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Small interfering RNA (siRNA) is a promising molecule for
gene therapy, but its therapeutic administration remains prob-
lematic. Among the recently proposed vectors, cell-penetrating
peptides show great promise in in vivo trials for siRNA deliv-
ery. Human protein DMBT1 (deleted in malignant brain
tumor 1) is a pattern recognition molecule that interacts with
polyanions and recognizes and aggregates bacteria. Taking
advantage of these properties, we investigated whether specific
synthetic DMBT1-derived peptides could be used to formulate
nanoparticles for siRNA administration. Using an electropho-
retic mobility shift assay and UV spectra, we identified two
DMBT1 peptides that could encapsulate the siRNA with a
self- and co-assembly mechanism. The complexes were stable
for at least 2 hr in the presence of either fetal bovine serum
(FBS) or RNase A, with peptide-dependent time span protec-
tion. z-potential, circular dichroism, dynamic light scattering,
and transmission electron microscopy revealed negatively
charged nanoparticles with an average diameter of 10–
800 nm, depending on the reaction conditions, and a spherical
or rice-shaped morphology, depending on the peptide and
b-helix conformation. We successfully transfected human
MCF7 cells with fluorescein isothiocyanate (FITC)-DMBT1-
peptide-Cy3-siRNA complexes. Finally, DMBT1 peptides
encapsulating an siRNA targeting a fluorescent reporter gene
showed efficient gene silencing in MCF7-recombinant cells.
These results lay the foundation for a new research line to
exploit DMBT1-peptide nanocomplexes for therapeutic siRNA
delivery.
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INTRODUCTION
Therapeutic use of synthetic small interfering RNAs (siRNAs) might
allow targeted knockdown of selected genes and thus could be key to
successful gene therapy for the treatment of several diseases such as
cancer, viral infections, and genetic disorders.1 Despite RNAi being
a very efficient mechanism, siRNAs are poorly deliverable in vivo
as naked molecules, primarily because of low stability in the blood-
stream due to degradation by RNases as well as low cell and tissue
permeability.2–6 Nevertheless, there is increasing interest in the devel-
opment of efficient siRNA carriers.7–11
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Among the recently developed siRNA delivery systems such as viral
vectors, cationic lipids, nanoparticles, and peptides, the so-called cell-
penetrating peptides have shown great promise.12,13 Cell-penetrating
peptides contain fewer than 40 amino acids andhave the ability to cross
the cell membrane by either endocytosis or direct translocation, thus
potentially facilitating the translocation of cargo (e.g., nucleic acids
and drugs) that can be encapsulated in either a covalent or non-cova-
lent manner.14,15 Cell-penetrating peptides can be classified as either
protein derived, consisting of truncated versions of proteins, or as
de novo designed when the sequence is predicted in silico and subse-
quently validated to allow cellular uptake.16 Although the latter may
have better cell penetration because it is usually arginine rich and
strongly cationic, designed exogenic sequences may potentially trigger
cell toxicity or immunogenicity and thus raise concerns regarding their
biocompatibility.17–20 For this reason, low-arginine and less cationic
protein-derived cell-penetrating peptides, especially when derived
from human proteins, may bemore attractive tools for siRNAdelivery.

Protein DMBT1 (deleted in malignant brain tumor 1) is a pattern
recognition molecule that plays a key role within the innate immune
system, recognizing and aggregating bacteria.21,22 This protein was
initially identified by its absence in malignant brain tumor cells.23

The primary sites of expression of DMBT1 are epithelia and associ-
ated glands. The protein is secreted into the lumen of mucosal tissues,
such as the respiratory and gastrointestinal tract, and to the surface of
non-mucosal tissues, such as the skin.24–27 Subsequently, this protein
has also been identified in the ECM (extracellular matrix) of some
tissues.28 The DMBT1 sequence contains a repetition of SRCR (scav-
enger receptor cysteine-rich) domains alternated with SID (SRCR-
interspersed domain) regions and ends with two CUB (complement
C1r/C1s-Uegf-Bmp1) domains and a final ZP (zona pellucida)
he Author(s).
://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Interaction Analysis of DMBT1 Peptides

with tdTomato1 siRNA

(A and B) Electrophoretic mobility shift assay of SRCRP2-

11 (A) and SRCRP2-11-R (B) incubating tdTomato1

siRNA (5 mM) with increasing amounts of peptide.

(C and D) UV spectra analysis shows hypochromicity

of the siRNA peak at 260 nm. (E and F) Hypochromicity

can be highlighted by plotting the relative change

in absorbance, DODr, against the peptide/siRNA molar

ratio.
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domain.22,23,29,30 To investigate the DMBT1-bacteria interaction
mechanism, a consensus sequence of the SRCR domains was split
into several peptides, and the SRCRP2 peptide was shown to interact
with polyanionic molecules, such as lipoteichoic acid (LTA) of Gram-
positive bacteria and lipopolysaccharide (LPS) of Gram-negative bac-
teria, a property responsible for the protein’s pattern recognition
ability.21,31 Subsequently, an 11-amino-acid subsequence named
SRCRP2-11 was discovered to be the smallest functional sequence
of DMBT1 and, interestingly, it was found to interact with several
polyanionic molecules, including nucleic acids.32,33

In the present study, we designed a potentially non-immunogenic
DMBT1-derived non-covalent siRNA delivery system that is prom-
ising for in vivo therapies.

RESULTS
DMBT1 Synthetic Peptides Interact with siRNA by Electrostatic

Complexation

We used the electrophoretic mobility shift assay to screen synthetic
peptides from the consensus sequence of the SRCR domain of
Molecular Thera
DMBT1 to determine their interaction with
tdTomato1, a 21-mer siRNA targeting the fluo-
rescent protein tdTomato. Constant amounts
of siRNA were incubated with increasing quan-
tities of the DMBT1-derived peptides. The pep-
tide SRCRP2-11 (sequence: GRVEVLYRGSW)
bound to tdTomato1 siRNA efficiently (Fig-
ure 1A). A tdTomato1 siRNA interaction was
also observed for the peptide SRCRP2-11-R
(sequence: GRVRVLYRGSW), which arose
from the substitution of the glutamic acid
in position 4 of the sequence of SRCRP2-
11 with an arginine. Analogous to similar
peptide-nucleic acid delivery systems,34

interaction of the peptides with the siRNA
was dependent on the molar ratio. In
the conditions tested, SRCRP2-11 started to
clearly shift the siRNA band at a peptide/
siRNA molar ratio of 60:1, while a complete
shift was observed at a molar ratio of 100:1.
In contrast, SRCRP2-11-R at increasing
peptide/siRNA molar ratios showed a more
gradual shift of the siRNA band at higher molar ratios (150:1–
600:1, Figure 1B).

