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S1 The linear duplication-transfer-loss model with selection

Let us consider a population of cells whose genomes can host multiple copies of a given gene. In the most
general setting of the model, a cell with k copies of the gene receives more copies via horizontal gene
transfer (HGT) at rate hk (h0 is the HGT rate for cells that lack the gene). Furthermore, the gene copy
number increases via duplications at rate dk, and decreases (via deletion, gene loss, transposon excision,
etc.) at rate lk. The presence of the gene entails a fitness effect sk for the cell, where positive values
of sk correspond to an increase in fitness. If the cell population is large, the dynamics of the gene copy
number can be represented by the following system of differential equations, where nk is the number of
cells harboring k copies of the gene:

dn0

dt
= (g −Θ0)n0 + l1n1 (S1)

dnk
dt

= (g −Θk)nk + lk+1nk+1 + (dk−1 + hk−1)nk−1

where Θk = dk + hk + lk − sk and g is the basal growth rate of the cell population. The basal growth
rate g affects the host population size but not the copy number distribution of the gene. Because we are
interested in the latter, we make g = 0 for simplicity (note that the solution for the general case with
g 6= 0 can be easily recovered by multiplying nk(t) by egt). We further simplify the model by assuming
that each copy of the gene is an independent entity whose dynamics is not affected by the presence or
absence of other copies within the genome, and therefore the total duplication and loss rates are linear
with respect to k. Specifically, dk = kd and lk = kl, where d and l are the duplication and loss rates per
gene copy. In a similar way, we assume that the total fitness contribution linearly scales with the copy
number, so that sk = ks. The arrival of new copies via HGT is independent of the number of copies
already present in the genome, and therefore hk = h. Finally, we rescale all parameters by the loss rate
l, which equals measuring time in units of expected loss events. After rescaling, the parameters of the
model become ρ = d/l for the duplication rate, β = h/l for the HGT rate, and σ = s/l for the fitness
contribution, and the system (S1) becomes:

dn0

dt
= −βn0 + n1 (S2)

dnk
dt

= −(αk + β)nk + (k + 1)nk+1 +
(
ρ (k − 1) + β

)
nk−1

where α = ρ− σ + 1.
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S2 Analytic solution of the model

S2.1 General solution

In order to find a solution of the model, let us introduce the generating function

G(z, t) ≡
∞∑
k=0

zknk(t) (S3)

Taking the partial derivative of the generating function with respect to t and substituting dnk/dt from
eqn. (S2) we obtain:

∂G

∂t
=
dn0

dt
+
∞∑
k=1

zk
dnk
dt

= −βn0 + n1 +
∞∑
k=1

zk
[
−(αk + β)nk + (k + 1)nk+1 +

(
ρ (k − 1) + β

)
nk−1

]
(S4)

After some manipulation, this equation can be rewritten in terms of the generating function as

∂G(z, t)
∂t

= (ρz2 − αz + 1)
∂G(z, t)
∂z

+ β(z − 1)G(z, t) (S5)

The equation of the characteristic curves of (S5) is

dz

dt
= −ρz2 + αz − 1 (S6)

or equivalently
dz

−ρz2 + αz − 1
= dt (S7)

In this equation, the denominator of the left member can be written as

1
−ρz2 + αz − 1

=
1

ρa− a′

(
1

a− z
− ρ

a′ − ρz

)
(S8)

where

a =
α+

√
α2 − 4ρ
2ρ

and a′ =
α−

√
α2 − 4ρ
2

= a−1 (S9)

Note that a and a′ are real and positive as long as σ < (1−√ρ)2, which defines the range of validity of
the solution. In practice, this holds for all genetic parasites and most beneficial genes provided that the
duplication rate is significantly smaller than the loss rate. For a neutral gene or in the absence of selection
(σ = 0) it follows that ρa = 1+ρ+|1−ρ|

2 = max{1, ρ} and a′ = 1+ρ−|1−ρ|
2 = min{1, ρ}. Combining (S7)

and (S8), the characteristic curves can be written as

a′ − ρz
a− z

= ξ e(ρa−a
′)t (S10)

and solving for z,

z =
a′ − a ξ e(ρa−a′)t

ρ− ξ e(ρa−a′)t
(S11)

where ξ is a constant. On the characteristic curves, the differential equation (S5) becomes

dG(t)
dt

= β (z − 1)G(t) = β

(
a′ − a ξ e(ρa−a′)t

ρ− ξ e(ρa−a′)t
− 1

)
G(t) (S12)



4

Equation (S12) admits a solution of the form

G(t) = F (ξ)W (t) (S13)

with F (ξ) an arbitrary function of ξ and W (t) equal to

W (t) = exp

{
β

∫ (
a′ − a ξ e(ρa−a′)t

ρ− ξ e(ρa−a′)t
− 1

)
dt

}
(S14)

A closed expression for W (t) is obtained by solving the integral in eqn. (S14):

W (t) = e(a−1)βt
(
ρe−(ρa−a′)t − ξ

)β/ρ
(S15)

