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Supporting Information (SI)

In this SI we provide detailed calculations, derivation of the analytical model, more supporting results and illuminate equivalence
between mobile and immobile receptor.

1. Derivation of the analytical results

We wish to minimise the binding free energy per ligand

fb(c,p,K) = −
∑
i

pi ln

(
1 +

∑
j

cjKij

)
[1]

subject to two constraints ∑
j

cj = cT ,
∑
i

pi = 1 . [2]

The total number of receptors cT is fixed and the ligand profile p is a normalised vector. Obviously, all concentrations and
equilibrium constants must be non-negative: cj ≥ 0, pi ≥ 0, Kij ≥ 0. The total binding free energy ∆Fb = mfb is trivially
proportional to the total number of ligands m, hence the overall binding strength can be controlled by varying m. We treat the
profile vector p as continuous which is only approximate since p is in principle a discrete vector. With m ligands per guest the
expected discretisation error in the targeted composition is ∆ci ∼ cT

m
. Using the second order expansion (Hii ∼ d/c2T ), we

estimate the discretisation error in the total binding free energy is ∆F err ∼ m
∑

i
Hii(∆ci)2 ∼ d2

m
kBT , with d the number of

distinct targeted receptor types.
We first consider which host profile binds most strongly to a guest particle, that is, we need to determine the receptor

composition c∗ that minimizes the binding free energy. This problem is trivially solved using Lagrange multipliers.

∇c(fb + λccT ) = 0 [3]

which becomes (
∂fb
∂cl

)
c=c∗

= −λc [4]

with λc the Lagrange multiplier. Inserting Eq. (1) into the above we find∑
i

piKil

1 +
∑

j
c∗jKij

= λc [5]

which must hold for every receptor type l. Given arbitrary targeted composition c∗ we can chose any p and K that satisfy the
above equation, and by definition the c∗ will be a minimum.

The condition that the binding free energy is also a minimum with respect to the ligand composition profile on a guest
particle p is, again imposed using a Lagrange multiplier λp:(

∂fb
∂pi

)
c=c∗

= − ln

(
1 +

∑
j

c∗jKij

)
= −λp , [6]

which must hold for every ligand type i. We recall that P free
i =

(
1 +

∑
j
c∗jKij

)−1
is the probability that a ligand of type i is

not bound, a simple result follows:
P free
i = e−λp . [7]

We shall define relative cross-binding terms κij which are determined by the specificity of the ligands and receptors:

κij = Kij

Kii
= e−(∆Gij−∆Gii)/kBT , [8]

where ∆Gij is the Gibbs free energy of monomeric ligand-receptor dimerisation in solution. The configurational term ∆Gcnfi

in the definition of Kij (Eq. (1) in the main text) is the same for all receptors j and cancels out in the above expression.
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Therefore κij are constants determined by the association matrix ∆Gij , i.e. constants determined by the choice of ligands.
We assume that the overall strength of the interaction can be tuned by changing ∆Gcnfi via, for example, the polymer linker
length. On the other hand, treating all κij as variables (i.e. assuming an infinite continuous space of possible ligand choices)
we simply find that maximal selectivity is obtained when individual ligands are maximally specific (κij = 0, i 6= j).

Inserting Eq. (6) into Eq. (5) we find that the solution must satisfy∑
i

piKij = λce
λp , [9]

additionally Eq. (6) can be rearranged to ∑
j

c∗jKij = eλp − 1 . [10]

There are 2d equations and 2d+ 1 unknowns; taking into account that relative off diagonal elements κij are constants Eq. (8)
and

∑
i
pi = 1. The “dimensionality” d = rank(K) is determined by the rank of matrix K or, equivalently, the number of

distinct receptor types. Therefore, the above equations determine the optimal ligand profile p∗ and all cognate interaction
strengths K∗ii up to a constant factor eλp .

If K is a diagonal matrix (only cognate interaction) or, more generally, a symmetric matrix (Kij = Kji, i.e. the off diagonal
equilibrium constant for the cross-binding of ligand i and receptor j is the same as that between ligand j and receptor i) the
above equations imply that the optimal guest profile p∗ must match the targeted composition of the receptors c∗

p∗i = c∗i
cT

[11]

with cT =
∑

j
cj the total receptor density and the Lagrange multipliers are related λc = 1−e−λp

cT
. The optimal cognate

interaction strength should be inversely proportional to the composition

K∗ii = eλp − 1
c∗i

[12]

using Eq. (10) in the case of no cross-binding. For general non-symmetric matrices Eqs. (11,12) will provide a good approximation
whenever cross-binding is weak and cognate interaction dominates: c∗i �

∑
j 6=i κijc

∗
j .

The only remaining step is to determine the optimal strength of the interaction captured by the constant λp. We optimise
the selectivity (Eq. (4) of the main text) given by the determinant of the Hessian matrix H. For direct comparison to plotted
results (Figures 3 and 4 of the main text) we include the constraint of fixed total receptor concentration: with d receptor types
there are only d− 1 independent concentrations and cd = cT −

∑d−1
j

cj . Removing this constraint in the definition of H would
only rescale the value of selectivity and would not affect our main results.

An element of the Hessian matrix is obtained by twice differentiating the free energy (Eq. (1))

Hmn =
(

∂2fb
∂cm∂cn

)
c=c∗

=
∑
i

pi(Kim −Kid)(Kin −Kid)
(1 +

∑
j
c∗jKij)2 , [13]

where the indices fall between 1 ≤ m,n ≤ d− 1. Using Eq. (8) we rewrite Eq. (10) in the form Kii = eλp−1∑
j
c∗
j
κij

, inserting these

into the above equation we find that every element of the Hessian matrix decouples into a term that depends only on λp:

Hmn = (1− e−λp)2 Ĥmn [14]

and the remainder Ĥmn =
∑

i

pi(κim−κid)(κin−κid)
(
∑

j
c∗
j
κij)2

which does not depend on λp. In fact the values of all Ĥmn are at this

point already determined by the solution to Eqs. (9,10). Since λp is a constant for the whole matrix H, the determinants are
related by a factor: det(H) = (1− e−λp)2d−2 det(Ĥ).

We use the above relation and fb(c∗,p,K∗) = −λp to express the selectivity in terms of the Lagrange multiplier λp

S = det
(

H(fb)
|fb|

)
c=c∗

=

[(
1− e−λp

)2
λp

]d−1

det(Ĥ) , [15]

with d the number of targeted receptor types. Evidently, the optimal λp is given by ∂S
∂λp

= 0. Since Ĥ does not depend on λp
the derivative is simple to work out. The non-trivial solution satisfies

eλp − 2λp + 1 = 0, [16]

and is given by the −1st branch of the Lambert W function

λp = −W−1

(
−1
2
√
e

)
− 1

2 ≈ 1.25643 · · · [17]

approximated to the first 6 digits.
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Cross entropy analogy. The probability that a given ligand is unbound can be written as P free
i =

(
1 +

∑
j
cjKij

)
. The

expression for the binding free energy Eq. (1) thus becomes very similar to the cross entropy between distributions pi and P free
i

fb =
∑
i

pi lnP free
i . [18]

However, Pfree is not a true probability distribution as it is not properly normalised. By defining a normalised distribution
P̂ free
i = P free

i /a, with a =
∑

i
P free
i the normalisation constant, the binding free energy becomes

fb =
∑
i

pi ln P̂ free
i + ln

∑
i

P free
i = −H(p, P̂free) + E(Pfree), [19]

where H(p, P̂free) is the cross entropy and E = ln
∑

i
P free
i is a "cost function" analogous to energy, it measures the overall

strength of a bond. If bonds are weak then P free
i ∼ 1 and E > 0 . Conversely, with strong bonds P free

i ∼ 0 and E will be
negative.