UV absorbance spectra were used to investigate in detail the interac-
tions between the peptide and siRNA at a low molar ratio. Similar to
the electrophoretic mobility shift assay, increasing amounts of peptide
were added to a constant amount of siRNA in solution (0.05 nmol). In
this assay, the hypochromic effect of the 260-nm siRNA peak indi-
cated peptide-siRNA interaction.35 Hypochromicity was observed
at a molar ratio of 6:1 for both peptides (Figures 1C and 1D) and
the hypochromic effect on siRNA at 260 nm was quantified by the
relative change in absorbance,35 DODr , defined as follows:

DODr =
OD0 � OD

OD0
;

where OD0 is the initial absorbance of the free siRNA and OD is
the absorbance of the siRNA-peptide complexes. Plotting DODr

allows detection of the interaction of SRCRP2-11 or SRCRP2-
11-R with the siRNA at a molar ratio of 6:1 for both peptides
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Figure 2. Stability of DMBT1-Peptide-tdTomato1 siRNA Complexes

over Time

(A and B) SRCRP2-11-siRNA (A) and SRCRP2-11-R-siRNA (B) complexes at molar

ratios of 200:1 and 800:1, respectively, were incubated in PBS for 30, 60, 90, and

120 min. Stability was evaluated as a lack of release of siRNA.
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(Figures 1D and 1E). Complete hypochromicity was observed at pep-
tide/siRNA molar ratios of 28:1–35:1.

To examine the nature of the interaction, we incubated siRNA-pep-
tide complexes at 37�C for 2 hr with an excess of dextran sulfate so-
dium, which mimics the negatively charged backbone of the siRNA.
No electrophoretic shift occurred under these conditions (Figure S1),
indicating that siRNA encapsulation is dependent on the electrostatic
interaction between the negatively charged siRNA backbone and the
positively charged arginines of the peptides.

SRCRP2-11-tdTomato1 siRNA and SRCRP2-11-R-tdTomato1

siRNA Complexes Are Stable in the Presence of PBS, RNase, or

Fetal Bovine Serum

To evaluate the stability of the SRCRP2-11-tdTomato1 siRNA and
SCRP2-11-R-tdTomato1 siRNA complexes, peptide-siRNA com-
plexes were incubated in PBS at 37�C for 30, 60, 90, and 120 min.
Molar ratios of 200:1 and 800:1 were used for SRCRP2-11 and
SRCRP2-11-R, respectively. Molar ratios were chosen based on com-
plete shifts observed in the electrophoretic mobility shift assay. Our
results showed that the complexes were stable for at least 120 min,
as determined by the lack of free siRNA and the signal strength of
the siRNA-shifted bands (Figure 2).

To mimic in vivo conditions, we also tested the stability of the com-
plexes in the presence of either RNase A or fetal bovine serum (FBS).
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A previous study showed that the blood concentration of RNase A
may be increased in patients with cancer36; therefore, SCRP2-11-
tdTomato1 siRNA and SRCRP2-11-R-tdTomato1 siRNA complexes
were incubated for 2 hr at 37�C with increasing amounts of RNase A
in a range between that of normal blood RNase A and the maximum
level observed in these patients. Increasing peptide/siRNA molar ra-
tios were also tested in this assay, and complex stability was related to
the strength of siRNA-shifted band signals. As shown in Figures 3A
and 3B, RNase A-treated DMBT1-derived peptide-siRNA complexes
were more stable than free siRNA in the presence of RNase A. This
stability was shown to increase concomitant with higher amounts
of peptide, indicating that the peptide protected the siRNA against
RNase A degradation.

The assay was additionally performed in the presence of increasing
amounts of FBS (Figures 3C and 3D). Analogous to observations in
the presence of RNase A, the SRCRP2-11-siRNA and SRCRP2-11-
R-siRNA complexes weremore stable than free siRNA in the presence
of 10%, 25%, and 50% FBS after 2-hr incubation at 37�C. This effect
was greater at higher peptide/siRNA molar ratios corresponding to
higher peptide amounts. The unspecific band at about 400 bp corre-
sponded to FBS, as shown in Figure S2.

Characterization of SRCRP2-11-tdTomato1 siRNA and

SRCRP2-11-R-tdTomato1 siRNA Complexes

To further characterize the peptide-siRNA complexes, we used dy-
namic light scattering to measure particle size and charge. The size
of the SRCRP2-11-siRNA and SRCRP2-11-R-siRNA complexes was
not only molar ratio dependent but also increased as the peptide/
siRNA ratio increased (Figures 4A and 4B). Moreover, the complex
size obtained with both DMBT1-derived peptides was dependent on
the concentration of the siRNA. In fact, a particle size shift was
observedwhen complexeswere obtained using a reactionmixture con-
taining increasing siRNA concentrations (0.5, 5, and 10mM). This sen-
sitive dependence on both factors allowed control of the final average
diameters between 10 and800nm (Figures 4A and4B).However, anal-
ogous to other self-assembled peptide-siRNA nanocomplexes, the
polydispersity index was larger than 0.4 for both peptide-siRNA com-
plexes in all conditions tested, showing the broad size range of the par-
ticles. While the dimensions of the two peptide-siRNA complexes
changed similarly with the increasing peptide/siRNA molar ratio
and siRNA concentration, the charge trend of the two peptides at
pH 7.0 differed (Figures 4C and 4D). The SRCRP2-11-siRNA com-
plexes showed a negative charge (minimumat�30mV) at a lowmolar
ratio, which became positive (maximum at +30 mV) when the molar
ratiowas increased by addingmore peptide to themixture (Figure 4C).
SRCRP2-11-R-siRNA complexes, however, had a slightly negative
charge at a 1:5 molar ratio with a minimum at�14mV, which slightly
increased at�7mVwhen themolar ratio was increased and remained
constant until the highest amount of peptide tested (Figure 4D).

