) disrupts this hydrophobic interaction and the proline ring §-
carbon clashes with the carbonyl oxygen (1.96 A) of R450%10 (dashed line), leading to distal
helix 2B kinking. (d) In the top panel, wild-type [446%1° forms multiple hydrophobic
interactions with K1 (L475, E478, 1479, Y482) and K10 (L442, Y449) residues, as well as
hydrogen bond interaction with E443K10, These interactions are disrupted with 1446TK10
mutation (green).

Fig. S14. Assessing type of chemical change for human keratin mutations. All human
keratin mutations (for K1, K5, K6a, Kéb, Ké6c, K10, K14, K16, K17) documented in the Human
Intermediate Filament Database were analyzed for the type of chemical change occurring and
results for K5/K14 and K6a, Kéb, Ké6c, K16, and K17 (keratins mutated in pachyonychia
congenita) are summarized in panels (a) and (b). The most common type of change for K5/K14
was a hydrophobic residue to a hydrophobic residue (28%), and second most common was
charged residue to a polar residue (19%). The most common type of change for pachyonychia
congenita keratins was a hydrophobic residue to a hydrophobic residue (20%), and second
most common was hydrophobic residue to a polar residue (19%). Definitions of residues were:
acidic (D, E), basic (R, K), polar (Q, N, H, S, T, Y, C, G) and hydrophobic (A, I, L, F, V, P, M, W). (c)
Raw data reporting the exact numbers of mutations for each type of chemical change across
the keratins analyzed.





