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Fig. S1: Example of Feedback Vertex Set Control. (a) Network representation of the system governed by Eqs.
S5-S8 and its Feedback Vertex Set Control (FC) node set. (b) Two attractors of the system governed by Eqs. S5-S8,
a limit cycle (Attractor 1) and a steady state (Attractor 2). The time course of each node state variable is denoted
with different line styles and colors. The colors of the FC node set match those in panel a. (c) For a target attractor
of interest (left column), the control action of a node state override of the FC node set (middle column) guarantees
that the system will converge to the target attractor (right column).
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Fig. S2: Additional results on feedback vertex set control in real networks. (a) Ternary plot of the normalized
fraction of nodes in an SCC (ηSCC), in the in-component of all SCCs (ηin), and in the out-component of all SCCs
(ηout) for each real network (ηx = Nx/(NSCC +Nin +Nout), x = SCC, in, out). The position in the plot is
determined by ηx in such a way that a point is close to the ηx vertex if ηx ' 1 and close to the side opposite to the
ηx vertex if ηx ' 0. Thus, networks dominated by their strongly connected component are close to the ηSCC vertex,
networks dominated by their out-component are close to the ηout vertex, and networks dominated by their
in-component are close to the ηin vertex. The green, yellow and pink shading is defined as in Fig. 2a. Networks with
the largest FC node set size (pink shading) are dominated by their SCC, networks with an intermediate FC node set
size (yellow shading) have an intermediate-to-high value of ηSCC , while several networks with the lowest FC node set
size (green shading) are dominated by their out-component (e.g. regulatory networks) or in-component. Metabolic
networks are outliers: they have one of the largest ηSCC (¿0.9) yet have a small nFC (¡0.25) and nFV S (¡0.2, see Fig.
2a,b ). We attribute this result of metabolic networks to their low connectivity and density (M/N < 3 and
M/N2 < 0.003, respectively, where M is the number of edges), which makes it easier to disrupt the cycle structure of
the large SCC. (b) Scatter plot with the fraction of control nodes in FC for real networks (nFC) and their short-cycle

preserving randomization (nRand−Cyc
FC ). (c) Scatter plot with the fraction of control nodes in feedback vertex set

(FVS) control for real networks (nFC , horizontal axis) and their full randomization (Erdős-Rényi, nRand−ER
FC ). nFC

in real networks shows a weak correlation with its value nRand−ER
FC in full randomization. The intra-organizational

networks at the top-right part of the plot have a large graph density and are close to being complete graphs; because
of this, the feedback vertex set of these networks and their Erdős-Rényi networks is very similar (i.e., the FVS is
approximately the whole graph). Error bars denote the estimated standard deviation of the randomized ensembles.
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Fig. S3: Control of the von Dassow et al. model of the Drosophila segment polarity network. The figure shows a
cell of the four-cell parasegment together with three of its six boundaries (green lines). The complete network
contains four cells in a symmetric completion of the figure. Elliptical nodes represent mRNAs and rectangular nodes
are proteins. Intracellular interactions are drawn as solid lines and intercellular interactions are dashed. Yellow
nodes are source nodes. (a) Blue nodes are FC nodes in every cell. Dark blue nodes are sufficient for attractor
control in the considered dynamic models. (b) Red nodes are SC nodes in every cell.
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Fig. S4: Effectiveness of the control of the Drosophila segment polarity differential equation model. (a) The thin
light blue lines indicate the evolution of the norm of the difference between the desired wild type steady state and
the controlled state trajectory using FC (blue symbols on Fig. S3a) for 100 randomly chosen initial conditions. (b)
The thin light blue lines are the evolution of the norm of the difference between the wild type steady state and the
controlled state trajectory using reduced FC (dark blue symbols on Fig. S3a) for 100 randomly chosen initial
conditions. The thin red lines indicate the norm of the difference between the uncontrolled trajectory and the wild
type steady state for 100 randomly chosen initial conditions. In all initial conditions the concentration of each
quantity is chosen uniformly from the interval [0, 1]. The thick blue (red) lines indicate the average of the relevant
100 realizations.
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Fig. S5: Control of the Boolean model of the Drosophila segment polarity genes. The light blue thin lines show the
evolution of the norm of the difference between the wild type steady state and the controlled state trajectory using
feedback vertex set control (FC) for 100 randomly chosen initial conditions, in which the concentration of each
quantity is chosen between ON and OFF with equal odds. The thick blue line is the average of the 100 realizations.
(a) Control using the feedback vertex set (b) Control using the reduced feedback vertex set.
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Fig. S6: Structure-based control methods. Structure-based control methods make conclusions about the dynamics
of a system using solely the network structure. This figure repeats some panels from Fig. 1. (a) In structural
controllability (SC) the objective is to drive the network from an arbitrary initial state to any desired final state by
acting on the network with an external signal u(t). The dynamics are considered to be well-approximated by linear
dynamics. (b) In feedback vertex set control (FC) the objective is to drive the network from an arbitrary initial
state to any desired dynamical attractor (e.g. steady state) by overriding the state of certain nodes. (c-f)
Structure-based control in simple networks. Control of the source nodes (yellow nodes with dotted outlines) is
shared by SC and FC. SC additionally requires controlling certain dilation nodes (red nodes with dashed outlines)
but requires no independent control of cycles. FC requires controlling all cycles by control of the feedback vertex set
(FVS, blue nodes with solid outlines). The edges of the non-intersecting linear chains of nodes of SC are colored
purple and the edges involved in a directed cycle are colored blue.
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Fig. S7: Structure-based control in real networks. (a) Scatter plot with the fraction of control nodes in feedback
vertex set (FVS) control (nFC) and structural controllability (nSC) for each real network in Table S1. The bold line
denotes the positions in the plot with nSC = nFC , while the dashed lines denote nSC = 1.5 nFC and
nFC = 1.5 nSC . The shading of the symbols corresponds to their position in panel b. (b) Barycentric plot of the
normalized fraction of control nodes ηx, where x = s, e, i, FV S for each real network. The position in the plot is
determined by ηx in such a way that a point is close to the ηx vertex if ηx ' 1 and close to the face opposite to the
ηx vertex if ηx ' 0. Thus, networks dominated by their FVS and strongly connected component are close to the
ηFV S vertex (brown shading), networks dominated by their out-component are close to the ηe vertex (yellow
shading), and networks dominated by internal dilations are close to the ηi vertex (pink shading). Networks
dominated by their in-component would be close to the ηs vertex (green shading), but none of the networks are.
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Fig. S8: Control of the Drosophila segment polarity gene differential equation model for a different parameter set
than that used to generate Fig. 4. (a) The thin light blue lines show the evolution of the norm of the difference
between the wild type attractor and the controlled state trajectory using FC for 100 randomly chosen initial
conditions. (b) The thin light blues lines are the evolution of the norm of the difference between the wild type
attractor and the controlled state trajectory using reduced feedback FC for 100 randomly chosen initial conditions.
The thin red lines are the evolution of the norm of the difference between the wild type attractor and uncontrolled
trajectory using reduced FC for 100 randomly chosen initial conditions. In all initial conditions the concentration of
each quantity is chosen uniformly from the interval [0,1]. The thick blue(red) line is the average of the 100
realizations. (c) The concentration of ptc in the first cell (solid lines) and en in the second cell (dashed lines) with
respect to time. Pink lines and green lines represent autonomous trajectories that start from different initial
conditions (a wild type initial condition and a nearly null, respectively) and converge to different attractors (the
wild type limit cycle and an unpatterned limit cycle, respectively). Blue lines represent the case when the system
starts from the nearly null initial condition, and after applying FC, evolves into the wild type limit cycle. Inset:
evolution of the norm of the difference between the desired attractor and the controlled state trajectory using FC.
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Table S1: Network and control properties of the real networks analyzed. For each network, we show its number of
nodes (N), number of directed edges (M), the fraction of feedback vertex set control (FC) nodes (nFC), the fraction
of feedback vertex set nodes (nFV S), the fraction of source nodes (ns), the fraction of nodes in a strongly connected
component (SCC) (nSCC), the normalized fraction of nodes in a SCC (ηSCC), in the out-component of all SCCs
(ηout), and in the in-component of all SCCs (ηout), the sum of the cycle number z-scores, the average fraction of FC

nodes in degree-preserving randomized networks (nRand−Deg
FC ), in SCC-preserving randomized networks

(nRand−SCC
FC ), and in short-cycle-preserving randomized networks (nRand−Cyc

FC ). The second page of the table shows
the number of 1-cycles, 2-cycles, and 3-cycles in real networks, and the mean and standard deviation (S.D.) of the
cycle numbers in degree-preserving randomized networks. The z-score of each cycle number is calculated using
(CReal

L − CRand
L )/σCL

, where CReal
L is the number of L-cycles in the real network, CRand

L is the mean number of
cycles in degree-preserving randomized networks, and σCL

is the standard deviation of the number of cycles. The
third page of the table shows the number of 4-cycles,the mean and standard deviation (S.D.) of 4-cycles in
degree-preserving randomized networks, the fraction of nodes to be controlled under structural controllability (SC)
(nSC), the fraction of external nodes (ne), the fraction of internal nodes (ni), the normalized fraction of feedback
vertex set (ηFV S), source (ηs), external (ηe), and internal (ηi) control nodes, and the average fraction of FC nodes in

fully randomized (Erdős-Rényi) networks (nRand−ER
FC ). (*) The cycle z-score is larger than the number shown; the

number of cycles in the real network exceeded 2× 106. (**) The maximum cycle length used was 3 instead of 4
because of the large number of cycles in both the real and randomized networks.

Rand-deg Rand-SCC Rand-Cyc
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Table S1: Continuation of Table S1.