Circular dichroism was used to evaluate the secondary structure of
the complexes (Figures 4E and 4F), and the system was analyzed
dynamically under progressive addition of siRNA. As expected, the



Figure 3. Evaluation of DMBT1-Peptide-tdTomato1 siRNA Complex Stability in the Presence of RNase A or FBS

(A and B) SRCRP2-11-siRNA (A) and SRCRP2-11-R-siRNA (B) complexes were formed at peptide-siRNA molar ratios between 200 and 800, corresponding to increasing

amounts of peptide. The complexes were incubated 2 hr at 37�C in the presence of RNase A in concentrations corresponding to serum levels ranging from normal subjects to

patients with cancer (100–800). Stability was evaluated as the lack of free siRNA and the strength of the shifted band signal. (C and D) The experiment was repeated

analogously in the presence of 10%–50% FBS.
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free peptide solution (SRCRP2-11 or SRCRP2-11-R) showed circular
dichroism spectra typical of a random coil conformation. The addi-
tion of increasing amounts of siRNA to either SRCRP2-11 or
SRCRP2-11-R induced a conformational change of the peptide to-
ward a b-helix conformation, with a solenoidal structure.37 Based
on the size and conformational studies, we elaborated a 3D model
of the complexes (Figures 4G and 4H).

Transmission electron microscopy (TEM) was performed on
SRCRP2-11-R-siRNA and SRCRP2-11-siRNA nanocomplexes,
which were obtained from reaction conditions allowing particles
with an average diameter of 100 nm, as determined by dynamic light
scattering. This analysis revealed a different morphology of the
two nanocomplexes and confirmed their polydispersity. While
SCRCP2-11-siRNA complexes (Figures 5A and 5B) were round and
20–50 nm in size under the tested conditions (a few aggregates had
a maximum size of 350 nm), SRCRP2-11-R-siRNA were more rice
shaped with a length of 10–20 nm, which seemed to reassemble in
amorphous aggregates of different shapes and sizes between 100
and 500 nm (Figures 5C and 5D).

SRCRP2-11 and SRCRP2-11-R Nanocomplexes with siRNA Are

Internalized by Breast Cancer MCF7 Cells and Induce Target

Gene Knockdown

Next, we evaluated the transfection efficiency of fluorescein isothiocya-
nate (FITC)-DMBT1-derived peptides and their complexes with Cy3-
siRNA in MCF7 cells. FITC-SRCRP2-11 and FITC-SRCRP2-11R and
their nanocomplexeswithCy3-siRNAwere administered toMCF7cells
at a constant concentration of Cy3-siRNA but at an increasing concen-
tration of peptides (0.1–1.8 mM for FITC-SRCRP2-11; 1.5–12 mM for
FITC-SRCRP2-11R), corresponding to increasing peptide-siRNA
molar ratios, ranging from 10:1 to 180:1 for FITC-SRCRP2-11-Cy3-
siRNA complexes and from 150:1 to 1,200:1 for FITC-SRCRP2-11R-
Cy3-siRNA complexes. After 24-hr culture, cells were washed with
PBS to remove the complexes from the surface, and FITC andCy3 fluo-
rescence was measured to evaluate the cellular content of peptide and
siRNA. For both peptide variants, dose-dependent cellular uptake of
the peptides was observed. Interestingly, for both peptide variants, the
fluorescence of Cy3 was augmented in parallel with the FITC-peptide
amount, although the concentration of Cy3-siRNA was kept constant.
This effect was maximal at peptide/siRNAmolar ratios of 60:1 or 150:1
for FITC-SRCRP2-11 or the FITC-SRCRP2-11-R variant, respectively,
suggesting that these were the optimal molar ratios forcing the cellular
uptake of Cy3-siRNA (Figure 6). Beyond the optimal molar ratios, a
gradual decrease in the Cy3-siRNA signal was observed in parallel
with the expected size increase of the siRNA-peptide complexes. On
the contrary, peptide internalization seemed to increase in parallel
with the amount of peptide without apparent saturation, since internal-
ization of the excess peptide is not affected by complex size.

Subsequently, the FITC-SRCRP2-11-Cy3-siRNA and FITC-SRCRP2-
11R-Cy3-siRNA complexes were administered to MCF7 cells at 60:1
Molecular Therapy: Nucleic Acids Vol. 8 September 2017 267
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Figure 4. Dynamic Light Scattering, z-Potential, and

Circular Dichroism Characterization of DMBT1

Peptide-tdTomato1 siRNA Complexes and the

Proposed 3D Model

(A and B) Dynamic light scattering for SRCRP2-11-siRNA

(A) and SRCRP2-11-R-siRNA (B) complexes showed

dependence of the average diameter on the molar ratio and

on the siRNA concentration. (C and D) z-potential was also

sensitive to these two parameters. (E and F) Circular di-

chroism showed that conformation of both peptides

changed from a random coil to a b-helix when the siRNA

was gradually added. (G and H) Based on the conforma-

tional analysis, we built a 3D model for SRCRP2-11-siRNA

(G) and SRCRP2-11-R-siRNA (H), which assumed a cen-

tral siRNA surrounded by peptide molecules disposed

parallel to each other. d.nm., diameter in nanometers.

