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SUPPORTING INFORMATION

This Supporting Information is organized as follows:
in Section A we provide details about the glass-forming
models we employed in this work, and the preparation
protocol used to generate our ensemble of glassy samples.
In Section B the first-order expansion in temperature of
an interaction energy is derived, from which the defini-
tion of a LTE Eα emerges. We further explain how we
calculate LTEs numerically, and discuss the generality
of our results. In Section C we present distributions of
the magnitude of forces between particles in our model
glass. In Section D we describe how the LTE field is
processed to give rise to soft spots and to predictions of
ensuing plastic instabilities under shear. In Section E we
explain how we quantify the level of predictiveness of the
LTE field and describe how soft spot maps based on a
normal-mode analysis are constructed.

A. MODELS AND PREPARATION PROTOCOLS

Models — We employ a single glass-forming model
in two-dimensions (2D), and two glass-forming models
in 3D, referred to as the 2DIPL, 3DIPL, and 3DKABLJ
systems, respectively. The 2DIPL model is a 50:50 bi-
nary mixture of ‘large’ and ‘small’ particles of equal mass
m, interacting via radially-symmetric purely repulsive in-
verse power-law pairwise potentials, that follow
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where rij is the distance between the ith and jth par-
ticles, ε is an energy scale, and xc is the dimensionless
distance for which ϕIPL vanishes continuously up to q
derivatives. Distances are measured in terms of the in-
teraction lengthscale λ between two ‘small’ particles, and
the rest are chosen to be λij = 1.18λ for one ‘small’ and
one ‘large’ particle, and λij = 1.4λ for two ‘large’ parti-
cles. The coefficients c2` are given by
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We chose the parameters xc=1.48, n=10, and q=3. The
density was set to be N/V =0.86λ−2; this choice sets the
scale of characteristic T =0 interaction energies to be of
order unity. We emphasize that this model glass-former
does not lie in the proximity of an unjamming point since
it possesses an intrinsic invariance to variations of den-
sity (or pressure), as established by the extensive work of
Dyre et al. [1–3]. Indeed, none of the observables mea-
sured in our simulations or in our analysis depend on
our particular choice of density. The 2DIPL model un-

dergoes a computer-glass-transition at a temperature of
Tg≈0.5ε/kB for the density we chose.

The 3DIPL model is the three-dimensional version of
the 2DIPL. Here we follow the same reasoning in setting
the density and choose N/V = 0.82λ−3. The resulting
glass transition temperature is Tg≈0.52ε/kB .

The 3DKABLJ is the canonical Kob-Andersen binary
Lennard-Jones model [4]. It is a binary mixture of 80%
type A particles and 20% type B particles of equal mass
m, interacting via the following radially-symmetric pair-
wise potential
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where ϕLJ

(
rij
λij

)
= 4εij

[(
rij
λij

)12

−
(
λij
rij

)6
]

is the conven-

tional Lennard-Jones potential. Energies are expressed
in terms of the A-A interaction ε≡ ε

AA
, then ε

AB
= 1.5ε

and ε
BB

= 0.5ε. The interaction length parameters
are expressed in terms of λ ≡ λ

AA
, then λ

AB
= 0.8

and λ
BB

= 0.88. xc = 2.5 is the dimensionless dis-
tance for which ϕ vanishes continuously up to three
derivatives. This condition sets the values of the coef-
ficients c0 = 0.322042855424, c2 = −0.11564551766016,
c4 = 0.014774794872422 and c4 =−0.0006556954772111.
The density was set at N/V = 1.2. With this parameter
set the system undergoes a computer glass transition at
Tg ≈ 0.45ε/kB .

Preparation protocol — We prepared ensembles of
glassy samples for all three models using the following
protocol: first, systems were equilibrated in the high tem-
perature liquid phase at T = 1.0ε/kB . Then, the tem-
perature was instantaneously set to a target value just
below the respective Tg of each model, where the dy-
namics were ran for a duration tanneal = 200τ0, 250τ0 and
50τ0 for the 2DIPL, 3DIPL and 3DKABLJ, respectively.
Here τ0≡

√
mλ/ε is the microscopic units of time. This

short annealing step is necessary to avoid generating un-
physical ultra-unstable glassy configurations that could
occur in an instantaneous quench, and is computation-
ally advantageous compared to a continuous quench at
a fixed quench-rate. After the annealing step we mini-
mized the energy to produce glassy samples by a stan-
dard conjugate gradient method. Using this protocol, we
have generated 5000 independent glassy samples for all
three models, with N=10000 for the 2DIPL system, and
N=2000 for the 3DIPL and 3DKABLJ systems.

B. LOCAL THERMAL ENERGIES

In most of our work we omit particle indices with the
goal of improving the clarity and readability of the text.
We denote Nd̄-dimensional vectors as v, each component



2

pertains to some particle index (e.g. i) and some Carte-
sian spatial component (e.g. ξ). Single, double and and
triple contractions are denoted with ·, :, and

.
:, respec-

tively. For example, the notation ∂3A
∂x∂x∂x

.
: xxx should

be interpreted as
∑
ijkξνυ

∂3A
∂xiξ∂xjν∂xkυ

xiξxjνxkυ, where

i, j, k run over particle indices and ξ, ν, υ run over Carte-
sian spatial components.