1-cycles 1-cycles S.D. 2-cycles 2-cycles 2-cycles S.D. 3-cycles 3-cycles 3-cycles S.D.

Rand-Deg Rand-Deg real Rand-Deg Rand-Deg real Rand-Deg Rand-Deg

TRN Yeast 1 0.00 0.00 9 5.64 2.46 13 12.88 3.74

TRN Yeast 2 0.00 0.00 1 0.06 0.26 1 0.01 0.10

TRN E coli 1 1.89 1.17 10 1.75 1.21 4 1.91 1.39

TRN E coli 2 0.00 0.00 0 0.04 0.20 0 0.01 0.10

US-Corps Owner. 0.59 0.76 13 0.23 0.44 2 0.06 0.24

E. coli 0.00 0.00 136 75.80 7.59 0 495.03 43.76

S. cerevisae 0.00 0.00 26 51.40 6.31 0 290.24 27.52

C. elegans 0.00 0.00 22 37.34 5.17 0 180.08 20.57

C. elegans 0.00 0.00 197 55.72 6.36 431 374.47 21.11

Ythan 5.20 1.99 1 15.69 3.11 0 47.75 9.54

Seagrass 3.86 1.79 0 7.70 1.99 0 19.28 4.67

Grassland 0.00 0.00 0 0.48 0.64 0 0.38 0.60

Little Rock 11.87 3.25 42 62.05 6.43 137 439.07 28.78

Political blogs 30.61 4.27 2307 503.63 16.84 18481 10460.88 270.00

nd.edu 0.00 0.00 379571 931.91 25.72 >2000000 26738.39 298.34

stanford.edu 0.00 0.00 319861 180.04 14.27 689426 2261.60 86.61

p2p-1 0.00 0.00 0 10.40 3.49 33 31.01 5.74

p2p-2 0.00 0.00 0 9.39 2.93 34 25.87 4.72

p2p-3 0.00 0.00 0 8.86 3.16 40 26.80 5.57

s838 0.00 0.00 0 1.18 1.05 40 1.17 1.22

s420 0.00 0.00 0 1.16 0.99 20 1.03 1.04

s208 0.00 0.00 0 1.00 1.07 10 0.96 0.99

Texas 0.00 0.00 0 1.05 0.91 3 0.72 0.83

Slashdot 91.51 8.49 365931 5962.44 76.51 493487 414775.30 2420.23

Wikivote 0.00 0.00 2927 920.15 28.06 41856 25782.50 543.22

College student 0.00 0.00 16 4.72 1.88 14 9.29 2.19

Prison inmate 0.00 0.00 40 4.68 2.46 28 8.71 2.50

Epinions 0.00 0.00 103097 2904.37 48.08 740310 146423.86 1223.13

Arxiv HepTh 20.67 3.73 483 222.24 16.10 522 3074.18 76.26

Arxiv HepPh 16.46 4.18 657 119.64 11.50 506 1251.04 34.53

UCIonline 0.00 0.00 6458 621.98 17.58 10932 14291.28 210.11

cellphone 0.00 0.00 34973 8.55 2.23 19803 26.77 5.57

emails 0.00 0.00 7399 691.00 13.65 37693 16924.00 191.38

Freemans-2 0.00 0.00 356 334.17 3.33 5416 5385.59 14.39

Freemans-1 0.00 0.00 280 251.33 3.39 3503 3466.83 16.74

Manufacturing 0.00 0.00 887 498.55 7.98 13706 10206.85 68.29

Consulting 21.26 2.44 327 213.97 5.23 3492 2804.78 35.27

Name
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Table S1: Continuation of Table S1.
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Table S2: Summary statistics of the distribution of nFV S for real networks using different algorithms. We use two
algorithms: the GRASP algorithm [9, 10] (GRASP) and the simulated annealing algorithm of ref. [11] (SA). For the
GRASP algorithm we use the default parameters, and for the simulated annealing algorithm we use the same
parameters as in [11] except for a maxMvt value between 0.05-5 times N (the network size) for the inner loop
iteration parameter. The number of iterations for GRASP is 2000 for most networks and 50 for some of the largest
networks (nd.edu, Slashdot, Epinions, Arxiv HepPh, Arxiv HepTh, and cellphone networks). The number of
iterations for SA is between 10 and 100 per network.

Method SA

TRN Yeast 1 0.002 0.002 0.003 0.000 0.002 0.002 0.002 0.000

TRN Yeast 2 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.000

TRN E coli 1 0.062 0.062 0.062 0.000 0.062 0.062 0.062 0.000

TRN E coli 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

US-Corps Owner. 0.002 0.002 0.002 0.000 0.002 0.002 0.002 0.000

E. coli 0.138 0.138 0.138 0.000 0.140 0.140 0.140 0.000

S. cerevisae 0.136 0.136 0.136 0.000 0.137 0.138 0.138 0.001

C. elegans 0.139 0.139 0.139 0.001 0.142 0.142 0.142 0.000

C. elegans 0.283 0.283 0.283 0.000 0.269 0.273 0.275 0.003

Ythan 0.030 0.030 0.030 0.000 0.030 0.030 0.030 0.000

Seagrass 0.061 0.061 0.061 0.000 0.061 0.061 0.061 0.000

Grassland 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Little Rock 0.104 0.104 0.104 0.000 0.104 0.104 0.104 0.000

Political blogs 0.217 0.219 0.220 0.005 0.217 0.217 0.217 0.000

nd.edu 0.160 0.160 0.160 0.000 0.161 0.161 0.161 0.000

stanford.edu NA NA NA NA NA NA NA NA

p2p-1 0.060 0.062 0.064 0.008 0.056 0.056 0.056 0.000

p2p-2 0.047 0.049 0.051 0.006 0.044 0.045 0.045 0.000

p2p-3 0.053 0.056 0.057 0.007 0.048 0.049 0.049 0.000

s838 0.063 0.063 0.063 0.000 0.063 0.063 0.063 0.001

s420 0.063 0.063 0.063 0.000 0.063 0.063 0.064 0.000

s208 0.066 0.066 0.066 0.000 0.066 0.066 0.066 0.000

Texas 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.000

Slashdot 0.953 0.953 0.953 0.000 0.953 0.953 0.953 0.000

Wikivote 0.074 0.076 0.077 0.003 0.074 0.075 0.075 0.000

College student 0.281 0.281 0.281 0.000 0.281 0.281 0.281 0.000

Prison inmate 0.358 0.358 0.361 0.006 0.358 0.358 0.358 0.000

Epinions 0.156 0.156 0.156 0.000 0.156 0.156 0.156 0.0000.015 0.015 0.002

Arxiv HepTh 0.015 0.015 0.016 0.002 0.027 0.028 0.028 0.001

Arxiv HepPh 0.016 0.016 0.016 0.000 0.024 0.024 0.024 0.000

UCIonline 0.308 0.309 0.309 0.001 0.308 0.309 0.309 0.000

cellphone 0.392 0.392 0.392 0.000 0.391 0.391 0.391 0.000

emails 0.223 0.223 0.223 0.001 0.223 0.223 0.223 0.000

Freemans-2 0.794 0.824 0.827 0.026 0.794 0.794 0.794 0.000

Freemans-1 0.706 0.735 0.742 0.020 0.706 0.706 0.706 0.000

Manufacturing 0.857 0.857 0.863 0.010 0.857 0.857 0.857 0.000

Consulting 0.674 0.674 0.691 0.029 0.674 0.674 0.674 0.000

GRASP

min n FVS median n FVS mean n FVS S.D. n FVSName median n FVS mean n FVS S.D. n FVS min n FVS
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Table S3: Table comparing the control properties of feedback vertex set control (FC) and structural controllability
(SC).

Control property \ Control method Feedback vertex set control (FC) Structural controllability (SC)
Dynamics Dissipative nonlinear dynamics Linear dynamics or linearized

nonlinear dynamics

Control objective Attractor control; any initial state 
to any target dynamical attractor

Full control; any initial state to any 
target state (linear case) or local 
control around a steady state or 
system trajectory (nonlinear case)

Control action Node state variable override, 
overridden node states are 
specified; a controller signal u(t) 
is not determined or guaranteed 
to exist

Controller signal u(t) is guaranteed 
to exist; controller signal u(t) is not 
explicitly determined



14

SI TEXT

I. Feedback vertex set control

I.A. Previous work on feedback vertex set control

In [1, 2], Mochizuki, Fiedler et al. introduced the
mathematical framework underlying feedback vertex set
control (FC). Here we give a brief overview of the main
concepts and results of [1] and its relation the work pre-
sented here. In the following Xi(t), i = 1, 2, . . . , N , de-
notes the state of the variable associated to node i at
time t, and X = (X1, X2, . . . , XN ) is a vector composed
of the state of the variables of the network. In addition,
we use XJ to denote Xj where j ∈ J ⊆ {1, 2, . . . , N}.

Let each of the system’s node states Xi(t) evolve in
time according to the differential equations

dXi

dt
= Fi(Xi, XIi , t), i = 1, 2, . . . , N, (S1)

where Fi(Xi, XIi , t) encodes the network structure; Ii de-
fines the predecessor (regulator) nodes of node i in the
network and is such that self-loops are included in Ii
only if the self-interaction is positive (i.e., Ii contains
node i only if ∂Fi/∂Xi ≥ 0). In other words, negative
self-regulation (∂Fi/∂Xi < 0) is not included in Ii, only
positive self-regulation is 1. Furthermore, the Fi’s must
depend negatively on the first argument of Xi (i.e., they
must satisfy the decay condition ∂1Fi(Xi, XIi , t) < 0,
where ∂1 indicates the partial derivative with respect to
the Xi argument but not the XIi argument). Addition-
ally, Fi and its first derivatives are assumed to be contin-
uous functions and are assumed to be such that X(t) is
bounded (|X(t)| < C for some constant C) for any finite
initial condition X(t0) and for all t ≥ t0, including the
limit t → ∞. Note that Eq. S1 determines the dynam-
ics of all node variables, including source nodes, which
stands in contrast to Eqs. 1-2 in the main text (Eqs.
S3-S4). We consider the more general case of Eqs. 1-2 in
Section I.B.