Molecular Therapy: Nucleic Acids
and 150:1 molar ratios (corresponding to 0.6 and 1.6 mM),
respectively, and the cells were incubated 24 hr before they were
imaged by confocal microscopy. Imaging confirmed the internali-
zation of the peptides (Figures 7A and 7C) and peptide-siRNA
complexes (Figures 7B and 7D) and the increase in siRNA
uptake when administered after peptide complexation compared
to the naked-siRNA control (Figure 7E). Higher magnification
of these images, as shown in Figure S3, revealed that the
morphology of cells that took up FITC-SRCRP2-11-Cy3-siRNA
and FITC-SRCRP2-11-R-Cy3-siRNA is similar to that of healthy
untreated cells, a finding supported by the well-defined shape
of the nuclei visualized by DAPI stain. Successfully transfected
cells showed a diffused green signal and green vesicles (Figure S4,
image at enhanced magnification for FITC-SRCRP2-11 transfected
cells).
268 Molecular Therapy: Nucleic Acids Vol. 8 September 2017
The possibility of using unlabeled SRCRP2-11-
siRNA and SRCRP2-11-R-siRNA nanocom-
plexes to induce target gene knockdown was
investigated by transfecting recombinant MCF7
cells stably expressing the fluorescent protein
tdTomato. SRCRP2-11-tdTomato1 siRNA and
SRCRP2-11-R-tdTomato1 siRNA complexes
were administered to the cells, and tdTomato
fluorescence after 96 hr was compared to that of
the untreated cells. For this purpose, we evaluated
peptide/siRNA complexes at three different
molar ratios as follows: 6:1, 60:1, and 600:1 for
SRCRP2-11 and 15:1, 150:1, and 1,500:1 for
SRCRP-11-R. Complexes were diluted with PBS
to peptide concentrations of 6–600 mM for
SRCRP2-11-tdTomato1 and 15–1,500 mM for
SRCRP2-11-R-tdTomato1, corresponding to an
siRNA concentration of 1 mM. Finally, after the
complex solutions were added to a 96-well plate,
FBS-free medium containing MCF7 tdTomato
recombinant cells was added to reach a final pep-
tide concentration of 0.6–60mMand 1.5–150mM,
respectively, and a final siRNA concentration of 100 nM. As a negative
control, complexes at the same molar ratios were generated with a
non-targeting siRNA. Furthermore, complexes of tdTomato1 with
the cell-penetrating peptides TAT or CADY, or with Lipofectamine,
were used as positive controls. tdTomato knockdown was evaluated
as the decrease in cell fluorescence after 96 hr. The knockdown effi-
ciency of SRCRP2-11-tdTomato1 siRNA and SRCRP2-11-R-
tdTomato1 siRNA was optimal at peptide/siRNA molar ratios of
60:1 and 150:1 for SRCRP2-11 and SRCRP2-11-R, respectively. In
these conditions, knockdown was 48% and 55% for SRCRP2-11 and
SRCRP2-11-R, respectively, at 96 hr, which was higher than that for
TAT-tdTomato1 (18%) and CADY-tdTomato1 (21%) and also ap-
proached the knockdown measured for Lipofectamine-tdTomato1
(66%). Complexes of SRCRP2-11 and SRCRP2-11-R with a non-tar-
geting siRNA did not significantly change the fluorescence (Figure 8).



Figure 5. Morphology of DMBT1-Peptide-tdTomato1 siRNA Complexes

(A–D) Transmission electron microscopy showed a spherical shape of SRCRP2-11-

siRNA (A and B) and a rice shape for SRCRP2-11-R-siRNA (C and D). While the

SRCRP2-11-siRNA monomer diameter was about 20–50 nm, the SRCRP2-11-R-

siRNA monomer was about 10–20 nm in length and tended to aggregate in bigger

clusters of 100–500 nm.

Figure 6. Transfection Efficiency of FITC-SRCRP2-11-Cy3-siRNA

Complexes in MCF7 Cells

FITC fluorescence (gray) and Cy3 fluorescence (black) was measured after 24-hr

culturing of the cells in the presence of either FITC-SRCRP2-11-Cy3-siRNA (A) or

FITC-SRCRP2-11R-Cy3-siRNA (B) complexes. The amount of FITC-peptides was

increased and the amount of Cy3-siRNA was kept constant. Values are the average

of three experiments; bars are SEM. Asterisks indicate the significance level, based

on the Student’s t test (*p = 0.0021–0.04332, **p = 0.0002–0.0021, ***p = 0.0001–

0.0002, ****p < 0.0001).
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DISCUSSION
siRNA interference and its potential therapeutic application is
currently a subject of great interest,2,8,38 despite challenges of its use
in vivo.39 Among the possible novel delivery systems, self-assembly
of siRNA with arginine-rich cell-penetrating peptides is one of
the most promising.40,41 Compared to designed arginine-rich cell-
penetrating peptides that are often immunogenic, low-arginine-
containing protein-derived peptides have higher biocompatibility
potential,17–20 which is a fundamental requirement for their use
in vivo. In this study, we used protein-derived peptides from the
pattern recognition protein DMBT1, known to recognize and aggre-
gate bacteria.31,42 The smallest sequence of this protein that retains
these pattern recognition properties is the peptide SRCRP2-11, which
is also shown to interact with DNA.32,33 We successfully used this
peptide and its mutant SRCRP2-11-R for non-covalent encapsulation
of siRNA. The UV spectra of the siRNA at increasing amounts of pep-
tides resulted in a hypochromic effect of the 260-nm peak. This sug-
gests that both SRCRP2-11 and SRCRP2-11-R peptides begin to
interact with the siRNA at a peptide/siRNA molar ratio of 1:7, with
complete interaction at molar ratios in the range of 28:1–35:1. The
electrophoretic mobility shift assay only showed a shift of the
siRNA band at molar ratios of 60:1 for SRCRP2-11 and 150:1 for
Molecular Therapy: Nucleic Acids Vol. 8 September 2017 269
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Figure 7. Internalization of FITC-DMBT1-Peptide and FITC-DMBT1-Peptide-siRNA Complexes by MCF7 Breast Cancer Cells

(A–E) Confocal microscopy images of MCF7 cells treated with FITC-SRCRP2-11 peptide (A), FITC-SRCRP2-11-Cy3-siRNA complex (B), FITC-SRCRP2-11-R peptide (C),

FITC-SRCRP2-11-R-Cy3-siRNA complex (D), and naked Cy3-siRNA (E). Colors indicate the following: red, CellMask Deep Red plasma membrane staining of plasma

membranes; blue, DAPI staining of nuclei; green, FITC-peptide; yellow, Cy3-siRNA. Scale bars represent 50 mm.
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SRCRP2-11-R under the same experimental conditions as for the UV
spectra analysis. The difference in the quantitative results of these two
experiments is due to the fact that the molecular interaction between
the siRNA and the peptide at a lowmolar ratio is not detectable by the
electrophoretic mobility shift assay, since the low gel resolution does
not allow detection of slight changes in molecular weight (MW). At a
270 Molecular Therapy: Nucleic Acids Vol. 8 September 2017
low molar ratio, the UV spectrum showed hypochromicity of the
260-nm siRNA peak, indicating that the interaction begins at a
much lower molar ratio than that revealed by gel shift analysis.
Conversely, at high molar ratios where the electrophoretic mobility
shift assay revealed a shift of the band, the formation of polydisperse
complexes made it impossible to reliably measure UV absorbance.