We begin with deriving an expression for the thermal
average of a general observable A=A(x) which depends
on the coordinates x, defined here as the displacement
about an inherent state configuration. We denote with
the superscript ‘(0)’ quantities evaluated at the inherent
state x=0 (i.e. at zero temperature), e.g. A(0), and U(x)
denotes the potential energy.

The mean of the observable A is a function of temper-
ature, defined as
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where δU ≡ U − U (0) is the energy variation about the

inherent state energy U (0), and Z̃(T )≡
∫
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)
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is the relevant partition function. δU is expanded to third
order in the coordinates as

δU ' 1
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6U
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where M ≡ ∂2U
∂x∂x is the dynamical matrix, and U ′′′ ≡

∂3U
∂x∂x∂x is the third-order tensor of derivatives of the
potential energy. In what follows we assume that the
scale of characteristic fluctuations of the coordinates is
set by the equipartition theorem, namely 〈x2〉 ∼ kBT ,
and therefore higher order products of coordinates are
much smaller than kBT . With this assumption, we ex-
pand the numerator of Eq. (B.1) as
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as appears in the main text. We stress that the effect
of higher order derivatives of both A and U can also be
explicitly calculated and is of a higher order in T (not
shown).

In this work we study the local thermal energy (LTE),
defined as follows: we focus on potential energy functions
that can be written as a sum over pairwise interactions
U=

∑
α εα, where α labels the different pairs of interact-

ing degrees of freedom. Using Eq. (B.4), we define the
local thermal energy Eα as

Eα ≡ lim
T→0

〈εα〉T − ε
(0)
α

1
2kBT

=
∂2εα
∂x∂x

:M−1 − ∂εα
∂x
·M−1 · U ′′′ :M−1 . (B.5)

Examples of the LTE fields calculated in 2D model
glasses can be found in Figs. 1 and 3 in the main text.
These fields are calculated as follows: we perform a full
diagonalization of the dynamical matrix M calculated
for each glassy sample, and obtain the complete set of
eigenmodes {Ψ`}Nd̄`=1 and their associated eigenfrequen-
cies {ω`}Nd̄`=1, where d̄ is the spatial dimension. We then
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solve the following linear equation for the thermal dis-
placements X ≡−M−1·U ′′′ :M−1 (see main text) using
a conventional conjugate gradient solver

M·X = −
∑
`

U ′′′ :Ψ`Ψ`

ω2
`

(B.6)

Expressions for M and U ′′′ for pairwise potentials are
available in e.g. [5]. Finally, the LTE Eα is calculated for
each interaction α as

Eα =
∑
`

∂2εα
∂x∂x :Ψ`Ψ`

ω2
`

+
∂εα
∂x
·X . (B.7)

The formalism presented above remains valid for sys-
tems in which the potential is written as a sum of 3-body
(or higher) terms, e.g. [6]. In this case U=

∑
α εα, where

now α labels a triple of interacting particles. The same
expression given in Eq. (B.5) would now describe the
LTE associated with the triple α. A key point is that the
forces

fα ≡
∂εα
∂x

(B.8)

have a different form in the case of 3-body interactions
compared to the case of pairwise interactions. In the
latter, if the interaction is radially-symmetric, fα has
the geometry of a dipole vector acting on the pair α, as
illustrated in the left panel of Fig. 1. What is the form of
fα for 3-body interactions? As an example, assume that
the interaction εα = εα(θα) depends upon the angle θα
formed between a triple i, j, k of particles. In this case,
fα is a field with the geometry as illustrated in the right
panel of Fig. 1.

FIG. 1. Left panel: the geometry of fα in the case that εα is
a pairwise radially-symmetric interaction. Right panel: same
as left panel, for the case of a 3-body εα which depends on
the angle between the triple of nodes.

We assert that as long as the interaction potential is
translationally and rotationally invariant (i.e. it only de-
pends on the relative distances and orientations between
the triple α), the associated fα will be of a form which,
when contracted with a slowly-varying field in space, will
pick up contributions that are proportional to the spatial
gradient of the slowly-varying field. The same reasoning
also applies to contractions of slowly-varying fields with
the third-order tensor U ′′′ as well. For these reasons, we

expect LTEs to always filter out collective translational
modes, and therefore be insensitive to the presence of
low-frequency plane-waves, independently of the partic-
ular form of the potential energy.

Finally, we comment on the computational complexity
of our numerical analysis: the bottleneck of the calcula-
tion is the requirement to obtain all the eigenmodes and
eigenvalues of the dynamical matrix. The computational
time of this full-diagonalization is known to scale as N3.
The computational time dedicated to the rest of the anal-
ysis is negligible compared to the diagonalization step. It
is left for future research to investigate whether a partial
diagonalization of the dynamical matrix (which would
simply result in truncated sums in Eqs. (B.6) and (B.7))
would suffice for producing softness maps with compara-
ble predictive powers to those obtained using a full diag-
onalization.