The boundedness conditions listed in the previous
paragraph makes this system a so-called dissipative dy-
namical system, and guarantee that any initial state will
converge to a global attractor A as t→∞,

A =

{
X(0)

∣∣∣∣ sup
t∈R
|X(t)| <∞

}
. (S2)

1 Note that considering only positive self-regulation as part of Ii
is equivalent to adding a new auxiliary variable ζi to encode for
positive self-regulation (if any) and not including i as part of Ii.
In other words, if ∂Fi/∂Xi ≥ 0 with i 6∈ Ii, then we introduce
ζi = Xi and set F̃i = Fi(ζi, XIi , t) + ζi−Xi as the new equation

for node i. This would make ∂F̃i/∂Xi < 0 for the expanded
system and would make the feedback vertex set of the expanded
system always include Xi or ζi. This approach of adding an
auxiliary variable is used in [1, 2].

The global attractor A is bounded and invariant under
Eq. S1, and contains all bounded dynamical attrac-
tors: steady states, limit cycles, quasi-periodic orbits,
and bounded chaotic trajectories.

For the system we consider, the following theorem
(Theorem 1.3 in [1]) forms the basis of FC:

Theorem. Consider a differential equation system gov-
erned by Eq. S1 with dissipative functions Fi, and the as-
sociated directed graph G obtained from the Ii. We also
assume Fi and its derivatives to be continuous. More-
over, G can contain a self-loop only if Fi does not satisfy
the decay condition ∂Fi/∂Xi < 0. Then a possibly empty
subset J ⊆ {1, 2, . . . , N} of vertices of G, and any two

solutions X and X̃ of Eq. S1 satisfy

lim
t→∞

(
XJ(t)− X̃J(t)

)
→ 0 implies

lim
t→∞

(
X(t)− X̃(t)

)
→ 0

for all choices of nonlinearities Fi if and only if J is a
feedback vertex set (FVS) of the graph G.

A consequence of this theorem is that a system gov-
erned by Eq. S1 with an empty FVS must have any pair
of solutions approach each other as t → ∞, i.e., there
is single dynamical attractor. Now, if we take a system
with a non-empty FVS and override the node state vari-
ables of its FVS with their value in the trajectory of any
of its dynamical attractors D, then the overridden system
is equivalent to a system with an empty FVS 2. Since the
dynamical attractor D is still a dynamical attractor of
the overridden system, which has an empty FVS, it must
be the only dynamical attractor of the overridden system.
Hence, if we override the dynamics of the FVS of system
Eq. S1 with the trajectory in one of its dynamical attrac-
tors, this theorem guarantees that the overridden system
will converge to this attractor. Furthermore, overriding
the full FVS is necessary and sufficient if one wants this
control action to hold for all choices of Fi’s.

The FVS framework does not predict what happens
when the node state override is close to but not pre-
cisely at the prescribed state (likely because this could
be model-dependent and attractor-dependent). In gen-
eral, the expectation is that a node state override that
mimics the desired state as closely as possible will move
the system into the basin of attraction of the desired at-
tractor and the system will thus converge into the desired
attractor.

2 Let J ⊆ {1, 2, . . . , N} be the node indices of a FVS, and let K =
{1, 2, . . . , N}/J be the node indices of nodes not in the FVS. The
dynamics of nodes K in the overridden system are given by Ẋk =
F ′k(Xk, XI′

k
, t) = Fk(Xk, XIk , t) |XJ (t)=XD

J
(t), k ∈ K, where

XDJ (t) is the trajectory of the overridden node states. Since
F ′k(Xk, XI′

k
, t) = Fk(Xk, XIk , t) |XJ (t)=XD

J
(t), then I′k does not

contain any node in J and the graph defined by the I′k will have
no cycles (removing J , by definition, makes the graph acyclic).
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I.B. Feedback vertex set control for general system dynamics

Consider the general system used in the main text.
The state of the system’s N nodes at time t, character-
ized by source node variables Sj(t) (for nodes with no
incoming edges) and internal node variables Xi(t), obeys
the equations

dXi

dt
= Fi(Xi, XIi , t), i = 1, 2, . . . , N −Ns, (S3)

dSj

dt
= Gj(t), ), j = N −Ns + 1, . . . , N, (S4)

The dynamics of each source node j is independent of the
internal node variables Xi (by definition), and is fully de-
termined by Gj(t), and does not include a decay term. In
the simplest case Gj = 0 and Sj will remain in the spec-
ified initial state. The dynamics of each internal node
i is governed by Fi(Xi, XIi , t), where the Ii determines
the predecessor nodes of i (which can be source or inter-
nal nodes) and satisfies the same conditions as in Section
I.A. The dynamics are assumed to be bounded, and the
Fi’s and Gj ’s and their first derivatives are taken to be
continuous.

For this system, the theorem in Section I.A and its
consequences (i.e., the results of refs. [1, 2]) cannot be
applied directly since the source node variables Sj(t) do
not obey Eq. S1. Note that the addition of the source
node variables Sj is not merely cosmetic; the Sj ’s can
denote external stimuli the system is subject to or initial-
condition-specified node variables (as would happen if
Gj = 0); these stimuli or initial/boundary variables can
affect the dynamical attractors available to the system
(e.g. steady states can merge or disappear if Sj takes
different values, see e.g. [3, 4]).

Here we adapt the previous results of feedback vertex
set control to the more general system dynamics. Let
D be the desired dynamical attractor and let SDj (t) be
the source node trajectory in which this attractor is ob-
tained. Now, assume that the system’s source nodes are
driven by an arbitrary Gj(t). If starting at time t0, we
override the state of the source nodes Sj(t) with SDj (t),
then for t > t0 we will have Sj(t) be in their state in
D. Additionally, the dynamics of the Xi for t > t0 can
be described by Ẋi = Fi(Xi, XI′

i
, t) = Fi |Sj(t)=ED

j (t),

where the F ′i no longer depend on Sj (i.e., I ′i is Ii with
all the Sj removed). Since the dynamics of the modified
system now obey Eq. S1 (with F ′i instead of Fi), then
we can guarantee that the FV S can be used to steer the
system to any dynamical attractor of interest. Finally,
since F ′i = Fi |Sj(t)=SD

j (t), then D is one of the attrac-

tors of the modified system (Ẋi = F ′i and Ẋi = Fi with
Sj(t) = SDj (t) both have the same governing equations).
The result is that the overriding the state of the source
nodes Sj and of the FV S into the state in a dynamical
attractor D is guaranteed to steer the system to D as
t→∞.

As an example, consider the network in Fig. S1a, and

the governing equations:

dS

dt
= GS , (S5)

dX

dt
= kx(Z − αxX), (S6)

dY

dt
= S +

X + Z

1 + kSS
− αY Y, (S7)

dZ

dt
= βZ +

X2

X2 + 1
− αzZY, (S8)

where GS = 0, kx = 10, αx = 0.5, kS = 5, αY = 0.2,
βZ = 0.01, and αz = 0.2. Under these conditions, the
system has several attractors, including a limit cycle (Fig.
S1b, Attractor 1) and a steady state (Fig. S1b, Attractor
2). FC guarantees that for either of these two attractors,
and any others that exist, the control action of overriding
the state variables of the FC node set into the trajectory
of a target attractor guarantees that any initial state will
converge to said attractor. This means that forcing S and
Z into the trajectory specified by Attractor 1 guarantees
that the rest of the system (X and Y ) will converge to
Attractor 1, and the same is true for any target attractor
Fig. S1c. Furthermore, if one modifies the parameters
or the functional form of the equations of the system,
forcing S and Z into the trajectory of an attractor of
the modified system guarantees that the modified system
will converge to the modified attractor (as long as the
modified system is still a dissipative nonlinear system).

I.C. Identifying the minimal feedback vertex set control set of
a network

The FC node set of a network of N nodes is composed
of the source nodes of the network (Ns of them) and of the
FVS of the network. The minimal FC node set NFC of a
network is obtained by finding a minimal FVS, since the
number of source nodes Ns is fixed for any given network.
The minimal FVS of a network is not guaranteed to be
unique, and is often found to have a large degeneracy
(see the examples in Fig. 1 of the main text).

In order to find the minimal FVS control set of a net-
work, we must find which of the possible 2N−Ns node
sets is a minimal FVS. The problem of identifying the
minimal FVS has a long history in the area of circuit de-
sign [5]. Even though solving the minimal FVS problem
exactly is NP-hard [6], a variety of fast algorithms exist
to find close-to-minimal solutions [5, 7]. Here we use the
FVS adaptation of a heuristic algorithm known as the
greedy randomized adaptive search procedure (GRASP)
[8], which is commonly used for combinatorial optimiza-
tion problems [5]. GRASP is an iterative procedure in
which each iteration consists of two phases: a construc-
tion phase in which a feasible solution to the problem is
produced based on a greedy measure and a randomized
selection process (given a cutoff for the greedy measure,
a feasible solution below the cutoff is chosen randomly
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and uniformly), and a local search phase in which the
local neighborhood in the space of solutions is explored
to find a local minimum of the problem. The FVS adap-
tation of GRASP incorporates the wiring diagram of the
network into the procedure by using the in-degree and
out-degree of each node as the greedy measure in the
construction phase and by utilizing a graph reduction
technique that preserves the FVS during the local search
phase [9, 10]. In addition, we preprocess all networks by
iteratively removing source and sink nodes (this is done
iteratively because new source/sink nodes may appear af-
ter a source/sink node is removed), since a minimal FV S
of a network is invariant under removing nodes that do
not participate in directed cycles.