The cross entropy can further on be written as the sum of Shannon entropy and Kullback-Leibler divergence

H(p, P̂free) = −
∑
i

pi ln pi +
∑
i

pi ln pi

P̂ free
i

= H(p) +DKL(p||P̂free). [20]

Such that the binding free energy per ligand becomes

fb = E(Pfree)−H(p)−DKL(p||P̂free). [21]

The first term E(Pfree) captures the overall bond strength ("energy"), the second H(p) is the Shannon entropy of the ligands,
it measures the diversity of the ligands on the guest particle. The Kullback-Leibler divergence DKL(p||P̂free) is a measure of
the difference between the two distributions p and P̂free. Hence, to minimize the free energy: Energy favours strong individual
bonds P free

i � 1, Entropy favours uniformity pi ∼ 1/d, with d the number of ligand types, finally, the Kullback-Leibler
divergence favours the two distributions to be as different as possible. The interplay and competition between the three different
terms results in simple design principles for optimal targeting.

2. Derivation of the simple analytical model

For mobile receptors the expression for the bound partition function of a multivalent guest particle binding to the receptor
decorated membrane is given approximately by

Qb =
∏
i

(
1 +

∑
j

cjKij

)mi
, [22]

from which we obtain the free energy change due to bond formation

∆Fb = −kBT ln(Qb) = −m
∑
i

pi ln

(
1 +

∑
j

cjKij

)
. [23]

We have used this expression to derive our design rules for composition targeting, where cj is the receptor type j concentration
on the host, mi = mpi is the number of ligands of type i on the guest particle, with pi the profile, and Kij are elements of the
interaction matrix.

We will start from basic statistical mechanics and show what approximations are necessary to arrive at our simplified
expression Eq. (22). Initially we assume that receptors are non-interacting and mobile on the flat host surface and can,
therefore, be effectively described as solutes in a 2D ideal solution. Below we also provide a, more tedious derivation, showing
that the same result is expected for immobile receptors with fixed but random positions on the host surface. We treat the host
membrane as a flat hard surface and the particle coated with flexible polymeric arms, each carrying a ligand. A model of
particle endocytosis where the ligands are rigidly attached to the guest particle, but the host membrane is deformable results in
the the same free energy expression Eq. (23). Multiple possible combinations of forming bonds are necessary to derive Eq. (22).
However, the bonding flexibility and combinatorics can be achieved in many different ways: flexible ligands, flexible receptors
or a deformable membrane with mobile receptors.

In our theoretical treatment the guest particle is modeled as a hard sphere with attached polymeric ligand arms, shown
schematically on Figure 1 of the main text. A particle is grafted with a total of m polymer linkers, each linker caries a ligand
at the tip. The host surface is a flat hard surface with mobile receptors. To arrive at our simple theory, we make a number of
approximations: (i) ligand binding is uncorrelated; bound/unbound state of a ligand will not affect the probability that another
ligands binds, (ii) Ligands themselves are non-interacting and their positions are independent, for this to hold we assume a
mean field approximation where individual ligand grafting points are uncorrelated and are mobile on a particle surface.
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The particle is fixed at a height h above the surface. The configurational free energy ∆Gcnf (ri′ , rai′) captures the, mainly
entropic, effects of displacing the ligand ri′ with respect to the anchor (grafting) point on the particle rai′ ∗. If the polymer
linker is a flexible polymer the ∆Gcnf (ri′ , rai′) will be approximately a quadratic function of the distance |ri′ − rai′ |. For brevity,
we neglect any angular contribution to ∆Gcnf (ri′ , rai′), we also neglect the effects of the chemical coupling of ligands to the
polymer linker and the interactions between the ligand and the particle. All of these contributions will uniformly change
∆Gcnf by a constant value and can be fitted from experiments as discussed below.

The bound partition function of a single ligand i′ with its grafting point at position rai′ reads

qb(rai′) =
∑
j

e−β∆Gi′j cj

∫
S

e−β∆Gcnf (ri′ ,r
a
i′ ;zi′=0)δ(zi′)dri′ , [24]

where we remember e−β∆Gi′j as the Gibbs free energy interaction matrix from solution, cj is the surface concentration of
receptor type j, the integration is performed over the whole surface S with δ(zi′) is the Dirac delta function constraining the
zi′ coordinate of the ligand constrained to lie on the surface zi′ = 0. The particle can freely rotate, therefore, we proceed by
integrating the ligand anchor point over the particle surface, the bound partition function of ligand i′ with a particle at height
h is

qib(h) =
∫
G

qb(rai′)drai′ =
∑
j

e−β∆Gij cj

∫
G

drai′
∫
S

e−β∆Gcnf (ri′ ,r
a
i′ ;zi′=0)δ(zi′)dri′ , [25]

with
∫
G

an integral over the guest particle surface. Note that we have used a normal index i denoting a ligand type. For every
particular ligand i′ that is of the same type i, this integral returns the same value. We implicitly assume an existence of an
indicator function that maps every ligand i′ to its type i. Unbound partition function of the same ligand when the particle is
free in solution is

qiu = 4πr2
gpqu(rai′) = 4πr2

gpρ0

∫
V

e−β∆Gcnf (ri′ ,r
a
i′ )dri′ . [26]

For noninteracting unbound ligands the volume integral
∫
V

of the ligand position ri′ does not depend on rai′ , therefore, 4πr2
gp

comes from integrating over the guest surface, with rgp the guest particle radius. We neglect that ligands cannot penetrate the
surface, therefore, qiu does not depend particle height h. ρ0 = 1M is the standard concentration with respect to the interaction
matrix ∆Gij .

The ratio of the partition functions determines the ratio or probabilities of finding a ligand i in the bound state at height h
to unbound state

pibound(h)
piunbound

= qib(h)
qiu

= K̃i(h)
∑
j

e−β∆Gij cj . [27]

The ligand can be attached to any receptor type j, hence the sum. We have introduced

K̃i(h) =
∫
C
drai′

∫
S
e−β∆Gcnf (ri′ ,r

a
i′ ;zi′=0)δ(zi′)dri′

4πr2
npρ0

∫
V
e
−β∆Gcnf (ri′ ,r

a
i′

)
dri′

, [28]

which measures the configurational (mostly entropic) cost of localising a ligand i at a surface with the particle at height h
above the surface. We expect this cost to increase with increasing height h due to the polymeric linker stretching penalty
captured by ∆Gcnf (ri′ , rai′). Therefore, the ligand will have an appreciable probability of being bound only when the particle is
within an interaction distance h0 of the surface and binding probability vanishes for large h as qib(∞) = 0. Figure S1 shows the
height distribution profiles p(h) for guest particle obtained from simulations. K̃i(h) ∝ p(h) is proportional to the probability
distribution.

The partition function of the whole particle at height h is, for noninteracting ligands, simply a product over all ligand types

Q(h) =
∏
i

(
qiu + qib(h)

)mi
, [29]

because each ligand independently can be either in a bound or unbound state and we remember mi as the number of ligands of
type i. In order to obtain meaningful predictions for the binding free energy of particle attachment, we must take a ratio of
bound to unbound partition functions

e−β∆Fb(h) = Qb(h) = Q(h)
Q(∞) =

∏
i

(
1 + qib(h)

qiu

)m
i

=
∏
i

(
1 + K̃i(h)

∑
j

e−β∆Gij cj

)mi
, [30]

which determines the free energy difference ∆Fb(h) or the normalised partition function Qb(h) for a particle at height h with
respect to a particle free in solution. Eq. (27) shows that this free energy difference is related only to the probabilities of
individual ligands being bound or unbound.