Figure 8. Knockdown Efficiency of MCF7-tdTomato Cells Transfected with

DMBT1-Peptide-tdTomato1 siRNA Complexes

(A) Relative fluorescence of MCF7-tdTomato cells in the presence of a range of

SRCRP2-11-tdTomato1 or SRCRP2-11-non-targeting (NT) siRNAs. (B) Relative

fluorescence of MCF7-tdTomato cells in the presence of a range of SRCRP2-11-R-

tdTomato1 or SRCRP2-11-R-non-targeting siRNAs. TAT-tdTomato1, CADY-

tdTomato1, and Lipofectamine-tdTomato1 were used as positive controls.

tdTomato fluorescence was normalized to cell viability. Knockdown was observed

at molar ratios of 60:1 and 600:1 for SRCRP2-11-siRNA and at all molar ratios for

SRCRP2-11-R-siRNA. Furthermore, knockdownwas observed for TAT-tdTomato1

and CADY-tdTomato1 complexes and siRNA combined with Lipofectamine.

Values are the average of two biological replicates and three technical replicates,

with bars indicating SEMs. Asterisks indicate the level of significance, based on the

Student t test (*p = 0.0021–0.04332, **p = 0.0002–0.0021, ***p = 0.0001–0.0002,

****p < 0.0001).

www.moleculartherapy.org
We believe that the siRNA band shift in the electrophoretic mobility
shift assay arises from a second-level interaction of the siRNA-peptide
complexation in which small preformed complexes interact with each
other. Interestingly, the band shift trend differed for the two peptide-
siRNA complexes (SRCRP2-11 and SRCRP2-11-R), with the former
exhibiting a snap shift of the siRNA band and the latter showing a
more gradual band shift. This different behavior is similar to that
observed for viral capsid siRNA encapsulation.43,44 Snap band shift
is typical of “high cooperative encapsulation” in which the peptide
molecules interact with both the siRNA (co-assembly) and other pep-
tide molecules (self-assembly). Gradual band shift is observed for
“low cooperative encapsulation,” where the interaction is mainly be-
tween the peptide and the siRNA molecules (co-assembly). Our
competition assay showed that polyanion dextran sulfate sodium
competes with the siRNA and disassembles the complexes, which
strongly suggests that the electrostatic interactions between the back-
bone of the siRNA and the positively charged arginine are responsible
for the complexation.

The SRCRP2-11-siRNA and SRCRP2-11-R-siRNA complexes were
shown to be stable for at least 2 hr at 37�C in the electrophoretic
mobility shift assay, which would be sufficient to allow cell internal-
ization. Moreover, peptides SRCRP2-11 and SRCRP2-11-R protected
the siRNA from FBS (50%) or RNase A degradation at RNase A con-
centrations ranging between the serum concentration of healthy
human subjects and that of patients with cancer.36 Moreover, the
protective effect was stronger when peptide concentrations were
increased.

Structural characterization of the peptide-siRNA complexes was done
with dynamic light scattering and TEM for size, morphology, and
z-potential and with circular dichroism for the conformational
studies. Although high polydispersity was observed after complexa-
tion, both peptides SRCRP2-11 and SRCRP2-11-R allowed the gener-
ation of nanocomplexes with the siRNA of the desired average
diameter in a range of 10–800 nm. This was achieved by adjusting pa-
rameters such as the molar ratio and the reagent concentration. The
particle sizes found by dynamic light scattering were confirmed by
TEM, which also showed a different morphology for the two pep-
tide-siRNA complexes. SRCRP2-11-siRNA formed 20- to 50-nm
nanospheres with a morphology resembling virus-like particles
of enterovirus stained in a similar protocol and imaged by TEM,45

a similarity that fits with our virus-like self- and co-assembly
hypothesis. SRCRP2-11-R-siRNA complexes exhibited rice shapes
and smaller spheres, starting from 10 nm in diameter, with sizes
and shapes that are reported to be favorable for direct cellular
translocation.46–48

The circular dichroism spectra suggest that the SRCRP2-11-siRNA
and SRCRP2-11-R-siRNA complexes may have a b-helix conforma-
tion characterized by solenoid protein domains, similar to antifreeze
proteins.49–51 Solenoid domains are common protein patterns formed
by parallel stacking of repeated units forming a solenoid.52 The circu-
lar dichroism spectra suggest that the siRNA forms a central structure
that is surrounded by multiple peptide molecules. Based on this
assumption, we constructed 3D models of the nanocomplexes where
the inner core of the solenoid is probably the siRNA, surrounded by
Molecular Therapy: Nucleic Acids Vol. 8 September 2017 271

http://www.moleculartherapy.org


Molecular Therapy: Nucleic Acids
multiple peptides. The 3D models we designed did not show the pos-
sibility that some siRNAmight surround the external layer of the par-
ticles, which would be consistent with the negative z-potential
measured in PBS for the nanocomplexes.