For this work, we use a custom code in Python to it-
eratively remove source and sink nodes in each network
analyzed. The resulting network is then used as an input
to the FORTRAN implementation of the FVS adapta-
tion of GRASP [9, 10] using the default settings (2048
iterations and a random uniformly chosen cutoff for the
randomized selection process in each iteration), unless
otherwise noted.

The NP-hardness of the minimal FVS problem is a
limitation of FC, given the approximate nature of any
algorithm that can be used on large networks. To evalu-
ate our confidence in the minimal FVS we obtained with
the GRASP algorithm[9, 10], we characterized the distri-
bution of outcomes in all networks (except for the stan-
ford.edu network due to time and resource limitations).
The almost identical nFV S obtained using either the min-
imal or the median result of all iterations (Table S2) in-
dicates that increasing the number of iterations of the
GRASP algorithm would have a small effect on our re-
sults. In addition, we also use another algorithm to solve
the minimal FVS problem, a simulated annealing algo-
rithm with a novel local search procedure [11]. The re-
sulting nFV S ’s are almost identical (Table S2), which in-
dicates that our results are not method-dependent. The
consistency between these results greatly increases the
confidence in the nFV S ’s we obtained with the GRASP
algorithm.

I.D. Feedback vertex set control and model-based network
control

Feedback vertex set control gives a set of nodes whose
control is sufficient for attractor control in the ensemble
of all models that have a given network structure. This
set of nodes is also necessary if one demands that con-
trol of the same node set be sufficient in every model
of the ensemble. Thus, FC gives a sufficiency prediction
about the entire ensemble of models with a given network
structure, and any particular model in the ensemble may
require a smaller set of nodes for attractor control (i.e.
the FC node set gives an upper bound for any particular
model). Consequently, a subset of the FC node set of a
network can often be sufficient for a particular instance

of a model with this underlying network structure (sec-
tion “Feedback vertex set control and dynamic models of
real systems” of the main text). The generality of this re-
sult is supported by a recently developed network control
method for Boolean dynamic models called stable motif
control [12].

Stable motif control is an attractor-based control
method that is based on identifying subnetworks which
uniquely determine an attractor of interest. Specifically,
stable motif control identifies a state manipulation of cer-
tain nodes in the subnetworks (namely, fixing them in
their states in the desired attractor) that drives any ini-
tial state to the desired attractor with 100% effectiveness
[12]. Stable motif control and feedback vertex set control
differ in the dynamic variables they consider (Boolean vs
continuous3) and the information they require (model-
based vs structure-based), but they share their attractor-
based control objective and their ability to drive any ini-
tial state to a desired attractor. Additionally, they share
specific methodological aspects:

(i) In stable motif control, source nodes are assumed
to be fixed in the node state specified by the attrac-
tor of interest; if this were not the case, the source
nodes would first need to be fixed into the appro-
priate node state. In FC, source nodes must also be
locked in the trajectory specified by the attractor.

(ii) In stable motif control, each subnetwork identi-
fied is either a self-sustaining positive feedback loop
(directed cycle), or an intersection of several self-
sustaining positive feedback loops. In FC, every
feedback loop in the network (both positive and
negative) must be manipulated, something which
is achieved using an override of the states of the
feedback vertex set, which by definition contains a
node in every feedback loop in the network.

The first point shows that the treatment of source
nodes is almost identical in both methods, and that FC
is more general because it allows source nodes to be in
any dynamical trajectory and not only a fixed node state,
like in stable motif control. The second point shows that
the state manipulation of cycles underlies both methods,
and that FC requires manipulating all cycles while sta-
ble motif control only requires manipulation of a select

3 Boolean dynamics are a type of nonlinear and dissipative dy-
namics, which assume two discrete node states, and which can
be considered a limiting case of sigmoidal regulatory functions
often observed in biological systems, for example, Hill functions
with a large Hill coefficient. Boolean dynamics require feedback
loops for multi-stability or oscillatory behavior, which guarantees
that an acyclic Boolean network (which is equivalent to what we
obtain when overriding the state of the FVS) has a unique attrac-
tor [13]. This is sufficient to guarantee that FC implies attractor
control if the FC nodes are fixed (i.e. do not oscillate) in the
attractor of interest, but it is not clear if this also extends to
oscillating nodes.
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few positive cycles. The similarities in points (i) and (ii)
strongly suggest that stable motif control is the model-
based equivalent of feedback vertex set control for the
case of Boolean dynamics. In particular, point (ii) gives
an explanation of why a reduced FVS can often be suf-
ficient for FC; even though all cycles must be controlled
in structure-based control, in a particular model instance
only a subset of the cycles (and thus, a subset of the FVS)
is sufficient for attractor-based control.

I.E. Feedback Vertex Set control and self-dynamics

In FC, the graph structure (encoded in Ii) only needs
to consider positive self-loops. This means that FC ben-
efits from knowing some information about the sign (reg-
ulatory effect) of self-interactions. Edge sign is otherwise
not encoded in the graph structure. If the sign of a self-
interaction is not known (or if it can change sign depend-
ing on the value of other regulators, as in the case of a
logical XOR function), then the self-interaction needs to
be included in the graph.

For the case of biological systems, one often knows
the regulatory effect of self-interactions from biological
evidence (e.g. the regulonDB transcriptional regulatory
network in http://regulondb.ccg.unam.mx/ contains the
positive, negative or dual nature of interactions), and
one can include this in the graph to increase the predic-
tive power of FC. For other biological, social, or tech-
nological networks it might not be obvious whether self-
interactions are positive, so one needs to choose whether
such self-interactions can be positive (which would mean
including such self-interactions in the graph) or can only
be negative (in which case they do not need to be in-
cluded in the graph).

I.F. Feedback vertex set control and controllers

In feedback vertex set control we use the control ac-
tion of forcing (overriding) the state variables into a cer-
tain trajectory, namely, the one specified by an attractor
of the system we are interested in. The control action
of state variable override in FC stands in contrast with
the control actions often considered in control theory, in
which a controller or driver signal u(t) is coupled to the
governing equations Fi and Gj , and through this cou-
pling are the trajectories of the state variables Xi and Sj

modified. In the simplest case, known as control-affine
systems, we would have Ẋi = Fi + ui(t)gi(X,S) as the
governing equation of the variable of the nodes i we chose
to control (and similarly for the source node variables Ṡj).

The problem of designing a controller u(t) for nonlin-
ear systems has been the subject of much research over
the last decades (e.g. [14–16]), yet designing a controller
for a general nonlinear system that drives an initial con-
dition to a target attractor of the system (attractor-based
control) is a difficult and unsolved problem (see e.g. sec-

tion V of the review in [15]). Recent efforts in attractor-
based control require a parameterized model in order to
be applicable (and, thus, are not structure-based method-
ologies) and rely on numerical simulations to design the
controller [15]. For example, refs. [17] and [18] give algo-
rithms to numerically obtain a controller (an infinitesimal
change of the given initial condition in [17], or a tempo-
rary modification of parameters in [18]) that drives the
system to the basin of attraction of a target attractor,
and leads the system to this attractor

These examples of attractor-based control illustrate
that designing a controller for a nonlinear system is a re-
search endeavor of its own and seems to depend strongly
on the dynamic model and its parameters. Given that
our work focuses on the structure-based aspect of the
attractor-control problem, we consider designing a con-
troller to be outside the focus of our current work and
a topic of future research. Having said this, the con-
trol action of node override can be viewed as an ideal-
ized controller signal that allows us to identify the nodes
that need to be controlled in systems for which we do
not have a parameterized dynamic model or know the
system-specific coupling of the controller signal with the
equations of motion (Eqs. S3-S4). Thus, override con-
trol is a necessary first step in the task of designing driver
signals for these systems.

II. Structural controllability

II.A. Notes on structural controllability

In structural controllability (SC) we consider a system
with an underlying network structure whose autonomous
dynamics are governed by linear time-invariant ordinary
differential equations

dx

dt
= Ax(t), (S9)

where x(t) = (x1(t), x2(t), . . . , xN (t)) denotes the state
of the system, and A is a N ×N matrix that encodes the
network structure and is such that aik is nonzero only
if there is a directed edge from k to i. Given this sys-
tem, SC’s aim is to identify external driver node signals
u(t) = (u1(t), . . . , uM (t)) that can steer the system from
any initial state to any final state in finite time (i.e., full
control, Fig. S6a), and that are coupled to Eq. S9 in the
following way

dx

dt
= Ax(t) +Bu(t), (S10)

where B is a N ×M matrix that describes which nodes
are driven by the external signals u(t).

The work of Lin, Shields, Pearson, and others showed
that if such a system can be controlled in the specified
way by a given pair (A,B), which can be verified using
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Kalman’s controllability rank condition 4, this will also
be true for almost all pairs (A,B) (except for a set of
measure zero) [14, 20, 21]. In other words, SC is neces-
sary and sufficient for control of almost all linear time-
invariant systems consistent with the network structure
in A. The applicability of SC also extends to nonlinear
systems; SC of the linearized nonlinear system around
a steady state or system trajectory of interest is a suf-
ficient condition for local controllability of the system
around said steady state or trajectory in a sufficiently
small time [14–16]. Furthermore, SC of the linearized
nonlinear system is also a sufficient condition for some
nonlinear notions of controllability such as accessibility
[14–16].