∗we use primes i′ to denote a specific single ligand, while a standard index i denotes the ligand type
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Fig. S1. Simulation results of height probability distribution for a guest particle with a single formed bond. Different curves correspond to varying ligand chain length lc defined
as the number of blobs per ligand chain. The inset shows a representative simulation snapshot of a particle with m = 10 ligands and chain length lc = 4 is the number of soft
blobs used to represent the ligand polymer linker. The origin (h = 0) is defined when the particle is touching the surface; when the particle centre-of-mass is located at radius
R above the surface. The particle radius is R = 3rb with rb the blob radius. The average height is found at 〈h〉/R = [0.61, 0.99, 1.58, 2.77] for the four different chain
lengths lc = [1, 2, 4, 9]. System size is 10R× 10R in the lateral directions with receptor concentration cT = 1/R2, p1 = c1/cT = 0.5.

In practice, the relevant measure is the free energy of a bound particle at a surface, hence the above equations needs to be
integrated over particle height h to obtain an integrated partition function Q̃b. We need some sort of a cutoff specifying how
we determine a bound particle. One possibility is to consider only particles with at least a single bound ligand

Q̃b =
∫ ∞

0
Qb(h)− 1 dh =

∫ ∞
0

[∏
i

(
1 + K̃i(h)

∑
j

e−β∆Gij cj

)mi
− 1

]
dh , [31]

another option is to consider all particles within a cutoff height hcutoff

Q̃b =
∫ hcutoff

0
Qb(h) dh =

∫ hcutoff

0

∏
i

(
1 + K̃i(h)

∑
j

e−β∆Gij cj

)mi
dh . [32]

For sufficiently large hcutoff such that Qb(h > hcutoff) ≈ 1 and dilute solutions (negligible probability to find a particle with no
formed bonds within hcutoff ) the two forms will return the same value for Q̃b. We chose the second expression Eq. (32) as
our definition of chose as it conveniently enables write the free energy as a sum over individual ligand contributions. In the
previous work (1–4) an alternative definition Eq. (31) was used.

The total free energy change of binding a guest from solution to a surface depends on the surface area size A

∆F = −kbT log
(
AQ̃bρ0NA

)
+ ∆Fns , [33]

where ∆Fns includes any non specific surface-guest interactions, i.e. interactions that are not mediated by ligand/receptor
binding, ρ0 and NA are the standart concentration and Avogadro’s constant, respectively.

To arrive at the expression so far we have only assumed that individual ligands bind independently and are non-interacting.
In order to obtain our simple analytical model Eq. (22) we must also approximate K̃i with a block function of height h0:

K̃i(h) =

{
e
−β∆G̃cnf

i

ρ0h0
; 0 ≤ h < h0

0 ; otherwise
[34]

where e−β∆G̃cnf
i is the integrated configurational cost of binding a ligand to a surface. Zero height (h = 0) is defined when the

guest particle touching the surface. We define e−β∆G̃cnf
i and h0 using the zeroth and first moment of K̃i(h)

e−β∆G̃cnf
i

ρ0
≡
∫ ∞

0
K̃i(h) dh . [35]
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and

h0 ≡ 2
∫∞

0 hK̃i(h)dh∫∞
0 K̃i(h)dh

. [36]

Gaussian-like distributions (Figure S1) are approximated with a single block of size h0 = 2〈h〉 which defines the guest - surface
interaction range. The factor 2 ensures that the calculation is self-consistent: if we insert the block approximation Eq. (34) into
the above definition we recover the same value for h0.

Using the above approximation Eq. (34) in Eq. (32) the integration becomes trivial and we obtain

Q̃b = h0
∏
i

(
1 + e−β∆G̃cnf

i

ρ0h0

∑
j

e−β∆Gij cj

)mi
+ hcutoff − h0 . [37]

In what follows, we chose the cutoff height equal to the interaction range hcutoff = h0. In a practical experiment the cutoff
will most probably be determined by a particular technique used to measure the surface density of adsorbed particles. hcutoff
should not be smaller than the interaction range h0. On the other hand, for very large hcutoff , the term hcutoff − h0 cannot be
neglected. However, this will only introduce a constant offset in the measured adsorbed density.

Finally, we define the equilibrium constant

Kij ≡
e−β∆G̃cnf

i

ρ0h0
e−β∆Gij , [38]

which includes both the configurational Eq. (35) and the association ∆Gij terms. The guest - surface interaction free energy
due to bond formation can now be written in a simple form

e−β∆Fb = Qb = Q̃b
h0

=
∏
i

(
1 +

∑
j

cjKij

)mi
. [39]

We also decompose the total free energy change Eq. (33) into binding part ∆Fb and ∆F0 which captures the free energy of
an unbound particle within lattice size of area A and height h0:

∆F = ∆Fb + ∆F0 = ∆Fb + ∆Fns − kBT log(Ah0ρ0NA) [40]

where in the last step F0 can be decomposed into non-specific interactions part ∆Fns and log(Ah0ρ0NA) is the translational
entropy of an unbound particle within h0.

Alternative Mean-field definition. Rather than using a series of approximations in the above derivation, we can simply postu-
late Eq. (39) as the mean-field approximation for the free energy of the real system. Optimal values for the interaction range
h0 and ∆G̃cnfi are determined by fitting Eqs. (39, 38) to experimental (or simulation) data. h0 determines the height cutoff
within which an unbound guest particle must diffuse such that ligands can be treated as independently forming bonds with
surface receptors.

The optimal cutoff interaction range h0 can be obtained from simulations by calculating the free-energy profiles as a function
of the number of formed bonds λ. Figure S2 shows such profiles for various choices of h0 and two polymer lengths: a) lc = 1
and b) lc = 4. Evidently, changing h0 affects the free energy of forming the first bond, however, for subsequent bonds the slope
of free energy profiles is independent of h0. To illustrate this Figures S2c),d) show the corresponding second order difference
F ′′(λ) = F (λ+ 1) + F (λ− 1)− 2F (λ). Second order difference is a very useful measure because it does not depend on the
individual ligand binding strength; that is as long as the binding strength is a constant for all ligands. In the case studied the
ligand profile and interactions strengths follow the design rules from the main text:

∑
j
cjKij + 1 = eλp for all ligands and

analytical theory Eq. (39) results in

Fb(λ) = − log
[(

m

λ

)(
eλp − 1

)λ]
. [41]

We note the distinction between the number of formed bonds λ and the Lagrange multiplier λp which defines the overall
bonding strength; these particular characters are used for legacy reasons. Taking the second order difference we find

F ′′b (λ) = log
[

(λ+ 1)(m− λ+ 1)
λ(m− λ)

]
, [42]

where we remember m as the number of ligands on a particle. Comparing simulation results to the theory (Figures S2c),d))
the optimal value for h0 can be obtained when the theoretical result matches simulations for the second order difference around
λ = 1. The optimal h0 is h0 = 3rb for single blob ligands and h0 = 7rb for longer 4-blob ligands, with rb the blob radius.

Our previous estimate at the effective interaction range h0 using the first moment Eq. (36) was larger: h0 = 3.66rb and
h0 = 9.48rb for the shorter lc = 1 and longer lc = 4 ligands respectively. The first moment definition Eq. (36) provides a
practical route to estimate h0 without the need for free energy calculations. Alternatively, h0 could simply be fitted from
experiments as outlined below.
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Fig. S2. Free energies from simulations. a) and b) show the configurational free energy of a guest particle as a function of the number of formed bonds λ (calculated with
Wang-Landau technique at the bond energy ε = 0) for various choices of effective interaction range h0. c) and d) show the corresponding second order difference together
with the theoretical result Eq. (42). The optimal h0 = 3rb for short (lc = 1rb) polymers, and h0 = 7rb for longer (lc = 4) polymers, rb is the blob radius. The number of
ligands is always m = 10, particle radius R = 3rb; all simulation parameters match Figure S1. Standard errors are smaller than symbols.