FITC-conjugated peptides alone and complexed with Cy3-siRNA
were successfully delivered to MCF7 cells, and internalization of the
complexes was dependent on the FITC-peptide dose. Moreover,
despite the constant Cy3-siRNA concentration, the Cy3 signal was
increased in parallel with the FITC-conjugated peptide concentration,
indicating that Cy3-siRNA transfection efficiency was improved in
the presence of the peptides. The siRNA internalization was maximal
at peptide-siRNA molar ratios of 60:1 and 150:1 for the SRCRP2-11
and SRCRP2-11R variant, respectively, and decreased after these
molar ratios (Figures 7A and 7B). Indeed, at very high molar ratios,
the siRNA-peptide complexes are expected to increase in size and
aggregate proportionally to the amount of peptide (Figures 4A and
4B). Large and aggregating complexes will prevent encapsulated
siRNA from being internalized, which explains the gradual decrease
in the Cy3-siRNA signal after optimal molar ratios are reached. In
contrast, the peptide internalization consistently increased in parallel
with the amount of peptide. At high molar ratio, the peptide was in
large excess; thus, the amount of non-complexed free peptide was
much higher than peptide complexed with siRNA. As a consequence,
the FITC-peptide internalization did not appear to be affected by the
increased size of the complexes. Considering the combination of
compartmentalization and diffusion of the green signal observed in
transfected cells, we hypothesize that either the internalization occurs
via endocytosis and direct membrane translocation together or that
the nanocomplexes are endocytosed and then able to diffuse through
the endosomes.

Both SRCRP2-11-tdTomato1 and SRCRP2-11-R-tdTomato1 were
able to promote knockdown of the gene tdTomato1, albeit in the
absence of FBS. In the case of SRCRP2-11-R-tdTomato1, the discrep-
ancy between the transfection and the knockdown efficiency can be
explained by an improved capability of peptide SRCRP2-11-R in pro-
moting endosomal escape.

Although the optimal peptide/siRNA molar ratios allowing a biolog-
ical effect (either internalization or knockdown) were apparently high
(60:1 or 150:1 for either SRCRP2-11 or SRCRP2-11-R, respectively), it
is important to consider that DMBT1-derived peptides are much
smaller than the siRNA and much less charged. Consequently, the
molar ratios of 60:1 for SRCRP2-11-siRNA and 150:1 for SRCRP2-
11-R-siRNA correspond to charge ratios of 1.5:1 and 10:1, respec-
tively. We assume that the larger charge ratio needed for the peptide
SRCRP2-11R is related to its smaller steric hindrance, justified by the
absence of negative amino acids compared to the peptide SRCRP2-11,
which has a glutamic acid in the sequence, allowing self-interaction of
the peptides. On the other hand, the advantage of peptide SRCRP2-
11R over SRCRP2-11 is the possibility of more compact and smaller
nanocomplexes, as confirmed by TEM and a slightly higher knock-
down efficiency.
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In conclusion, DMBT1-derived peptides SRCRP2-11 and SRCRP2-
11-R form stable siRNA complexes exhibiting different stoichiometry
and assembly kinetics. They allow the formation of nanocomplexes
in a diameter range of 10–800 nm, which can be controlled by
modulating reaction conditions (e.g., peptide/siRNA molar ratios
and siRNA amounts). Both peptides protect the siRNA against
RNase A activity and form complexes that are stable in the presence
of FBS. SRCRP2-11-siRNA and SRCRP2-11-R-siRNA complexes
have suitable morphology and size to allow successful cellular
internalization by MCF7 cells. Furthermore, the nanocomplexes
can be successfully used to allow a target gene knockdown after
96 hr in the absence of FBS. As DMBT1-derived peptides are
derived from an endogenous protein and are not strongly cationic,
we expect high biocompatibility with low toxicity in vivo and low
immunogenicity.17–20 This study opens promising investigations
on novel siRNA delivery systems designed from DMBT1. Future
work will focus on increasing the stability of the DMBT1-derived
peptide-siRNA complexes in the presence of FBS in the cell culture
to evaluate the biological effect of the designed nanocomplexes
in vivo, and engineering DMBT1-derived peptide sequences to in-
crease knockdown efficiency at lower incubation times and in the
presence of FBS. Should DMBT1-derived peptide-siRNA nanocom-
plexes succeed in targeting in vivo, they would have the advantage
in clinical trials of being “human derived” as opposed to most
cell-penetrating peptides, which are either of viral origin or designed
de novo.

MATERIALS AND METHODS
Peptides and siRNA

Peptides SRCRP2-11 (sequence: GRVEVLYRGSW) and SRCRP2-
11-R (sequence: GRVRVLYRGSW) and their FITC conjugates were
chemically synthesized with >95% purity by GenScript USA. Peptides
were resuspended in UltraPure DNase/RNase-Free Distilled Water
(Gibco/Thermo Fisher Scientific). The siRNA used for the character-
ization and for the knockdown experiments was a tdTomato targeting
siRNA (tdTomato1 sequence: UUGGUGUCCACGUAGUAGUAG)
kindly provided by Prof. Jesper Wengel (Biomolecular Nanoscale En-
gineering Center, Department of Physics, Chemistry, and Pharmacy,
University of Southern Denmark). Silencer Cy3-labeled Negative
Control No. 1 siRNA (Ambion/Thermo Fisher Scientific) was used
for the internalization experiments. siRNAs were resuspended in
siRNA buffer (GE Dharmacon), while dilutions of peptides and
siRNA were made in PBS filtered using a Whatman Anotop 25
Plus syringe filter with a 0.02-mm pore size (Whatman).

Electrophoretic Mobility Shift Assay

siRNA (5 mM) was incubated for 30 min at 37�C with increasing
amounts of SRCRP2-11 or SRCRP2-11-R, corresponding to pep-
tide/siRNA molar ratios of 20:1–300:1 or 20:1–1,000:1, respectively,
in PBS. Preformed complexes were exposed to electrophoresis on
agarose gel [3% (w/v)] stained with ethidium bromide and analyzed
by UV light. Tris-ethylenediaminetetraacetic acid (TE) buffer was
used as a running buffer and to prepare the agarose gels to ensure a
pH of 7.
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UV Spectrophotometry

siRNA (5 mM) was incubated for 30 min at 37�C with increasing
amounts of either SRCRP2-11 or SRCRP2-11-R at peptide/siRNA
molar ratios of 0:1–35:1, and UV spectra were measured using a
NanoDrop One/Onec UV-Vis Spectrophotometer (Thermo Fisher
Scientific) in the custom function with an absorbance range of 190–
290 nm.