SC is a mathematical formalization of the idea that a
node can fully manipulate only one of its successor ele-
ments at a time and that a directed cycle is inherently
self-regulatory. A consequence of this is that the driver
nodes are such that every network node is either part of
a set of non-intersecting linear chains of nodes that begin
at the driver nodes or is part of a set of directed cycles
that do not intersect each other or the set of linear chains
and which are reachable from the driver nodes (Fig. S6).
As Ruths & Ruths showed [22], this implies that there are
three types of network nodes that must be directly ma-
nipulated by a unique driver node, and which we call SC
nodes: (i) every source node, and every successor node
of a dilation (when a node has more than one successor
node) that is not part of the set of linear chains or of the
cycles, namely (ii) the surplus of sink nodes with respect
to source nodes or (iii) internal dilation nodes.

To illustrate how the nodes that need to be manipu-
lated in SC and FC can differ from each other, consider
the example networks in Fig. S6. In a linear chain of
nodes (Fig. S6c, left) the only node that needs to be
controlled in both frameworks is the source node S1. For
Fig. S6d, which consists of a source node connected to
a cycle, SC requires controlling only the source node S1

since the cycle is considered self-regulating (Fig. S6d,
middle), while FC additionally requires controlling any
node Xi in the cycle, the feedback vertex set in this net-
work (Fig. S6d, right). Fig. S6e consists of a source node
with three successor nodes; SC requires controlling two
of the three successor nodes because of the dilation at the
source node S1, while for FC controlling S1 is sufficient.
In Fig. S6f we show a more complicated network with a
cycle and several source and sink nodes, and two minimal
node sets for SC and FC. These examples illustrate that
the control of the source nodes is shared by full control in
SC and attractor control in FC, and that their main dif-
ference is in the treatment of cycles, which require to be
controlled in FC and do not require independent control
in SC.

4 Namely, that the N × NM matrix (B,AB,A2B, . . . , AN−1B)
has full rank, i.e., rank(C) = N [19].

II.B. Structural controllability and self-dynamics

In a system governed by Eq. S10, self-dynamics is cap-
tured by having the matrix elements in the diagonal of A
be nonzero (i.e., a self-loop in the network structure). If
each node variable in the system has self-dynamics, then
every node in the associated graph structure of A will
have a self-loop. Directly applying SC to such a graph
will yield the surprising result that a single driver sig-
nal u(t) = (u1(t)) is necessary and sufficient for full con-
trol, regardless of any other aspect of the graph structure
[15, 23, 24]. This result, although mathematically cor-
rect, gives little insight into the impact of the underlying
network structure of A (other than self-loops) on control-
related questions. Furthermore, as Sun et al. showed us-
ing minimal-energy control driver signals 5, the required
driver signal u(t) = (u1(t)) might be numerically impos-
sible to implement unless the number of control nodes is
significantly increased [25].

We should emphasize that controllability of a system
with self-dynamics by a single driver signal is a conse-
quence of SC’s assumption that each nonzero entry in A
and B is independent of each other. Thus, if one consid-
ers SC for the set of (A,B)’s in which the diagonal ele-
ments of A are fixed (i.e., the self-dynamics are fixed but
every other nonzero entry is still arbitrary) then the num-
ber of driver nodes can be obtained from the eigenvalues
of A and their geometric multiplicities 6, as shown in a
recent study by Zhao et al. [26]. For most cases, obtain-
ing the eigenvalues of A and their geometric multiplicities
is computationally demanding and requires specifying a
value for the weight aii of each self-loop. For the special
case of a single fixed weight α for the self-dynamics of
every node (aii = α, ∀i), the number of driver nodes is
equivalent to the one specified by SC using A but setting
all diagonal elements to zero [26].

These considerations about self-dynamics are crucial
when using SC on the nonlinear systems we consider,
Eqs. S3-S4. Since the nonlinear functions Fi have a decay
term that prevents the system from increasing without
bounds, then a linearization of the Fi’s will give nonzero
diagonal entries for A. Thus, SC would predict that a
single driver signal is sufficient for controllability regard-
less of the topology of the real network considered, a
result which tells us little about structure-based control
in these networks. Instead, we follow the approach of Liu
et al. [23] and do not include the decay self-dynamics as
a self-loop in the graph structure. Two equivalent in-
terpretations of this approach under SC are that (i) we
consider the decay terms to not dominate the linearized
dynamics (i.e., we set them to zero), or (ii) every ele-

5 Minimal-energy control driver signals are the ones that minimize

the functional
∫ tf
0 ||u(t)||2dt, where tf is the desired final time.

6 The geometric multiplicity µ(λ) of an eigenvalue λ of A is given
by µ(λ) = N − rank(λI − A), where I is the N × N identity
matrix.)
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ment has the same (or very similar) fixed weight for its
self-dynamics (i.e., the self-dynamics are fixed and every
other nonzero entry in A is arbitrary).

II.C. Identifying the minimum number of driver nodes in
structural controllability

Here we use the maximum matching approach of Liu
et al. [23] to identify the minimum number of driver
nodes in SC. Given a directed network, an undirected
bipartite graph is created in the following way: for every
node i in the original network, a node i+ of type + and
a node i− of type − are created in the bipartite graph.
The connectivity in the bipartite graph is such that if
node i has a directed edge to node j in the original net-
work, then the bipartite graph will have an undirected
edge from node i+ to node j−. As Liu et al. showed,
a maximum matching of the bipartite graph (maximum
number of edges with no common nodes) gives the min-
imum number of driver nodes in SC; each node in the
original network corresponding to a node of type + that
is not in the maximum matching must be directly regu-
lated by a driver node. A maximum matching of a graph
is not unique, which implies that the set of nodes that
must be directly regulated by a driver node is not unique
either. The maximum matching of a bipartite graph can
be efficiently found in O(

√
NM) time using the Hopcroft-

Karp algorithm.
For this work, we use a custom code in Python

to implement the maximum matching approach of
Liu et al. [23], and use the implementation of the
Hopcroft-Karp algorithm in the Python package Net-
workX (https://networkx.github.io/, version 1.10) to
find the maximum matching.

II.D. Comparing feedback vertex set control and structural
controllability

Feedback vertex set control and structural controlla-
bility can both be used to answer the question of how
difficult to control a network is, based solely on network
structure, but they differ in the underlying dynamics they
consider, their control objective, and their control ac-
tions. To be more specific:

- FC considers dissipative nonlinear dynamics, while
SC considers linear dynamics or linearized nonlinear
dynamics[15, 23]. - FC’s control objective is attractor-
control (from any initial state to any target system at-
tractor) while SC’s control objective is full control (from
any initial state to any target state for linear dynamics,
or among states near a steady state or system trajectory
for nonlinear dynamics [15, 23]). - FC provides what
state or trajectory the selected nodes should follow, but
not how or if an external driver signal u(t) (a controller)
can make this happen. The existence of a driver signal
u(t) is guaranteed in SC, although SC does not explic-

itly determine this u(t), and one may need to add extra
constraints if u(t) is required to have certain properties,
e.g. the length of the linear chains of nodes spanned by
each independent u(t) need to be shorter than a thresh-
old to find a numerically implementable signal [25, 27].
- The external driver signal of SC is likely to be depen-
dent on the initial state and on the target state, while
the state/trajectory of the overridden nodes in FC only
depends on the target attractor and is independent of the
initial state (though, a controller for FC would likely be
dependent on the initial condition).

We summarize the difference between these methods
in Table S3. SC and FC are very different methods, so
one should be careful about extending their predictions
beyond their realm of applicability. Indeed, a lot of work
has been done in using SC on networks which have in-
herently nonlinear dynamics and in which the questions
asked use a notion of control that seem to be closer to at-
tractor control (e.g. refs. [28–30], and some of the results
from refs. [15, 23]). In these cases, the hope seemed to be
that the network insights obtained from linear dynamics
would be close enough to those of nonlinear dynamics
even though SC made no such guarantee. The results of
our work and others’ [24, 31] caution against this.

III. Structure-based control of real networks

III.A. Real networks used in this study

Here we describe each network in Table S1, provide the
reference where each network was first reported, and give
the link to where the network was obtained (if publicly
available). For many of these networks, the orientation
of the directed edges does not match the expected direc-
tion of influence in a dynamic model; if there is an edge
from node i to node j, we expect the state of node i to
influence the state of node j (e.g., in an epidemic model,
if individual i is infected and i can spread the disease
to j, then we expect node j to get infected). For these
networks, we follow [23] and [22], and reverse the orien-
tation of the directed edges in order for it to match the
expected directionality of influence.

- E. coli transcription regulatory network 1
[32]. Graph of the transcriptional regulation net-
work in the bacterium Escherichia coli. Vertices
denote genes; a gene that codes for a transcription
factor that regulates the transcription of a target
gene is denoted by a directed edge between them.
The version of the network used was obtained di-
rectly from Yang-Yu Liu.

- E. coli transcription regulatory network 2
[33]. Graph of the transcriptional regulation net-
work in the bacterium Escherichia coli. Operons
(a gene or group of genes transcribed together) are
denoted by vertices; an operon that codes for a
transcription factor that directly regulates a target
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operon is denoted by a directed edge. This net-
work was obtained from Hawoong Jeong’s website
http://stat.kaist.ac.kr/index.php.

- S. cerevisae transcription regulatory net-
work 1 [34], 2 [35]. Graph of the transcriptional
regulation network in the yeast Saccharomyces
cerevisiae. Genes are denoted by vertices; a
gene that codes for a transcription factor that
regulates a target gene is denoted by a directed
edge between them. Network 1 was obtained from
the supplemental information in ref. [34], and
network 2 was obtained from Uri Alon’s web-
site https://www.weizmann.ac.il/mcb/UriAlon/
download/collection-complex-networks.