Analytical model assumes uncorrelated (independent) ligand binding. h0 can always be chosen such such that the first
and second bond are (or appear to be) uncorrelated. However, tuning h0 only affects the first bond, subsequent bonds will
generally show deviation from the mean-field uncorrelated model. Binding is cooperative (with respect to the uncorrelated
ligand binding) if the free energy is below the theoretical value and anti-cooperative above it.

Figure S3a) illustrates that, for the guest particle model, the binding becomes cooperative at medium bond numbers (λ ≈ 5)
anti-cooperative at larger number of formed bonds (λ ≈ 9). We speculate that such anti-cooperativity is caused by ligand-ligand
repulsion. Furthermore, as can be seen on Figure S3b), cooperivity in simulated guest particle binding leads to a small increase
in the free energy curvature as compared to the uncorrelated theory. The same data is also used to obtain selectivities S (i.e.
the relative curvature of the free energy) as shown on Figure 5 of the main text. The curvature is obtained by calculating a
second order difference around the minimum as F ′′b (c∗) = 1

(∆c)2 (Fb(c∗ + ∆c) + Fb(c∗ −∆c)− 2Fb(c∗)), with ∆c = 0.1cT and
Fb(c∗) is the minimum.

Langmuir adsorption. The free-energy expressions obtained above can be used with Langmuir adsorption model to calculate the
experimentally relevant observable; the surface coverage with guest particles. Langmuir model assumes independent adsorption
sites and at most a single particle per site, therefore the area A in Eq. (40) must be the excluded area of an adsorbed guest
particle. The guest - host avidity association constant is

Kav
A = e−β∆F /ρ0 = Ah0NAe

−β∆Fb . [43]
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Fig. S3. Theory-simulation comparison. a) The free-energy dependance on the number of formed bonds. Optimal h0 is used resulting in uncorrelated attachment of the
first two bonds. ε is then determined by fitting to the theoretical result from the design rules, which ensures that the free energy for the first two bonds exactly matches the
theory Eq. (41). Because all bonds are of equal strength ε, the free energy can be obtained by a linear combination: Fb(λ|ε) = Fb(λ|ε = 0) + λε, with Fb(λ|ε = 0)
from Figure S2. b) Free-energy as a function of the receptor composition Fb(c1) was obtained using Wang-Landau calculations (full symbols) and comparison with the
theoretical result (black crosses) at λp = 1.2563. Wang-Landau calculations were performed on a single particle without any height constraints but having at least a single

formed bond. The absolute value of the free energy is set by F̃b(c1 = 0.5cT |ε) = −kBT log
(∑m

λ=1
e−βFb(λ|ε)

)
, which is then rescaled to include the non-bonded

states Fb = log(1 + exp(−βF̃b)). The number of ligands is always m = 10, particle radius R = 3rb, system size is 10R× 10R in the lateral directions with receptor
concentration cT = 1/R2, p1 = c1/cT = 0.5. Simulation parameters match Figure S1. Standard errors are smaller than symbols.

The Langmuir adsorption isotherm

θ = ρKav
A

1 + ρKav
A

, [44]

gives the number of adsorbed particle per lattice site area A, ρ is the concentration of guest particles in solution. If the solution
cannot be treated as ideal, the activity of guest particles should be used instead of concentration. This Langmuir isotherm is
shown on Figure 4 of the main text, with the excluded area A = (2R + 2rb)2 assuming the guest has an effective radius of
particle R and the polymeric ligand blob size rb. The interaction range h0 = R for single blob ligands from Figure S2.

3. Guide to fitting experiments

In a given multivalent system (e.g. a multivalent particle, linear polymer, star polymer, etc.), we assume that the association
matrix between individual ligand-receptor types in solution, ∆Gij or the affinity matrix Kij

A = e−β∆Gij , is known. In principle
we could then calculate the binding free energy, or equivalently, the avidity association constant of an adsorbing multivalent
entity

Kav
A ρ0 = e−β∆F = e−β∆F0 ×

∏
i

(
1 +

∑
j

cjKij

)mi
, [45]

with ρ0 = 1M the standard concentration. In practice, however, both the zero-bond free energy ∆F0 = ∆Fns−kBT log(a2h0ρ0NA)

and the configurational contribution e
−β∆G̃cnf

i

ρ0h0
might be difficult to calculate. But, they could simply be fitted from experiments.

A natural starting point is to neglect non-specific interactions (∆Fns = 0) and assume that the multivalent guest can be
described using the “cloud of ideal ligands” approximation. This approximation only takes into account translational entropy
contribution and assumes that unbound ligands can freely explore the entire volume a3 that is occupied by the multivalent
guest; a3 is the volume of the ligand ‘cloud’. For example, in the case of flexible multivalent polymers this volume is equal to the
effective volume of the polymer a3 = 4π

3 R
3
g, with Rg the polymer radius of gyration. In the case of a particle based multivalent

guests the volume a3 should match the excluded volume of the particle. Within the “ideal ligand cloud” approximation we
obtain h0 = a and ∆G̃cnfi = 0.

Using this approximation and Eq. (38) we rewrite the expression for the binding avidity of the multivalent guest and
introduce two fitting constants

Kav
A = Azeroa

3NA
∏
i

(
1 + Acnf

a

∑
j

cjK
ij
A

)mi
. [46]
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Where we remind ourselves that a is the lateral size of the multivalent guest, cj the surface molar concentration of receptor of
type j on the host, Kij

A the interaction matrix specifying affinity equilibrium constants between a ligand type i and receptor
type j from solution and mi is the ligand valency; the number of ligands of type i on the multivalent guest. The above
expression, therefore, predicts the binding avidity depending on the physico-chemical properties of the multivalent guest and
the surface concentration of receptors.

The two dimensionless fitting constants Azero and Acnf capture the deviation of the real system from our “cloud of ideal
ligands” estimate. Both fitting constants should be viewed as simple correction factors, however, the values of the correction
factors need not be close to unity. Previous experiments on hyaluronic acid based multivalent polymers from Refs. (2, 3)
determined the equivalent correction factor Upoly = 4.6kBT , which is related to Acnf = e−Upoly/kBT .

Moreover, the ratio Acnf
a3 is related to the widely used “effective molarity” approach in rationalising multivalent interactions (5–

8). The number of receptors within interaction area a2 that a multivalent guest “sees” is njR = a2NAcj , therefore, the second
term in Eq. (46) can be rewritten by defining the effective molarity EM = Acnf

a3NA
which measures the configurational contribution

of binding between a ligand and a particular receptor within interaction distance a.
Equivalently, some authors (9) fit the effective volume Veff = 1/EM and the 0-bond dissociation constant KD0 = ρ0e

βF0 =
1

Azeroa3NA
.

4. Poisson fluctuations undermine specificity

We expect that, in practice, any nanoparticle fabrication technique will introduce some heterogeneity or poly-dispersity of the
multivalent guest properties. For example, if the ligands are grafted to the particle or polymer by a purely random (Poisson)
process, the ligand positions will be distributed on the particle uniformly at random. Moreover, the number of ligands of a
specific type per particle will also vary and we expect it to be Poisson distributed. Multivalent guests will, therefore, exhibit
heterogeneous binding. In this case it is instructive to calculate the expected value for the bound partition function. We
average our expression for the partition function Eq. (39) over the Poisson distribution of the ligands on the particles

Qb(m̃, c,K) =
∞∑

m=0

[∏
i

(
e−m̃im̃mi

i

mi!

)
Qb(m, c,K)

]
, [47]

where Qb(m̃, c,K) is the bound partition function from Eq. (39) and we explicitly wrote as a function of the ligand profile m,
the receptor composition c ahe interaction matrix K. We assume that every ligand type valency mi is Poisson distributed with
mean m̃i, m̃ denotes the mean ligand profile vector and

∑∞
m=0[·] ≡

∑∞
m1=0

∑∞
m2=0 . . . [·] is a nested sum over all mi.