Dextran Sulfate Sodium Competition Assay

SRCRP2-11-siRNA or SRCRP2-11-R-siRNA prepared at peptide/
siRNA molar ratios of 20:1–300:1 or 20:1–1,000:1, respectively,
were incubated with 10 mg/mL dextran sulfate sodium (Sigma-
Aldrich) for 2 hr at 37�C. The samples were run on a 3% (w/v) agarose
gel with ethidium bromide and analyzed by UV light.

Complex Stability over Time and in the Presence of RNase

or FBS

To analyze stability over time, SRCRP2-11-siRNA and SRCRP2-11-
R-siRNA were prepared at peptide/siRNA molar ratios of 200:1 and
800:1, respectively. The complexes were then incubated in PBS for
30, 60, 90, and 120 min at 37�C and analyzed in comparison with
naked siRNA by electrophoresis on a 3% (w/v) agarose gel. For
the RNase protection assay, naked siRNA, SRCRP2-11-siRNA, or
SRCRP2-11-R-siRNA complexes (peptide/siRNA molar ratios of
200:1–800:1) were incubated for 2 hr at 37�C in PBS containing
increasing RNase A (QIAGEN) activity (0–800 U/mL). The samples
were analyzed on a 3% (w/v) agarose gel. Similarly, the stability in FBS
(Sigma-Aldrich) was examined by incubating the complexes for 2 hr
at 37�C in PBS containing 0%, 25%, and 50% FBS. After this treat-
ment, the complexes were analyzed in 3% (w/v) agarose gels.

Hydrodynamic Diameter and z-Potential Measurements

siRNA (0.5, 5, or 10 mM) was added with increasing amounts of the
peptide SRCRP2-11 or SRCRP2-11-R corresponding to peptide/
siRNA molar ratios of 0:20. For each sample and molar ratio, the par-
ticle size or z-potential was measured at the equilibrium by dynamic
light scattering with a Zetasizer Nano ZS (Malvern Instruments), and
the average diameter was plotted against the molar ratio. All measure-
ments were performed at 25�C at a measurement angle of 173�.
siRNA and peptide stock solutions were filtered separately through
0.02-mm non-protein binding syringe filters (Whatman) before they
were used for complex formation. The size and z-potential are pre-
sented as the mean from three measurements of at least 10 runs per
measurement.

Circular Dichroism

Circular dichroism measurements were performed with a J810
Spectropolarimeter (Jasco). Spectra were acquired from samples in
a 55-mL, 3-mm path-length quartz cuvette at 25�C. Spectra were
scanned from 240 to 200 nm at 200 nm/min with a 2-s response
time and a 1-nm pitch. The conformational change of the peptide
was detected by measuring the circular dichroism of a peptide solu-
tion at constant concentration (0.25 mM for SRCRP2-11 or 0.1 mM
for SRCRP2-11-R) at increasing concentrations of siRNA.
TEM

To remove the free peptide (MW z 1.3 kDa), SRCRP2-11-siRNA
and SRCRP2-11-R-siRNA complexes at peptide/siRNA molar ratios
of 200:1 and 800:1, respectively, were formed as described earlier.
The complexes were then washed in a dialysis chamber (Spectra/
Por Float-A-Lyzer G2 CE, Spectrum Labs) with a MW cutoff
(MWCO) of 8–10 kDa against PBS for 24 hr, and the buffer was re-
placed with fresh PBS after 12 hr. Samples for TEM imaging were
prepared at room temperature by pipetting 20 mL of the colloidal
dispersion in water on a sheet of Parafilm and placing a 200-mesh
Formvar-coated copper grid (Ted Pella) on top of the sample drop
for 30 min. The grid was then washed three times in PBS, and drops
were spotted on Parafilm and subsequently placed on a drop of 2.5%
glutaraldehyde for 10 min. Fixation was followed by five washes with
ultrapure water and incubation for 15 min with 2% uranyl acetate as a
contrast agent. Finally, the grid was rinsed on a drop of 0.13% methyl
cellulose and the excess liquid was gently removed using filter paper,
followed by air drying for 30 min. Samples were imaged using a FEI
Tecnai G2 20 Twin transmission electron microscope operated at an
accelerating voltage of 200 kV.

Modeling

Three-dimensional models of proteins were obtained by manual
docking using Swiss PDB Viewer software in combination with
Chimera software.53,54

Internalization Studies

MCF7 cells were obtained from American Type Culture Collection
(ATCC) and cultured in DMEM containing 10% FBS, 10 mg/mL in-
sulin, and 100 U/mL penicillin/streptomycin (all from Sigma-Aldrich)
at 37�C in humidified 5% CO2.

To quantitatively evaluate transfection efficiency, cells were trypsi-
nized with TrypLE Express trypsin (Invitrogen) when 80% confluence
was reached, transferred to 96-well plates at 20,000 cells/well, and
cultured overnight. Cells were then transfected with FITC-SRCRP2-
11 (1–18 mM), FITC-SRCRP2-11-R (15–120 mM), or their complexes
with Cy3-siRNA. The peptide/siRNA molar ratios used ranged
between 10 and 180 for FITC-SRCRP2-11-Cy3-siRNA or 150
and 1,200 for FITC-SRCRP2-11R-Cy3-siRNA (corresponding to
1–18 mM and 15–120 mM final peptide concentrations, respectively,
and a 100 nM final siRNA concentration). Cells were cultured for
24 hr and then washed three times with PBS, and FITC and Cy3 fluo-
rescence was measured with a VICTOR3 multilabel plate reader
(PerkinElmer).