- US corporate ownership [36]. Graph of
the ownership relations among companies in the
telecommunications and media industries in the
United States. Companies are denoted by ver-
tices and ownership of a company by another is
denoted by an edge originating from the owner
company. This network was obtained from
the Pajek network dataset http://vlado.fmf.uni-
lj.si/pub/networks/data/econ/Eva/Eva.htm

- E. coli, S. cerevisae, C. elegans metabolic
networks [37]. Graph of the metabolic network
of the bacterium Escherichia coli, the yeast Sac-
charomyces cerevisiae, and the worm Caenorhabti-
tis elegans. Substrates (molecules) and temporary
complexes are denoted by vertices; substrates that
participate as a reactant in the reaction associ-
ated to a complex have an edge to it, and sub-
strates that are products of the reaction associated
to a complex have an edge from it. These net-
work were obtained from Hawoong Jeong’s website
http://stat.kaist.ac.kr/index.php.

- C. elegans neural network [38, 39]. Graph
of the Caenorhabtitis elegans worm’s neural
network. Neurons are denoted by vertices and
synapse/gap junctions between neurons are de-
noted by edges. This network was obtained
from the UC Irvine Network Data Repository
http://networkdata.ics.uci.edu/data/celegansneural/.

- Ythan [40, 41], Seagrass [41, 42], Grass-
land [41, 43], and Little Rock [41, 44]
food web networks. Graph of the predatory
interactions among species in the Ythan Estuary,
the St. Marks Seagrass, the England/Wales
Grassland, and the Little Rock Lake. Every
species is denoted by a vertex, and if a species
preys on another species an edge is drawn from
the prey to the predator. This network was
obtained from the Cosin Project network data
http://www.cosinproject.eu/extra/data/foodwebs/
WEB.html.

- Political Blogs [45]. Graph of the hyperlinks
between blogs on US politics in 2005. Every
blog is denoted by a vertex and hyperlinks are
denoted by edges that point towards the linked
blog. In this work we reverse the edges of this
network so that they match the direction of in-
fluence in a dynamic model (i.e., if a blog has
a hyperlink to another blog, then the latter in-
fluenced the former). This network was ob-
tained from Mark Newman’s website http://www-
personal.umich.edu/ mejn/netdata/.

- WWW network of stanford.edu [46] and
nd.edu [47]. Graph of the web networks of
Stanford University (domain stanford.edu) and the
University of Notre Dame (domain nd.edu). Ev-
ery webpage is denoted by a vertex and hyper-
links are denoted by edges that point towards the
linked webpage. This network was obtained from
the Stanford Large Network Dataset Collection
https://snap.stanford.edu/data/.

- Internet networks [48, 49]. Graphs of the
Gnutella peer-to-peer file sharing network from Au-
gust 2002; each graph represents a different snap-
shot of the Gnutella network. Every host is de-
noted by a vertex and a connection from one host
to another is denoted by an edge that points to-
wards the latter. These networks were obtained
from the Stanford Large Network Dataset Collec-
tion https://snap.stanford.edu/data/.

- Electronic Circuits [35, 50, 51]. Network repre-
sentations of electronic circuits from the ISCAS89
benchmark collection. Logic gates and flip-flops
are represented by vertices, and the directed con-
nections between them are denoted edges. These
networks were obtained from Uri Alon’s web-
site https://www.weizmann.ac.il/mcb/UriAlon/
download/collection-complex-networks.

- Texas power grid [52]. Network representation
of the Texas power grid. Substations, generators,
and transformers are represented by vertices, and
transmission lines between them are denoted by
edges, with the edge directionality corresponding
to the electric power flow. This network was ob-
tained directly from Yang-Yu Liu.

- Slashdot [46]. Friend/foe network of the
technology-related news website Slashdot obtained
in 2009. Users are denoted by vertices, and a user
tagging another user as a friend/foe is denoted by
an edge pointing towards the latter user. In this
work we reverse the edges in this network so that
they match the direction of influence in a dynamic
model (i.e., if a user tags another user, the latter
has an influence on the former). This network was
obtained from the Stanford Large Network Dataset
Collection https://snap.stanford.edu/data/.
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- Wikivote [53, 54]. Who-votes-for-whom net-
work of Wikipedia users for administrator elections.
Users are denoted by vertices, and a user voting
for another user is denoted by an edge pointing to-
wards the latter user. In this work we reverse the
edges of this network so that they match the di-
rection of influence in a dynamic model (i.e., if a
user votes for another user, the latter has an influ-
ence on the former). This network was obtained
from the Stanford Large Network Dataset Collec-
tion https://snap.stanford.edu/data/.

- College student and prison inmate trust
networks [55–57]. Social networks of positive
sentiment of college students in a course about
leadership and of inmates in prison. Each person is
denoted by a vertex, and the expression of a posi-
tive sentiment of a person towards another person
(based on a questionnaire) is denoted by an edge
pointing towards the latter. In this work we reverse
the edges of this network so that they match the
direction of influence in a dynamic model (i.e., if a
person has a positive sentiment towards another,
the latter has an influence on the former). These
networks were obtained from Uri Alon’s web-
site https://www.weizmann.ac.il/mcb/UriAlon/
download/collection-complex-networks.

- Epinions [58]. Who-trusts-whom online social
network of Epinions.com, a general consumer re-
view site. Users are denoted by vertices, and a user
trusting another user is denoted by an edge point-
ing towards the latter. In this work we reverse the
edges of this network so that they match the direc-
tion of influence in a dynamic model (i.e., if a user
trusts another user, the latter has an influence on
the opinion of the former). This network was ob-
tained from the Stanford Large Network Dataset
Collection https://snap.stanford.edu/data/.

- arXiv’s High Energy Physics - Theory and
High Energy Physics - Phenomenology ci-
tation networks [59, 60]. Citations between
preprints in the e-print repository arXiv for the
High Energy Physics - Theory (hep-th) and High
Energy Physics - Phenomenology (hep-ph) sec-
tions. The citations cover the period from January
1993 to April 2003. Each preprint in the network
is denoted by a vertex; a preprint citing another
preprint is denoted by a directed edge from the cit-
ing preprint to the cited preprint. In this work we
reverse the edges of this network so that they match
the direction of influence in a dynamic model (i.e.,
if a preprint is cited by another preprint, the latter
had an influence on the former). This network was
obtained from the Stanford Large Network Dataset
Collection https://snap.stanford.edu/data/.

- UC Irvine online social network [61]. Net-
work of messages among users in an online com-

munity for students at University of California,
Irvine. Users are denoted by vertices, and a
user messaging another user is denoted by an
edge pointing towards the latter. This net-
work was obtained from Tore Opsahl’s website
https://toreopsahl.com/datasets/.

- Cellphone communication network [62]. Call
network of a subset of anonymized cellphone users.
Each user is denoted by a vertex, and a call or text
message from one user to another is denoted by a
directed edge from the sender to the receiver. This
network was obtained directly from Yang-Yu Liu.

- E-mail communication network [63]. Network
of e-mails sent among users in a university during a
period of 83 days. Each user is denoted by a vertex,
and an e-mail sent from one user to another during
this period of time is denoted by an edge from the
sender to the receiver. This network was obtained
directly from Yang-Yu Liu.

- Intra-organizational Freeman networks [64].
Network of personal relationships among re-
searchers working on social network analysis at the
beginning and at the end of the study. Each re-
searcher is denoted by a vertex, and a personal
relationship from a researcher to another is de-
noted by a directed edge from the former to the
latter. In this work we reverse the edges of this
network so that they match the direction of in-
fluence in a dynamic model (i.e., if a researcher
has a personal relationship with another, the lat-
ter has an influence on the former). This net-
work was obtained from Tore Opsahl’s website
https://toreopsahl.com/datasets/.

- Intra-organizational consulting and manu-
facturing networks [65]. Network describing
the relationships between employees in a consult-
ing company and in a research team from a man-
ufacturing company. Each employee involved is
denoted by a vertex, and the frequency/extent of
information or advice an employee obtains from
another (as measured by a questionnaire) is de-
noted by a weighted, directed edge among them
that points from the questioned employee. We fol-
low [23] and [22], and use all edges with a nonzero
weight to define a unweighted network, which we
use for our analysis. We also reverse the edges
of this network so that they match the direction
of influence in a dynamic model (i.e., if an em-
ployee receives advice or information from another,
the latter has an influence on the former). This
network was obtained from Tore Opsahl’s website
https://toreopsahl.com/datasets/.
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III.B. Notes on the ensembles of randomized real networks

We study the control properties of ensembles of ran-
domized real networks using four randomization proce-
dures. We follow [23] and [22] in using full randomiza-
tion, which turns the network into a directed Erdős-Rényi
network with N nodes and M edges [66], and degree-
preserving randomization, which keeps the in-degree and
out-degree of every node but shuffles its successor and
predecessor nodes [67]. Erdős-Rényi randomization is
implemented by creating a graph of N nodes, randomly
(uniformly) choosing a source and a target of an edge
from the set of N nodes, and repeating this for each
of the M edges. For the degree-preserving randomiza-
tion, we start from the original network and choose two
edges randomly (uniformly), for which we switch their
target nodes if the target and source nodes of both edges
are each different (if they are the same, we choose an-
other edge pair). We repeat this step for a transient of
25M times, after which we save the obtained network as
the first element of the ensemble. We then repeat the
target-node-switching step 5M times, save the resulting
network as the second element of the ensemble, and re-
peat the target-node-switching step 5M times for each
consequent ensemble element.

To verify that the cycle structure explains the observed
FC node set size, we designed two new randomization
procedures: an SCC-preserving and degree-preserving
randomization in which the directed acyclic part of the
graph is randomized and every edge that is part of an
SCC is kept intact, and a short-cycle-preserving and
degree-preserving randomization in which the random-
ized network is guaranteed to have every edge that is
part of a short cycle in the original network.