Inserting Eq. (39) into the expression above and swapping the product and summation order we get

Qb(m̃, c,K) =
∏
i

e−m̃i ∞∑
mi=0


[
m̃i

(
1 +

∑
j
cjKij

)]mi
mi!

 , [48]

where the inner sum can be recognised as the Taylor expansion for the exponential function. Therefore, the final result can be
written as a product of independent exponential functions

Qb(m̃, c,K) =
∏
i,j

e−m̃iKijcj . [49]

We call this form the double exponential form because inserting Eq. (38) would yield a double exponential dependance on the
bond free energy ∆Gij .

The total binding free energy of this system becomes simply a sum over all possible bond pairs

∆Fb = −kBT logQ(m̃, c,K) = kBT
∑
i,j

m̃icjKij = kBT m̃TKc . [50]

In the last form on the right is cast using matrix algebra with m̃T being the transpose of vector m̃.
We stress that for Poisson distributed ligands the binding free energy evidently becomes linear in the receptor composition

c. Therefore, the binding free energy can never exhibit a minimum at an arbitrarily chosen composition c0, regardless of the
the ligand profile m and the interaction matrix K. Hence, for composition specific targeting we need a precise control over
multivalent guest fabrication process and synthesis. Multivalent guests must have a well-defined ligand profile with fluctuations
in the profile much smaller than the expected Poisson fluctuations. An ensemble of guests with Poisson distributed ligands is
not sufficiently selective for specific receptor composition targeting. Therefore, it appears that DNA origami constructs (10),
where the geometry of the nano-construct can be almost exactly controlled, would be best suited for receptor composition
targeting.
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5. Endocytosis multivalent theory

Receptor-mediated particle endocytosis is a slightly more intricate process than mere adsorption. In fact, adsorption to the
membrane is usually only the first step, upon which, endocytosis may proceed. Passive endocytosis is a concerted action
of membrane bending, receptor recruitment and attachment, neck formation and snapping. We will not try to characterise
individual steps in this process. Rather, we only calculate the total free energy which is the main driving force and determinant
of passive endocytosis. We show that the free energy change upon receptor-mediated passive endocytosis is governed by the
same expression Eq. (23) as multivalent adsorption.

For the derivation we assume that receptors are mobile within the fluid membrane and endocytosis is slow compared to
lateral receptor diffusion, hence, membrane receptors remain in a quasi-equilibrium with the ligand-decorated particle during
endocytosis. The free energy change of such process ∆F will be exactly the same as if, the particle is first endocytosed without
any receptors present, and subsequently the endocytose membrane shell is put in a contact with a reservoir of membrane
receptors. Similarly to Eq. (40) the free energy decouples

∆F = ∆F0 + ∆Fb . [51]

∆F0 is the no-receptor endocytosis free energy change, it includes the bending penalty and any membrane-particle interactions
that are not mediated by receptors. ∆Fb captures all ligand-receptor interactions. We assume that adding receptors does not
change the physical properties of the membrane; elastic moduli are constant. Therefore ∆F0 is a constant independent of
receptor compositions. The only remaining step is to show that the receptor interaction part ∆Fb is given by Eq. (23).

Individual ligands attached on the guest particle are in contact with a bath of membrane receptors. Therefore, akin to
Eq. (1) in the main text, we can immediately write the ratio of bound-to-unbound grand partition functions for a single ligand

qib
qiu

=
∑
j

cjK
A
ij
e−β∆G̃cnf

i

h0
, [52]

where the sum proceeds over all receptor types j. We remember cj denotes receptor concentration, KAij the dimerisation
affinity matrix from solution, ∆G̃cnfi is the configuration free energy change upon bond formation and h0 the length scale. The
configurational part ∆G̃cnfi captures possible effects like of pinning the membrane (11) to the particle upon bond formation;
effects not present in the solution dimerisation equilibrium constant KAij . The length scale h0 is the thermal roughness (i.e. the
root mean square membrane fluctuations in the radial direction) of the wrapped membrane with no bonds present.

Unless strong non-linear pinning effects are present, the correlations between different ligand attachment can be neglected.
Therefore, the total partition function of a wrapped guest particle can be written as product over individual ligands. By

defining the effective interaction matrix Kij = KAij
e
−β∆G̃cnf

i

h0
we obtain a familiar expression

Qb =
∏
i

(
1 +

∑
j

cjKij

)mi
[53]

which is identical to Eq. (39).
To derive the above result we presumed that endocytosis is slow compared to lateral receptor diffusion and receptor-ligand

binding equilibrates. However, the above expression remains if we relax this assumption. In the opposite limit (slow receptor
diffusion) receptors cannot equilibrate and their number is effectively fixed on any given membrane patch. One need only
follow the same derivation as in section "Free energy derivation for immobile receptor" above to show that Eq. (53) gives the
average partition function for slowly diffusing, but randomly distributed, receptors. Since both limits return the same answer,
any intermediate ratio between endocytosis rate and receptor diffusion must result in the same expected value for the binding
partition function Eq. (53).

6. Supporting results

Figure S4 shows that optimal value of the binding strength λp is independent of the cross-binding terms in K, however,
selectivity is diminished. Figure S4b) also shows how the optimal ligand profile differs from our simple design rule (guest
profile should match the composition: pi ∝ ci) if the cross-binding is strong and the interaction matrix K is not symmetric. In
the particular example on Figure S4b), the type 1 ligand can bind to both receptor types, but the type 2 ligand can only bind
to receptor type 2:

K =
(
K11 K11κ12

0 K22

)
, [54]

with the relative cross-binding term κ12 = K12
K11

.
Thus far the total concentration of receptors cT was kept fixed. In Figure S5 we show how varying the total receptor

concentration effects guest binding. As expected, increasing the overall receptor concentration (at fixed composition c) will
always lead to stronger interaction. Therefore, the total receptor concentration on a targeted cell should not be orders of
magnitude smaller compared to un-targeted cells. As a rule of thumb: For any un-targeted cell, there must exist at least

10 of 18 Curk, Dobnikar, Frenkel 10.1073/pnas.1704226114



0 2 4 6 8 10
binding free energy per ligand   λp

0

0.5

1

1.5

2

se
le

ct
iv

ity
  S

κ12=0
κ12=0.1
κ12=0.2

(a)

0 0.2 0.4 0.6 0.8 1
ligand cross binding   κ12

0

0.5

1

1.5

2

se
le

ct
iv

ity
  S

 , 
 o

pt
im

al
 p

ro
fil

e 
 p

1

selectivity S
optimal profile  p1

(b)

Fig. S4. Selectivity of targeting with 2 ligand types and the effect of cross-binding. a) The selectivity S as a function of bond strength (Lagrange multiplier) λp for different
magnitudes of cross binding κ12, with fixed κ21 = 0. Cross binding diminishes the selectivity, but the optimal λoptp ≈ 1.25643 remains a constant. b) The selectivity S at
optimal λoptp (the peak value in a)) decreases monotonically with cross binding terms κ12. We also plot the optimal ligand profile p1, calculated by solving Eqs. (9,10) as a
function of the cross binding term κ12. Parameters: composition c1 = 0.3cT , ligand cross binding κ21 = 0, κ11 = κ22 = 1 by definition.
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Fig. S5. Effect of changing the total receptor concentration cT . The two landscape plots show the binding free energy Fb from the analytical theory (Eq. (2) in the main
text) for a 2 ligand/receptor type system as a function of the composition c1 and total receptor concentration cT . The guest with m = 10 ligands was optimised to target
a membrane at cT = 1 and composition a) c∗1 = 0.5cT and b) c∗1 = 0.2cT . Using the design rules from the main text the guest properties are: pi = c∗i /cT and
Kii = cT (eλp − 1)/pi, with λp = 1.2543. Kij = 0, for i 6= j .

one receptor type that is over-expressed on a targeted cell compared to the un-targeted cell. Specific cell-targeting based on
receptor recognition is only possible when this condition is satisfied, see Figure 1 of the main text for a pictorial representation.