C. DISTRIBUTION OF FORCE MAGNITUDES

In the main text we present a scaling argument ac-
cording to which the distribution of LTEs should fol-

low p(Eα) ∼ E−9/4
α , based on the recent discovery that

the asymptotic form of the distribution of glassy low-
frequency modes in glassy systems follows DG(ω) ∼
ω4 [7]. In this argument, we assume that the magni-
tudes of forces between the glass particles is narrowly
distributed. Here, we present numerical evidence that
validates this assumption: in Fig. 2 we present the dis-
tribution of the magnitude of pairwise forces between
particles in the 3DIPL system, showing that it decays
superexponentially at large values.
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FIG. 2. The distribution of the magnitude of forces between
particles measured for the 3DIPL system shows a superexpo-
nential decay at large values.
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D. IDENTIFYING SOFT SPOTS AND THEIR
DEGREE OF SOFTNESS

To quantitatively analyze the heterogenous spatial dis-
tribution of LTE Eα, we construct coarse-grained 2D map
as follows. Space is discretized into bins of the smallest
size which proved to always include at least two bonds’
center of masses. In our case, it corresponds to a bin size
of 1/40L, with L being the linear size of the simulation
box. The coarse-grained map is then built in two steps.
In the first step, each bond is associated with a bin se-
lected according to the bond’s center of mass and the
absolute value of its LTE contributes to the bin’s value.
In the second step, the map is smoothed out by aver-
aging the bin’s value with the values of all bins in the
first layer of neighboring bins (8 bins in 2D). For easier
processing, bonds with an associated LTE value smaller
than |Eα|=1.1 were omitted. We verified that this choice
does not affect the results, which are sensitive to large
values of |Eα|.

The local maxima of the coarse-grained map were then
extracted. These maxima are identified with soft spots,
as described next. We first analyzed each row of the 2D
maps at a time, where the bins corresponding to a local
maximum were flagged. We repeated the same flagging
procedure for every column. Bins which were flagged
twice were defined as soft spots. As the exact location
of the soft spot within the bin’s area is of no interest, we
define the soft spot location as the bin’s coordinate with
added white noise to avoid discretization effects. We used
the bin’s value as the soft spot score η̂, which describes
the average value of |Eα| in the near vicinity of the soft
spot center.

The LTE of bonds are widely distributed and conse-
quently so are the scores of the soft spots, both within
and between realizations. We therefore adopt the follow-
ing standardized score

∆E =
ηmax

η̂i
, (E.1)

where η̂i is the score of the ith soft spot and ηmax =
maxi [η̂i] evaluated for each realization. Therefore, the
softest spot in each realization has ∆E=1 and not-as-soft
spots are characterized by ∆E > 1, where the deviation
from unity quantifies the degree of softness within each
realization. This standardization allows a consistent nu-
merical analysis per realization, as well as the calculation
of distribution functions based on a large number of re-
alizations. The analysis is based on 5000 independent
realizations, where a few tens of soft spots were detected
per realization. Among these spots, the softest ones —
i.e. those with ∆E close to unity — dominate the plas-
tic response under shearing. For example, there are on
average 25 spots with ∆E ≤2, which according to Fig. 4
(left), predict nearly 70% of the first plastic events.

E. QUANTIFYING PREDICTIVENESS OF
PLASTIC REARRANGEMENTS UNDER SHEAR
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FIG. 3. The probability distribution function of the distance
r (normalized by the bond-length between two small particles
λ, cf. Eq. (A.1) and the text below it) between plastic events
and the center of the nearest soft spot. It is observed that
plastic events occur with high-probability close — within a
few bond-lengths — to soft spots.

Plastic rearrangements — The performed ather-
mal quasi-static shearing simulations followed well-
established two-step protocols of first imposing an affine
simple-shear transformation to the system and then min-
imizing its energy while enforcing Lees-Edwards bound-
ary conditions, see e.g. [8–10]. During these simulations
the energy was used as an indicator of plastic rearrange-
ments/events which were identified with strain precision
up to 10−6 using backtracking methods. The plastic
events were automatically spatially localized by select-
ing the particle with the largest displacement value as a
consequence of the energy minimization step at the oc-
currence of the plastic event.

Quantification — Each glass realization was sheared
until 5 plastic events were triggered. The probability
distribution function of the distance of plastic events to
the nearest spot in space is shown in Fig. 3. It is observed
that plastic events occur with high-probability near soft
spots (corresponding to the peak around 2 bond-lengths).
Consequently, we identify the soft spot which is closest
to the kth plastic event and record its standardized score
∆E for further analysis as described in the manuscript.

Normal-modes maps — To compare the LTE re-
sults with existing methods/results in the literature, we
followed the protocol described in [11] to produce a field
which is based on the 30 lowest normal-modes with
non-vanishing associated energy. By constructing such
normal-modes-based maps, each and every particle in the
system has a score corresponding to a sum over the dis-
placement squared of the modes. We then applied exactly
the same protocol described in Section D in the context
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of the LTE maps to the normal-modes-based maps, where
bonds’ centers of mass were replaced with particle posi-
tions and the LTE absolute values of bonds were replaced
with particles’ scores. The results of the comparison are
presented in the main text.
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