For the SCC-preserving randomization, we first remove
all edges that are part of an SCC, which leaves a network
that is a directed acyclic graph (DAG, i.e., a graph with
no cycles [68]). Starting from this DAG, we generate
a topological order O = {L(i)} for each node i in the
network in the following way 7:

1.- Set order = 0

2.- Set L to be the sink nodes in the DAG.

3.- Randomly (uniformly) select a node from L in the
DAG, assign to it the value L(i) = L, and remove
the selected node from the DAG.

4.- Repeat 2 and 3 with the updated DAG and increase
the value order by 1 at after each repeat

7 In a topological order, each node i is assigned a positive integer
L(i) in such a way that for all pairs of nodes i,j if node i has an
outgoing edge to node j then L(j) < L(i). A topological order
exists for a graph if and only if the graph is a DAG.

The result is a topological orderO, which we use to gener-
ate the randomized network by following the same edge-
rewiring procedure as in degree-preserving randomization
but only accept an edge-rewiring step if it preserves the
topological order O. We repeat the edge-rewiring step
for a transient of 25M times, after which we add back
the edges in the SCCs and save the obtained network as
an element of the ensemble. Each topological order O is
chosen at random to make sure that the resulting net-
work ensemble is not generated with a single topological
order like some previous work on DAGs has [68] 8

For the short-cycle-preserving randomization, we first
remove all edges that are part of a cycle of length 4
or less, and follow the same edge-rewiring procedure as
in degree-preserving randomization but only accept an
edge-rewiring step if does not create a cycle of length 1
or 2. We repeat this step for a transient of 25M times.
We then do the same edge-rewiring step for a uniformly
chosen edge on each cycle of length 4, a process which we
repeat 10 times. This last step is repeated but for cycles
of length 3. In the resulting network we add back the
short-cycle edges of the original network, and save the
resulting network as the first element of the ensemble.
For every other element of the ensemble, we repeat the
same procedure but use a transient of 5M edge rewiring
steps. For the short-cycle-preserving randomization of
some networks, we omit the edge-rewiring step for cycles
of length 4 (emails, political blogs, and UCI) or of length
3 and 4 (slashdot, wikivotes, nd.edu, Manufacturing, and
epinions) because of the size and large number of cycles
in these networks.

For each real network we used Ω = 100 networks
as the ensemble size for the Erdős-Rényi (Fig. S2c)
and degree-preserving randomizations, and Ω = 50
for the SCC-preserving and short-cycle-preserving
randomizations. For most ensemble properties we used
the 100 ensemble networks to estimate the average
value and standard deviation of the property, but for
some properties this was too computationally expensive
for very large networks (e.g. FV S of networks with
> 2.5× 104 nodes) or for very dense networks (e.g. cycle
numbers of intra-organizational networks). For these
properties and networks, we used a smaller ensemble
size, as specified below.

- Political blogs. For cycle numbers of length 4,
Ω = 10.
- nd.edu. For cycle numbers of length 4, Ω = 2. For

8 We note that the algorithm we use to generate a topological
order samples from every possible topological order but does not
sample them uniformly. One can show that the probability P
of a topological order O is given by P (O) = 1/C(O), C(O) =
l1 · l2 · · · lN , where li is the number of elements in the list L
at iteration i of the algorithm. Given that the objective of the
algorithm is that the network ensemble is not generated with a
single topological order, we consider this non-uniform sampling
acceptable.
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NER
FV S and NRand−deg

FV S , Ω = 5 and 1 iteration for

GRASP. For NRand−SCC
FV S and NRand−Cyc

FV S , Ω = 50 and
1 iteration for GRASP.
- stanford.edu. For cycle numbers of length ≥ 2, Ω = 20.
For NFV S , Ω = 5 and 1 iteration for GRASP. For
the SCC-preserving and short-cycle-preserving random-
ization we omitted this network because of time and
resource constraints.
- Slashdot. For cycle numbers of length ≥ 3, Ω = 20.

For NER
FV S , NRand−deg

FV S , NRand−SCC
FV S , and NRand−Cyc

FV S ,
Ω ≥ 40 and 2 iterations for GRASP.
- Epinions. For NER

FV S , NRand−deg
FV S , NRand−SCC

FV S , and

NRand−Cyc
FV S , Ω = 50 and ≥ 2 iterations for GRASP.

- arXiv HepTh, HepPh. For cycle numbers of length

≥ 2, Ω = 50. For N
ER/Rand−deg/Rand−SCC/Rand−Cyc
FV S ,

Ω ≥ 50 and ≥ 10 iterations for GRASP.
- UCIonline. For cycle numbers of length 4, Ω = 10.

- Cellphone. For NER
FV S and NRand−deg

FV S , Ω = 200 and 50

iterations for GRASP. For NRand−SCC
FV S and NRand−Cyc

FV S ,
Ω = 50 and 25 iterations for GRASP.
- Emails. For cycle numbers of length ≥ 2, Ω = 5.
- Manufacturing. For cycle numbers of length ≥ 2,
Ω = 20.

III.C. Comparing feedback vertex set control and structural
controllability in real networks

SC was applied to diverse types of real networks and
the ratio of the minimal number of SC nodes needed,
NSC , and the total number of nodes, nSC = NSC/N was
used to gauge how difficult it is to control these networks
[23]. Both SC and FC can be used to answer the question
of which nodes need to be controlled in order to control
a network (albeit they differ in the underlying dynamics
they consider, their control objective, and their control
actions), so a natural question is how the fraction of con-
trol nodes in real networks compares between SC and FC
(nFC = NFC/N , where NFC is the size of the minimal
FC control set). To answer this question, we apply SC
and FC to the real networks in [23], and compare the
fraction of control nodes nSC and nFC (Fig. S7a and
Table S1). A surprising result is that the fraction of con-
trol nodes nSC and nFC appears to be inversely related
across several types of networks. For example, gene reg-
ulatory networks require between 75% - 96% of nodes in
SC yet only require between 1% - 18% of nodes in FC.
A similar nSC >> nFC relationship is also seen in food
web networks and internet networks, while the opposite
relationship (nSC << nFC) is seen in the social trust net-
works with low nSC and intra-organizational networks.

To explain the topological properties underlying the
difference in nSC and nFC , we note that the fraction of
nodes nSC and nFC obey the relations

nSC = ns + ne + ni, (S11)

nFC = ns + nFV S , (S12)

where ns is the fraction of source nodes, ne is the frac-
tion of external dilations nodes in SC, ni is the fraction
of internal dilation nodes in SC, and nFV S is the fraction
of nodes in the FVS of the network. Empirical directed
networks tend to have a bow-tie structure [66, 69], in
which most of the network belongs to the largest strongly
connected component (which contains most cycles in the
network, and thus determines nFV S), its in-component
(the nodes that can reach the strongly connected com-
ponent, which thus determine ns), or its out-component
(the nodes that can be reached from the strongly con-
nected component, which thus determine ne). We de-
fine the fractions ηx = nx/(ns + ne + ni + nFV S), where
x = s, e, i, FV S. These fractions reflect the potential
domination of a network component over the others. Eqs.
S11-S12 and the bow-tie structure of real networks offer
a topological explanation for the observed relationships
between nSC and nFC .

Applying this reasoning to the studied real networks
(Table S1), we find that all networks with nSC < nFC

have a topology dominated by their SCC component
(ηFV S >> ηe, ηi, ηs, Fig. S7, brown shading; e.g. intra-
organizational networks, the college students and prison
inmates trust networks, and the C. elegans neural net-
work). Most networks with nSC > nFC are dominated
by their out-component (ηe >> ηFV S , ηi, ηs, Fig. S7,
yellow shading; e.g. gene regulatory networks, most
food webs, and internet networks) or by internal dila-
tions (ηi >> ηFV S , ηe, ηs, Fig. S7, pink shading; e.g.
metabolic networks and circuits). The rest of the net-
works have a mixed profile (ηFV S ' ηe ' ηi ' ηs, Fig.
S7, no shading), and include networks with nSC > nFC

(citation networks and the Texas power grid) and the
networks in which nSC ' nFC (a political blog network
and two online social communication networks).

IV. Structure-based control of the Drosophila
melanogaster segment polarity gene regulatory

network

We compare the results of the two control methods for
the gene regulatory network of the Drosophila segment
polarity genes, for which several dynamic models exist
[70–72]. The segment polarity genes, especially wingless
(wg) and engrailed (en), are important determinants of
embryonic pattern formation and contributors to embry-
onic development [70]. The wingless mRNA and protein
are expressed in the cell that is anterior to the cell that
expresses the engrailed and hedgehog (hh) mRNA and
protein. All models consider a group of four subsequent
cells as a repeating unit, and include intra-cellular and
inter-cellular interactions.

The continuous model of von Dassow et al. repre-
sents each cell as a hexagon with six relevant cell-to-cell
boundaries. It includes 136 nodes that represent mR-
NAs and proteins, among them 4 source nodes and 24
sink nodes, and 488 edges that represent transcriptional
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regulation, translation, and protein-protein interactions.
Fig. 4a in the main text, reproduced here as Fig. S3a,
shows the network corresponding to the wg-expressing
cell (cell 1) and three of its boundaries with the en-
expressing cell 2. Additional nodes in the network in-
clude, ptc (patched), ci (cubitus interruptus), its proteins
CID and CN (repressor fragment of CID), IWG (intra-
cellular WG protein), EWG (extracellular WG protein),
PH (complex of patched and hedgehog proteins), and B,
a constitutive activator of ci. For each gene, the mRNA
is written in lower case and the protein(s) are written
in upper case. The nodes are characterized by contin-
uous concentrations, whose rate of change is described
by ordinary differential equations (ODE) involving Hill
functions for gene regulation and mass action kinetics
for protein-level processes, and using 48 kinetic param-
eters [73, 74]. von Dassow et al. have shown that the
model can reproduce the essential feature of the wild
type steady state: wg/WG are expressed anterior to the
parasegment boundary (cell 1) and en/EN /hh/HH are
expressed posterior to the parasegment boundary (cell 2)
as shown in Fig. 4. The initial condition that yields this
steady state for the most parameter sets, the so-called
“ crisp” initial condition, wg/IWG in the first cell is at
maximal concentration (1), en/EN in the second cell has
concentration 1, the source nodes B are fixed at 0.4 in
each cell and all the other nodes have zero concentration.