Simulation results of guest adsorption presented in the main text (Figure 4) were performed with mobile receptors and
ligands. Figure S6 shows that mobility is not necessary for composition targeting. Keeping either ligands or receptors (or both)
immobile retains the selectivity.

Further numerical optimisation. In our analytical treatment we required that the free energy must be a minimum with respect
to the variation of the ligand profile (Eq. (5) in the main text). As already discussed, this might be desirable in practice, but
is in principle not a necessary constraint. Removing the constraint somewhat increases the selectivity. Figures S7 and S8
shown the comparison between our reference solution determined by the design rules and the optimal unconstrained solution
obtained numerically. Both Figures clearly show that the further optimisation results in a more skewed ligand profile and
binding strengths. This solution might be unpractical and hard to realise in a fabrication process while the optimal selectivity
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Fig. S6. Effect of receptor and ligand mobility. Immobile receptors are (uniformly) randomly distributed on the surface. Fixed ligands are anchored to an immobile point on the
guest particle surface, anchor point locations obey the Boltzmann distribution. a) shows the large receptor concentration case; mobile data (red circles) is the same as data on
Figure 4 in the main text. b) low receptor concentration. Each data point is an average over 5 simulation runs. Parameters correspond to and are described in Figure 4 in the
main text.

only increases marginally.
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Fig. S7. Optimising the selectivity, 2 ligand/receptor types. The plot shows the binding free energy fb/fminb normalised by the minimum. The targeted composition is at
c∗ = [0.25, 0.75]. The standard result for the design of the particle is p∗1 = 0.25, K∗11 = 10, K∗22 = 3.34. The optimal numerically obtained solution is more skewed
popt1 = 0.07, Kopt

11 = 26.3, Kopt
22 = 0.34 and the matching free energy per bond fmin,opt

b
= 0.34kBT is smaller as compared to the standard result. For simplicity we

assumed cT = 1, however, a different value would simply uniformly rescale all resulting Kij values and the plot would remain the same.

7. Polymer coated particle model

The multivalent particle model used in Monte Carlo simulations is an extension of the model from Ref. (1). Guests are
represented as hard spheres with attached polymeric ligands using a coarse-grained polymer model (12). A polymer is
represented with a series of Gaussian soft blobs connected with harmonic springs. A great feature of the soft blob model are
transferable potentials, we can represent a given polymer by many small blobs, a few larger ones or a single large blob and the
interaction potentials do not change. Each polymer chain is represented by Nb soft repulsive blobs with radius of gyration rb
that are connected via harmonic springs

Uch = 0.534 kBT (r/rb − 0.730)2 , [55]
with kBT the thermal energy and r the centre-to-centre distance. The blob-blob interaction is described as a Gaussian repulsion

Ubb = 1.75 kBT e−0.80(r/rb)2 , [56]
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Fig. S8. Optimising the selectivity, 3 ligand/receptor types, analogous to Figure S7. Relative binding free energy depending for: a) standardly designed guest particle and b)
unconstrained solution selectivity by relaxing the. Targeted receptor composition is c∗ = [0.2, 0.2, 0.6] and total concentration cT = 1.

while the blob-surface interaction is modelled as an exponential repulsion:

Ubs = 3.20 kBT e−4.17(r/rb−0.50) . [57]

where r is the perpendicular distance between the blob centre-of-mass and a hard surface. The same potential is also used for
blob-particle repulsion. This model accurately describes flexible self-avoiding-walk (SAW) polymers in the scaling regime

Polymers are attached to an anchoring point on a particle surface with a tethering potential (13)

Utether = 0.75 kBT (r/rb)2 [58]

which captures the entropic penalty of tethering a flexible polymer to an impenetrable flat surface. The anchoring points can
either have fixed positions or the anchors are free to diffuse on the guest surface. Figure S9 presents the ligand coated guest
particle model.

Polymer conformations are sampled using standard Monte Carlo single-blob translational moves. The grand-canonical part
of the algorithm (insertion and deletion of guest particles) is employed via Rosenbluth-sampling with configurational bias (14).
Because multiple polymers can be grafted to a single particle, the Rosenbluth weight of the particle with all tethered polymers
must be calculated as Wtot =

∏
i
Wi, with Wi the Rosenbluth weight of individual polymers.

Unless explicitly noted, all simulations were performed with both mobile receptors and ligand anchors. For a single guest -
surface interaction, if the dynamical distribution of mobile ligand positions on each guest matches the distribution of fixed
ligands on an ensemble of guests and ergodicity is obeyed, the mobile and immobile cases will result in the same average
interaction free energy:

Fmobile = −kBT log
〈
e−βF

fix(ra)
〉

ra
, [59]

where F fix(ra) is the free energy for given guest with anchor positions ra. When averaged over an ensemble of guests with
different random distributions of ra we recover the free energy obtained for a single guest with mobile anchors Fmobile. The
same argument holds for receptor mobility.

Monte Carlo sampling of valence-limited interactions. Valence limited interactions are employed similarly to polymer adsorption
model in Ref. (3). Further examples of modelling valence limited interactions can be found in Refs. (1, 15, 16).

The last blob in a polymer chain carries a ligand. Hence, guest particle can be viewed as having multiple ligand arms that
can “grab” the receptors. The ligand carying blob is identical to other blobs except that it can attach to receptors with binding
free energy εij + Ubond, where εij is a constant interaction matrix specifying interactions between all ligand/receptor types.
Tethering potential Ubond = Utether (Eq. (58)) captures the bond stretching penalty. Binding is valence limited, one receptor
can bind to only a single ligand and vice versa. Receptors are modelled as immobile point-like objects that are randomly
distributed on a hard impenetrable surface, there are no interactions between blobs and receptors other then ligand-receptor
binding.

A particular state in our simulations is determined by the vector positions of all blobs and arrangement of ligand-receptor
bonds. For efficient sampling of states we employ two types of Monte Carlo moves: particle insertion/deletion moves, and
single blob/particle translational moves integrated with ligand-receptor binding. Only non-bound guests can be inserted or
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Fig. S9. Simulation snapshot outlining the multivalent guest particle model. The particle is the large sphere, 10 white anchoring points are fixed on the particle’s surface. Each
anchor has a polymer tethered to it, where polymers are modelled as a series of red blobs connected into a chain. The last blob represents the ligand. 2 distinct ligand types
are shown coloured cyan (type 1) or blue (type 2).

deleted. Each adsorption simulation started with an empty box and lasted for about ≈ 1010 MC cycles, where in each cycle we
randomly select to either insert or delete a particle (with probability pins−del = 1/(mNb + 1)) or move a single blob (with
probability phop = mNb/(mNb + 1)), with mNb the total number of blobs per guest. In the adsorption simulations the average
number of bound guest particles was determined by averaging over the second half of the simulation run time.

In order to speed up the sampling of the polymer conformations the binding between ligands and receptors is integrated
within the blob translational moves. This overcomes the bottleneck which arises when individual blobs are strongly bound to
surface receptors. A ligand blob is chosen uniformly at random and all its ligands are made unbound. The binding partition
function which counts all possible binding arrangements of ligand i is a sum over all receptors

qoi = 1 +
∑
j

e−β(εij+Ubond(r)) . [60]

with the bond stretching penalty given by Ubond = Utether Eq. (58). The first term on the right (1) captures the unbound
ligand state. In our simulation implementation only free receptors within a distance cutoff rbondcut = 5rb are considered. A
new trial position for the given blob is considered and its new internal binding partition function qnb is calculated. The move is
then accepted with probability

po→n = min
[

1, q
n
b

qob
eβ(Uo−Un)

]
, [61]

where Uo and Un are the old and new potential energies of the system determined by Eqs. (55, 56, 57, 58). Regardless
of whether the move was accepted or not the blob of interest is still unbound. We now randomly choose a binding state
proportional to its Boltzmann weight directly from the partition function qoi (rejected move) or qni (accepted move).

