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Figure S1: Generation of proteogenomic databases
(a) Scheme for the generation of databases suitable for MS-based detection of protein variants.  
(b) Overview of databases generated.
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Figure S2: Proteogenomic search 
and filtering strategy (a) Search 
schema used to identify variant peptides 
within proteomic datasets. Databases 
were searched using a split target-de-
coy strategy with both sequences to the 
augmented and reference proteins 
reversed. Three search algorithms (Tan-
dem, COMET, and MS-GF+) were used 
and results were combined. (b) Sche-
matic representation of PTM filtering 
strategy. All MS2 spectra identified by 
both our proteogenomics pipeline and 
identified as having mass-shifts to 
canonical peptides by MaxQuant were 
collected. If there was disagreement 
between the reference peptide altered 
by either pipeline, the PSM was reject-
ed. Conservatively, we also rejected 
peptides if there was further disagree-
ment regarding the site of modification.
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Figure S3
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Figure S3: Comparison of reference proteomes. Venn diagram comparing the four 
reference databases used in this study. Proteins in each reference proteome were in silico 
digested and filtered in the length range 6-35 amino-acids. The Venn diagram portrays the 
overlaps of unique peptides originating from each reference database.
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Figure S4
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Figure S4: Comparison to other studies. To illustrate the importance of peptide filters, we compared our 
results to a previous study [41]. In their study, both a cell-line specific database search and a database com-
bining all exome sequencing data were used. The figure reports the number of peptides identified by [41] that 
remain after the various filtration approaches in our pipeline.
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Figure S5
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Figure S5: Biophysical properties of detected variant peptides. Top row: Boxplots show the calculated 

proteome’ dataset (p-value from Wilcoxon sum-rank test). Middle row: Barplots show the charge of peptides 

to contain more charge +3 peptides than non-variant peptides, which contained more charge +2 peptides. 

‘deep-proteome’ dataset (p-value from chi-square test). Variant peptides were observed to contain longer pep-
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Figure S6
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Figure S6: Score distributions across community-based database searches. E-value score distribu-
tion summary by algorithm and tier. X-axis ranges from low scoring peptides to higher scoring peptides. 
Y-axis are the number of unique peptides in that bin. Colors represent peptides unique to community 
based databases (gray) or shared with sample-specific databases (yellow). Black lines represent the 
results from a search against a standard UniProt protein sequence database, using the indicated search 
algorithm and filtration tier.
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Figure S7

Figure S7: Variants identified for genes in the COSMIC cancer gene census tend to be highly expressed 
in the same cell-line. Protein abundances for the 9-deep proteomes (log10 iBAQ) were calculated from a 
MaxQuant search against a standard UniProt database and ranked from most abundant to least abundant. 
Proteins expressed in each cell line for which no variant was detected have been colored in gray. Variant pep-
tides identified but not in the COSMIC cancer gene census are colored in blue. Variant peptides identified in 
the cancer gene census are colored in red. Density plots are diagrammed to the right of the plot.
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Figure S8
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Figure S8: MS2 spectra for 
FUS-CREB3L2 fusions. 
FUS-CREB3L2 fusions were 
repeatedly identified from 
searches including the 
COSMIC database. Here we 
present schematics of the 
fusions identified with lower 
case letters at the 5’ end of the 
fusion site. In each case, pep-
tide fragments are identified 
across the fusion.