For the imaging experiments, cells were trypsinized with TrypLE Ex-
press trypsin (Invitrogen) when 80% confluence was reached, trans-
ferred to a Nunc Lab-Tek 12-Chambered Coverglass (Thermo Fisher
Scientific) at 30,000 cells/well, and cultured overnight. Cells were then
transfected with FITC-SRCRP2-11 or FITC-SRCRP2-11-R at 6 or
15 mM, respectively, or their complexes with Cy3-siRNA at peptide/
siRNA molar ratios of 60:1 and 150:1, respectively (corresponding
to a 6 or 15 mM peptide concentration and a 0.1 mM siRNA
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concentration). After 24-hr culture, cells were washed three times
with PBS and membranes were stained with CellMask Deep Red
plasma membrane stain (Thermo Fisher Scientific) according to the
manufacturer’s protocol. Subsequently, cells were fixed with 4% para-
formaldehyde (10-min incubation at room temperature), and the
chambers were disassembled. Slides were mounted with ProLong
Diamond Antifade Mountant with DAPI (Thermo Fisher Scientific).
Samples were imaged using an FV1000MPEOlympus confocal multi-
photon laser scanning microscope, equipped with a 20� numerical
aperture (NA) 0.96 objective.

Knockdown Studies

The original MCF7 cell line was obtained from ATCC. The cell line
was genetically modified in the research group to establish the
MCF7 N107 acceptor cell line, which served in the construction of
the tdTomato-MCF7 stable recombinant cell line.55 Cells were
cultured as previously described with the addition of hygromycin
(300 mg/mL). When 80% confluence was reached, cells were trypsi-
nized and seeded in 96-well plates pretreated with 10 mL peptide-
siRNA complexes or controls at 10,000 cells/well in 100 mL FBS-free
DMEM containing 10% FBS, supplemented with 10 mg/mL insulin,
100 U/mL penicillin/streptomycin, and 0.5% ITS Liquid Media Sup-
plement (all from Sigma-Aldrich) and were cultured for 96 hr at
37�C in humidified 5% CO2.

SRCRP2-11-tdTomato1 siRNA and SRCRP2-11-R-tdTomato1 siRNA
were formed at peptide/siRNA molar ratios of 6:1–600:1 and 15:1–
150:1, respectively. The complexes were then diluted with PBS to
peptide concentrations of 6–600 mM and 15–1,500 mM, respectively,
corresponding to an siRNA concentration of 1 mM for both complexes.
The complexes of SRCRP2-11 and SRCRP2-11-R with the non-target-
ing siRNA (ON-TARGETplus Non-targeting Pool; Dharmacon) were
formed using the same process.

The complexes of TAT (sequence: GRKKRRQRRRPQ) or CADY
(sequence: Ac-GLWRALWRLLRSLWRLLWRA-cysteamide; both
from GenScript USA) with tdTomato1 siRNA were formed as
described elsewhere, at peptide/siRNA molar ratios of 10:1 and
80:1, respectively.56,57 Lipofectamine RNAiMAX transfection reagent
(Thermo Fisher Scientific) was used to encapsulate the tdTomato1
siRNA following the manufacturer’s instructions.

After the complexes were formed, the volumes were regulated
with PBS to 10 mL and added to the plates before the cells were
seeded (reverse transfection protocol). tdTomato-MCF7 cells treated
in the same way were used as blanks. The final peptide concen-
tration in cell culture was 0.6–60 mM for SRCRP2-11-siRNA and
1.5–150 mM for SRCRP2-11-R-siRNA. The final tdTomato1
concentration in the cell culture was 100 nM for the siRNA-con-
taining samples. Red fluorescence was measured at 560 nm after
96 hr using a VICTOR3 multilabel plate reader. Thereafter, the
CellTiter-Blue Cell Viability Assay (Promega) was performed fol-
lowing the manufacturer’s instructions. Fluorescence was measured
at 560 nm after 2 hr using a VICTOR3 multilabel plate reader. For
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all assays, the measured fluorescence was normalized by the cell
viability.
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Figure S1. Dextran sulfate sodium competition assay showing tdTomato1 siRNA release from 

DMBT1-derived peptide-tdTomato1 siRNA complexes. SRCRP2-11-siRNA (A) and SRCRP2-11-R-

siRNA (B) complexes. Conditions used for complex formation were the same used in the binding assay. 

Free tdTomato1 siRNA was completely released at all peptide-siRNA molar ratios. 

 

 

 

Figure S2. Agarose gel electrophoresis of FBS alone showing bands at 850 bp. 10% and 50% FBS 

solutions in PBS resulted in bands at 850 bp as determined by electrophoresis and ethidium bromide 

staining. 



 
Figure S3. Magnification of selected areas of merged images from Figure 7. MCF7 cells 

transfected with FITC-SRCRP2-11-Cy3-siRNA (A, detail from figure 7B), MCF7 cells transfected 

with FITC-SRCRP2-11-R-Cy3-siRNA (B, detail from figure 7D), and MCF7 cells transfected with 

FITC-SRCRP2-11-Cy3-siRNA (C, detail from figure 7E). Blue is DAPI staining of nuclei, red is 

CellMask™ Deep Red plasma membrane staining of plasma membrane, green is FITC-labeled 

peptides, yellow is Cy3-labeled siRNA. Scale bar is 10 μm. 

 

 

 

 

 

 

 

 

 

Figure S4. Confocal microscopy image of MCF7 cells treated with FITC-SRCRP2-11 

peptide. Compartmentalization and cytoplasmic FITC-signal shown at increased magnification 

for MCF7 cells transfected with FITC-SRCRP2-11. Blue is DAPI staining of nuclei and red is 

CellMask™ Deep Red plasma membrane staining of plasma membrane. 
 



SRCRP2-11-siRNA SRCRP2-11-R-siRNA

Average size (nm) 112.7 105.2

Standard deviation 60.4 75.8

Standard error of the mean 6.0 8.7

Size range (nm) 20-350 10-480

Average size (nm) 105.0 108.0

Standard deviation 57.0 31.0

Standard error of the mean 12.7 6.9

Size range (nm) 30-500 10-800

TE
M

D
LS

 

Table S1. Size comparison of peptide-siRNA complexes (SRCRP2-11-siRNA and SRCRP2-11-R-

siRNA) as determined by TEM (transmission electron microscopy) and DLS (Dynamic light 

scattering). Size comparison of the complexes by TEM and DLS. For TEM, particle size was 

determined by measuring the particle length with the software NIH ImageJ software1. 
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