8. Free energy derivation for immobile receptors

In the case of mobile receptors the expression for the bound partition function of a multivalent particle to the receptor decorated
membrane is given by Eq. (39). Here we show that the same expression is obtained as an expected value even when receptors
have fixed positions (for example, due to being attached to the cytoskeleton), provided that receptors are randomly distributed
and the surface coverage with guest is small.

We start with the bound partition function of a multicomponent guest binding to a receptor decorated host surface. The
positions of receptors and ligands are designated with vectors rR and rL, respectively, nR and m are the total number of
receptors and ligands, respectively. As before, we will denote individual ligands with a prime i′ and individual receptors with j′
, therefore, rj′ designates a position of receptor j′ and ri′ a ligand i′ position. We will use a convention that a prime on a
script i′ denotes a particular binder, while a standard subscript i refers to the type of a binder.

The partition function counting all possible binding configurations for fixed positions of receptors and ligands is a sum over all
possible number of bonds λ, and a sum over all possible configurations with λ bonds, s(λ). The

∏
i′j′(s) e

−β∆Gij e−β∆Gcnf (ri′ ,r
a
i′ )

is the Boltzmann factor, with ∆Gcnf (ri′ , rai′) the configurational contribution to the bond already discussed in detail above.
We have assumed that individual bonds are uncorrelated and the Boltzmann factor is factorised by individual bonds i′j′(s)
present in the given binding configuration s. The pair {i′j′} defines a bond. We implicitly assume an existence of an indicator
function mapping any individual i′ or j′ to their type i or j; we write ∆Gij , not ∆Gi′j′ .
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The bound partition function of a single ligand linker grafted at position rai′ and bound to a specific receptor j′ is

qb(rai′ ; rj′) = e−β∆Gij e−β∆Gcnf (rj′ ,r
a
i′ ). [62]

In the bound state the location of the ligand position ri′ = rj′ is the same as the location of the receptor. Similarly to the
mobile receptor case above Eq. (25), we proceed by integrating the ligand anchor point over the particle surface, the bound
partition function of a ligand of type i bound to receptor j′ with the (nano)particle at position rnp is

qib(rnp; rj′) =
∫
C

qb(rai′ ; rj′)drai′ = e−β∆Gij
∫
C

e−β∆Gcnf (rj′ ,r
a
i′ )drai′ , [63]

with
∫
C
an integral over the particle surface and an index i only means that, when integrated over the particle surface, any

ligand of type i will yield identical bound partition function. The unbound partition function qiu is not affected by receptor
mobility and is given by Eq. (26) derived above for the mobile receptors case. The ratio of partition functions determines the
ratio of probabilities of ligand i being bound to a particular receptor j′ to being unbound

pij
′

bound
piunbound

=
qib(rnp; rj′)
NAqiu

= e−β(∆Gij+∆G̃cnf (rj′ ,rnp)) . [64]

Note that this ratio depends on the exact position of the particle rnp, not only on the particle height h. We have used the
Avogadro’s number NA in the denominator because qiu was defined with molar units Eq. (26) via the standard concentration ρ0.
e−β∆G̃cnf (rj′ ,rnp) is the integrated configurational cost of forming a bond to a receptor j′ with respect to the unbound state,
for a particle at position rnp.

The partition function of the whole particle at position rnp, normalised by the unbound particle in the solution can be
written as

Q(rnp, rR, )
Q(h =∞) = Qb(rnp, rR) =

m∑
λ=0

∑
s(λ)

exp

 ∑
{i′j′}(s)

−β
(
∆Gij + ∆G̃cnf (rj′ , rnp)

) , [65]

a sum over all possible number of bonds λ, a sum over all possible bonding configuration s(λ) specifying which ligand is bound
to which receptor, and finally a sum inside the exponential over all formed bonds {i′j′} to obtain the free energy of the bonding
configuration, relative to the unbound state.

Integrating over lateral positions of the particle we obtain the average bound partition function for fixed receptors and a
particle at height h above the surface

Qb(h, rR) = 1
S

∫
S

Qb(rnp, rR)δ(znp − h)drnp [66]

= 1
S

∫
S

m∑
λ=0

∑
s(λ)

exp

 ∑
{i′j′}(s)

−β
(
∆Gij + ∆G̃cnf (rj′ , rnp)

) δ(znp − h)drnp ,

where the delta function δ(znp − h) keeps the particle at specified height h. This is a very hard expression to evaluate: firstly,
we must explicitly consider all possible bonding arrangements for each and every particle position rnp, we cannot assume
independent binding as in the mobile case Eq. (30) because a ligand bound to specific receptor j′ will prevent another ligand
from binding to the same receptor. Secondly, we must integrate over the whole surface.

To form a connection between mobile and immobile receptors we essentially make use of the ergodic hypothesis: the time
average of mobile receptors binding to a guest particle (and hence the spatial average over all receptor positions) will be the
same as the spatial average over all possible particle positions on the surface with immobile, but randomly distributed receptor
positions

1
Sn

∫
Sn

(drR)nQb(rnp, rR) ≈ 1
S

∫
S

drnpQb(rnp, rR) , [67]

with n the total number of receptors within the surface S. For an infinitely large surface the two integrals will yield an identical
result, on the other hand, in a finite sized system with a given rR the relation is only approximate. However, the integral over
mobile receptors (left hand side of Eq. (67)) will always yield an expected value for 〈Qb(h, rR)〉 if only the number density of
immobile receptors, but not their exact positions rR, is known.

In the following, we will focus on evaluating the left hand side integral Eq. (67) for an infinitely large surface and prove that
it equals to Eq. (30), in this way we also show how a mobile receptor system can be derived by starting from fixed receptor
positions rR. The integral over all receptor positions factorises

Qb(h) = 1
Sn

∫
Sn

(drR)nQb(rnp, rR) [68]

=
m∑
λ=0

∑
s(λ)

∏
{i′j′}(s)

e−β∆Gij 1
S

∫
S

e−β∆G̃cnf (rj′ ,rnp)drj′ ,
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we have used Eq. (65) and converted a sum in the exponential into a product of exponentials. Because the integral over receptor
positions decouples, we only need to consider the bound receptors, all unbound receptors contribute a factor of 1 as we use a
normalised Eq. (65) partition function. Using Eq. (64) we recognise the integral on the right hand side is the same as Eq. (28)
defining K̃i(h). Hence, we can write the partition function as

Qb(h) =
m∑
λ=0

∑
s(λ)

∏
{ij}(s)

K̃i(h)
NAS

e−β∆Gij , [69]

which returns a similar expression to Eq. (65), however, explicit dependance on the guest particle and specific receptor positions
has been integrated out. The product can now be factorised over types {ij}. The surface area S should be large enough such
that the probability of a particle forming bonds outside this area is negligible, as we shall see below, the expected value of
Qb(h) depends on the receptor density n

S
, and not on the value of S used in the calculation. Eq. (69) is still very hard to

evaluate because we must consider all possible bonding arrangements between n receptors.
The total number of possible bonding arrangements s(λ) can be written in terms of the multinomial distribution. We define

the number of states Ω for a given number of formed bonds between ij ligand/receptor types λij . Note that λ is a matrix. The
partition function is a sum over all possible matrices λ

Qb(h) =
m∑

λ=0

Ω(λ)e−
∑

ij
βεijλij

. [70]

where, for clarity of expressions below, we have defined an effective bond strength as

e−βεij ≡ K̃i(h)
NAS

e−β∆Gij [71]

and the sum represents a nested sum over all distinct receptor ligand pairs {ij}
m∑

λ=0

[·] =
m1∑

λ11=0

m2∑
λ12=0

· · ·
m1∑

λ21=0

m2∑
λ22=0

. . . [·] [72]

to account for all possible states of distinct bonding arrangements. We note that the maximum term in each sum is set to mi

the number of ligands of type i on the particle, this choice was made for later convenience. As we will see below the density of
states Ω will be defined to vanish whenever the number of bonds exceeds the number of receptors: Ω = 0, if there exists a
receptor type j such that

∑
i
λij > nj .