Wild type steady state of the von Dassow et al. model
for the second parameter set provided by the Ingeneue
program [73, 75], using normalized concentration vari-
ables

c(en2) = c(EN2) = 0.986,

c(wg1) = 0.857,

c(IWG1) = 0.006,

c(EWG0,0) = c(EWG0,3−5) = 0.005,

c(EWG0,1) = c(EWG0,2) = 0.011,

c(EWG1,0) = c(EWG1,3) = 0.269,

c(EWG1,1−2) = c(EWG1,4−5) = 0.264,

c(EWG2,0−3) = 0.005,

c(EWG2,4) = c(EWG2,5) = 0.011,

c(ptc0) = c(ptc1) = c(ptc3) = 0.995,

c(ptc2) = 0.001,

c(PTC0,∗) = c(PTC1,∗) = c(PTC3,∗) = 0.166,

c(ci0) = c(ci1) = c(ci3) = 0.868,

c(ci2) = 0.007,

c(CI0) = c(CI1) = c(CI3) = 0.057,

c(CI2) = 0.005,

c(CN0) = c(CN1) = c(CN3) = 0.42,

c(CN2) = 0.001,

c(hh2) = 1,

c(HH2,0) = c(HH2,3) = 0.072,

c(PH1,1−2) = c(PH3,4−5) = 0.001,

where i, ∗ represents all sides of the ith cell. The concen-
tration of the other nodes is smaller than 10−5.

Another initial condition considered here is a nearly-
null initial condition, wherein intra-cellular nodes have a
concentration of 0.05 in the first and third cell and 0.15 in
the second and fourth (zeroth) cell; membrane-localized
nodes have concentration of 0.15 for even-numbered sides
and 0.05 for odd-numbered sides in every cell. This ini-
tial condition yields an unpatterned steady state for the
majority of parameter sets.

Unpatterned steady state of the von Dassow et al.
model, for the second parameter set provided by the
Ingeneue program [73, 75], using normalized concentra-
tions:

c(wg∗) = 0.857,

c(IWG∗) = 0.007

c(EWG∗,∗) = 0.28,

c(ptc∗) = 0.996,

c(PTC∗,∗) = 0.166,

c(ci∗) = 0.868,

c(CI∗) = 0.057,

c(CN∗) = 0.42,

where ∗ represents for all cells, and ∗, ∗ represents for all
sides in all cells. The concentration of the other nodes is
smaller than 10−5.

The differential equation system is solved using a cus-
tom code in Python and the odeint function with default
parameter setting. We used the differential equations
given in the appendix of [74]. Ingeneue can be found
at http://rusty.fhl.washington.edu/ingeneue/papers/
papers.html.

The Boolean model implements a few modifications in
the network topology compared with the ODE network
model, and considers only two cell-to-cell boundaries in-
stead of six. There are 56 nodes and 144 edges in the
network as shown in Fig. 4b. One difference compared
with the von Dassow et al. model is the existence of
three cubitus interruptus proteins: the main protein CI,
and two derivatives with opposite function: CIA, which
is a transcriptional activator, and CIR, a transcriptional
repressor. There are four source nodes, representing the
sloppy paired protein (SLP), which is known to have a
sustained expression in two adjacent cells (cells 0 and 1 if
the wg-expressing cell is considered cell 1) and is absent
from the other two. There are ten steady states for this
Boolean network model when considering the biologically
relevant pattern of the source node states. Starting from
the biologically known wild type initial condition, which
consists of the expression (ON state) of SLP0, SLP1,
wg1, en2, hh2, ci0, ci1, ci3, ptc0, ptc1, ptc3, the model
converges into the biologically known wild type steady
state illustrated on Fig. 4c.

Specifically, the wild type steady state of the Albert &
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Othmer model consists of the expression of

SLP0, SLP1, wg1,WG1, en2, EN2, hh2, HH2,

ci0, ci1, ci3, CI0, CI1, CI3, CIA1, CIA3, CIR0,

ptc1, ptc3, PTC0, PTC1, PTC3, PH1, PH3.

Analytical solution reported in [74] indicated that the
states of the wg and PTC nodes, each of which has a pos-
itive auto-regulatory loop, determine the steady state for
the given source node (SLP) configuration [71]. For ex-
ample, any initial condition with no wg expression leads
to an unpatterned steady state wherein ptc, ci, CI and
CIR are expressed in each cell, and the rest of the nodes
are not expressed in any cell.

IV.A. Structure-based control of the von Dassow et al.
differential equation model

The FC method predicts that one needs to control
NFC = 52 nodes (4 source nodes and 48 additional
nodes) to lead any initial condition to converge to any
original attractor of the model. There are multiple con-
trol sets with NFC = 52; one of them consists of B
(source node), CI, CN, IWG, EWG on every other side,
HH on every other side, PTC on every other side in all
four cells (shown in Fig. S3a). We perform simulations
using two benchmark parameter sets to test this predic-
tion. We use the second parameter set provided by the
Ingeneue program to test the system’s convergence to a
steady state [73, 75]. The ODE system has at least two
steady states with this parameter set. A nearly null ini-
tial condition leads to the unpatterned state (illustrated
by the green lines in Fig. 4d in the main text). The crisp
initial condition leads to the wild type pattern (see pink
lines in Fig. 4d), which we choose as the desired steady
state. If we start from the nearly null initial condition
and maintain the concentrations of the nodes in the FC
node set in the values they would have in the desired
steady state, the system evolves into the desired steady
state (see blue lines and inset of Fig. 4d). We obtained
the same success of FC control when starting from 100
different random initial conditions (shown in Fig. S4a).
We also obtained the same success using a reduced FC
set (blue lines in Fig. S4b), which consists of B, CID,
CN, IWG in every cell. In contrast, in the absence of
control none of the trajectories converge to the wild type
steady state (red lines in Fig. S4b).

We also numerically verified, using a different bench-
mark parameter set, namely the first parameter set pro-
vided by the Ingenue program, that FC control can also
successfully drive any state to a limit cycle attractor (see
Fig. S8a). This limit cycle attractor has the same ex-
pression pattern of en, wg and hh as the wild type steady
state, thus we refer to it as the wild type limit cycle (illus-
trated in Fig. S8c). We also obtained the same success
of driving any state to a limit cycle attractor using the
same reduced Feedback vertex control shown in Fig. S8b.

SC control indicates multiple control sets with NSC =
24 nodes. One possible combination is B∗, PTC∗,1,
PTC∗,3, PTC∗,5, HH∗,5, PH∗,1, where ∗ represents all
cells (shown in Fig. S3b. Though SC predicts that less
nodes need to be controlled, applying it requires a po-
tentially complicated time-varying driver signal, which
would need to be determined for each initial condition
using, for example, minimum-energy control or optimal
control [15, 76].

IV.B. Structure-based control of the Albert & Othmer
Boolean model

The FC method predicts that NFC = 14 nodes need
to be controlled, including the 4 source nodes (SLP),
the 8 self-sustaining nodes (all wg and PTC ), and 2
additional nodes (with one possibility being CIR1 and
CIR3). Since the FC set contains all wg and PTC nodes,
which were shown to determine the steady states under
the indicated source node states, we can conclude that
controlling the nodes in the FC set is enough to drive
any initial condition to the desired steady state in the
Albert & Othmer model. The simulation result is con-
sistent with the theoretical result, as shown in Fig. 4e.
The wild type initial condition leads to the wild type
steady state (pink lines). The null initial condition used
in the Boolean model is that all the nodes are in the
OFF state; the resulting steady state is the unpatterned
steady state (green lines). The controlled trajectory with
FC is shown in blue lines. We obtained the same success
of FC control when starting from 100 different random
initial conditions, as shown in Fig. S5a. Moreover, the 12
nodes consisting of SLP, wg and PTC in each cell (which
we refer to as the reduced FC set) are enough to drive all
the random initial conditions to the desired steady state
in this particular model, as shown in Fig. S5b.

SC control predicts that we only need to control the
four source nodes (SLP), as the network can be covered
by four branches and one loop. Relevant to this, Albert
& Othmer studied three scenarios of fixed states of the
source nodes. If the source nodes are locked into their
respective states in the wild type steady state (two ON
and two OFF), there are six reachable attractors, one of
which is the wild type steady state. If all source nodes
are locked into the OFF state, there are seven attrac-
tors, but none of them is the wild type steady state. If
all source nodes are locked into the ON state, the un-
patterned state is the only attractor. These results sug-
gest that the correct expression of the source nodes is
necessary, but not sufficient for attractor control of the
system. Indeed, SC can make no such guarantee, since
for general nonlinear systems it only provides sufficient
conditions for local controllability around a steady state
or a system trajectory.

For a simplified, single-cell version of the Albert & Oth-
mer model, Gates and Rocha showed that the SC node
set is sufficient for attractor control, but does not fully
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control this system [31]. Thus, a control method such as [77, 78] seems to be required for correctly predicting full
control node sets in Boolean models.
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