Single bond type. Let us first solve the problem in the case of a single ligand and receptor type and calculate the bound partition
function

Qb(n,m, ε) =
m∑
λ=0

Ω(λ)e−βελ [73]

we have dropped the functional dependance on h for clarity and write it as a function of the number of receptors n and ligands
m, and the bond strength ε. The dependance on guest height h is implicitly accounted for through ε, which is itself a function
of h Eq. (71). The density of states is given in terms of binomial coefficients

Ω(λ) =
(
n

λ

)(
m

λ

)
λ! [74]

because we need to choose λ bonds out of n receptors, λ bonds out of m ligands and there are λ! ways of binding the chosen
receptors/ligands together. We are focusing on the case of a guest particle binding to a host cell, cell being much larger
than the particle. The most unbiased assumption we can make for randomly distributed receptors on a host cell, is that the
distribution of receptors will be Poisson † distributed within every chosen surface S. Therefore, we now Poisson average the
partition function Eq. (73) over the number of receptors

Qb(ñ,m, ε) =
∞∑
n=0

e−ññn

n! Q(n,m, ε)

= e−ñ
∞∑
n=0

ñn

n!

m∑
λ=0

(
m

λ

)
e−βλε

n!
(n− λ)!

= e−ñ
m∑
λ=0

(
m

λ

)
e−βλε

∞∑
n=0

ñn

(n− λ)! , [75]

†strictly, the distribution will be binomial
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where in the second line we have inserted Eq. (74) and in the third line we have swapped the summation order, which is
allowed as the variables n and λ are independent. ñ = cS denotes the mean number of receptors in area S and c is the overall
concentration. The last sum can be rewritten by introducing x = n− λ

∞∑
n=0

ñn

(n− λ)! = ñλ
∞∑

x=−λ

n̄x

x! = ñλeñ , [76]

which is simply a Taylor expansion for the exponential function because terms with negative x are automatically zero by the
definition of the factorial (or Γ) function. Inserting into Eq. (75) we get

Qb(ñ,m, ε) =
m∑
λ=0

(
m

λ

)
ñλe−βλε , [77]

a binomial expansion for the function
Qb(ñ,m, ε) = (1 + ñe−βε)m . [78]

Inserting our definition of ε Eq. (71) we find

Qb(h) =
(
1 + cK̃(h) e−β∆G)m , [79]

which is precisely the expression obtained in the mobile receptor case above, Eq. (30), applied to a single ligand/receptor type.

Multiple components general derivation. We now derive a general expression for the bound state partition function for any number
of different ligand/receptor types. The procedure will be very similar to the one presented above for a single component case.
We will show that

Qb(ñ,m, ε) =
∏
i

(
1 +

∑
j

nje
−βεij

)mi
= 〈Qb(n,m, ε)〉n [80]

where 〈·〉n denotes a Poisson average over all elements in n and ñ = 〈n〉 is the average of receptor compositions. We continue
from Eq. (70)

Qb(n,m, ε) =
m∑
λ

Ω(λ)e−
∑

ij
βεijλij

, [81]

where the sum represents nested sums
m∑

λ=0

[·] =
m1∑

λ11=0

m2∑
λ12=0

· · ·
m1∑

λ21=0

m2∑
λ22=0

. . . [·] [82]

with the number of states Ω given by a product of multinomial distributions because for each receptor type j we need to choose
how many will bind to different ligand types i. Equivalently, we need to choose among mi ligands how many will get attached
to given receptor types i, and repeat the process for each ligand type. Finally, we need to bind ligands and receptors together
and there are

∏
ij
λij distinct ways of connecting them. The density of states is

Ω(λ) =
∏
j

(
nj !∏

i
(λij !) (nj −

∑
i
λij)!

)∏
i

(
mi!∏

j
(λij !) (mi −

∑
j
λij)!

)∏
ij

λij !

=
∏
j

(
nj !

(nj −
∑

i
λij)!

)∏
i

(
mi!∏

j
(λij !) (mi −

∑
j
λij)!

)
. [83]

In the second line we have cancelled out
∏
ij
λij which will be convenient later. A similar form for the density of states has

been derived by Angioletti-Uberti et. al. (16) when calculating interactions between DNA coated colloids.
The Poisson average is a product of Poisson averages over individual receptor types

Q(ñ,m, ε) = 〈Q(n,m, ε)〉n =
∞∑

n=0

[∏
j

(
e−ñj ñ

nj
j

nj !

)
Q(n,m, ε)

]
[84]

where
∑∞

n=0[·] =
∏
j

∑∞
nj=0[·] represents a nested sum over all receptor types j and ñj denotes the mean number of receptors.

Inserting Eq. (81) and Eq. (83) into the above equation we obtain a long expression

Q =
∞∑

n=0

[∏
j

(
e−ñj ñ

nj
j

nj !

) m∑
λ=0

[∏
j

(
nj !

(nj −
∑

i
λij)!

)∏
i

(
mi!∏

j
(λij !) (mi −

∑
j
λij)!

)
e
−
∑

ij
βεijλij

]]
, [85]
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where we can swap the order of summation over n and λ, regroup the terms and cancel out nj ! in the innermost sum to find

Q(ñ,m, ε) =
m∑

λ=0

e−∑ij
βεijλij

∏
i

(
mi!∏

j
(λij !) (mi −

∑
j
λij)!

)∏
j

 ∞∑
nj=0

[
e−ñj ñ

nj
j

(nj −
∑

i
λij)!

] . [86]

Now we have made progress, the innermost sum can be evaluated as the Taylor expansion for the exponential function eñj
by making use of the substitution xj = nj −

∑
i
λij , similarly to Eq. (76) the sum simply reduces to

∞∑
nj=0

[
eñj ñ

nj
j

(nj −
∑

i
λij)!

]
= e−ñj ñ

∑
i
λij

j

∞∑
xj=−

∑
i
λij

[
ñ
xj
j

xj !

]
=
∏
i

ñ
λij
j [87]

as the terms in the sum with negative xj vanish. Inserting this result into Eq. (86) and rearranging the terms we find

Q(ñ,m, ε) =
m∑

λ=0

[∏
i

(
mi!∏

j
(λij !) (mi −

∑
j
λij)!

)∏
i,j

((
ñje
−βεij

)λij)]

=
∏
i

(
mi∑

λi=0

[
mi!∏

j
(λij !) (mi −

∑
j
λij)!

∏
j

((
ñje
−βεij

)λij)])

=
∏
i

(
1 +

∑
j

nje
−βεij

)mi
, [88]

which upon swapping the summation and product can be recognised as the multinomial expansion. Finally, inserting our
definition of ε Eq. (71), we obtain precisely the expression for the partition function that we have previously found Eq. (30)
directly in the grand canonical ensemble for mobile receptors

Q(h; c,m, K̃) =
∏
i

(
1 +

∑
j

cjK̃i(h)e−β∆Gij

)mi
. [89]

We must now only follow the procedure laid out after Eq. (30) to show that multicomponent binding to immobile (but
Poisson distributed) receptors is governed by the same simple expression as in the case of binding to mobile receptors Eq. (39).
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