For t = 0 we have G(z, 0) = F (ξ)W (0), from where it follows that F (ξ) = G(z,0)
W (0) . Moreover z = a′−aξ

ρ−ξ ,
according to eqn. (S11). Substituting that into eqn. (S13) it results that

G(z, t) = G

(
a′ − aξ(z, t)
ρ− ξ(z, t)

, 0
) (

ρe−(ρa−a′)t − ξ(z, t)
ρ− ξ(z, t)

)β/ρ
e(a−1)βt (S16)

Replacing ξ(z, t) by its expression in terms of z given by eqn. (S10) we finally get

G(z, t) = G

(
R(t) + z[1− (ρa+ a′)R(t)]

1− zρR(t)
, 0
) (

1− aρR(t)
1− zρR(t)

)β/ρ
e(a−1)βt (S17)

where

R(t) =
1− e−(ρa−a′)t

ρa− a′e−(ρa−a′)t (S18)

and the particular choice for the term G
(
R(t)+z[1−(ρa+a′)R(t)]

1−zρR(t) , 0
)

depends on the initial condition.

S2.2 Solution when the gene is initially absent

In the case of an initial population of size N with no copies of the gene (n0 = N , nk>0 = 0), we have
that G(z, 0) = N and eqn. (S17) becomes

G(z, t) = N

(
1− aρR(t)
1− zρR(t)

)β/ρ
e(a−1)βt (S19)

S2.3 Solution when there are initially K copies per cell

If all cells harbor K copies of the gene (nK = N , nk 6=K = 0), the initial condition G(z, 0) = NzK applied
to eqn. (S17) leads to

G(z, t) = N

(
R(t) + z[1− (ρa+ a′)R(t)]

1− zρR(t)

)K (1− aρR(t)
1− zρR(t)

)β/ρ
e(a−1)βt (S20)

In the asymptotic limit t→∞ the function R(t)→ (ρa)−1 and the generating function coincides, except
for a multiplicative constant, with the case of an initial population free of parasites.
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S3 Distribution of the gene copy number

S3.1 Generating function

In order to study the distribution of the gene copy number, it is useful to define the function

H(z, t) ≡ G(z, t)
G(1, t)

(S21)

The function H(z, t) is the generating function associated to the gene copy number distribution:

H(z, t) =
G(z, t)
G(1, t)

=
∑∞
k=0 z

knk(t)∑∞
k=0 nk(t)

=
∞∑
k=0

zk
nk(t)∑∞
i=0 ni(t)

=
∞∑
k=0

zkpk(t) (S22)

where pk(t) = nk(t)P∞
i=0 ni(t)

is the fraction of cells in the population that have k copies of the gene at time t. If
the gene is initially absent from the population, the generating function for the copy number distribution
is obtained from eqn. (S19)

H(z, t) =
(

1− ρR(t)
1− zρR(t)

)β/ρ
(S23)

S3.2 Copy number distribution: explicit expression

The copy number distribution is recovered from its generating function by expanding eqn. (S23) as a
series of z and extracting the coefficients.

H(z, t) =
(
1− ρR(t)

)β/ρ( 1
1− ρR(t)z

)β/ρ
=
∞∑
k=0

(
1− ρR(t)

)β/ρ
Ck(β/ρ)

(
ρR(t)

)k
zk (S24)

where

Ck(x) =

∏k−1
j=0 (x+ j)

k!
=

1
k!

Γ(k + x)
Γ(x)

(S25)

Therefore, the fraction of cells with k copies of the parasite, pk, is given by

pk(t) =
(
1− ρR(t)

)β/ρ (ρR(t)
)k

k!
Γ(k + β/ρ)

Γ(β/ρ)
(S26)

The limit t→∞ provides the asymptotic copy number distribution:

lim
t→∞

pk(t) =
(
a− 1
a

)β/ρ
a−k

k!
Γ(k + β/ρ)

Γ(β/ρ)
(S27)

which is valid in the range σ < (1−√ρ)2 , ρ > 0.
A case of particular interest corresponds to the absence of selection σ = 0. In such a neutral scenario,

the copy number converges if ρ < 1 and adopts the following asymptotic distribution:

lim
σ→0
t→∞

pk(t) = (1− ρ)β/ρ
ρk

k!
Γ(k + β/ρ)

Γ(β/ρ)
(S28)

Genetic elements with a strict non-proliferative dynamics (ρ = 0) represent a special case in which
the copy number follows a Poisson distribution with mean β

(1−σ) . In the limit ρ → 0, the asymptotic
expression of the generating function becomes:

lim
ρ→0
t→∞

H(z, t) = e
β(z−1)
1−σ (S29)
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The copy number distribution is obtained from the coefficients of the power series expansion of the
exponential function:

lim
ρ→0
t→∞

pk(t) = e−
β

1−σ
1
k!

(
β

1− σ

)k
(S30)

This expression is valid provided that σ < 1.

S3.3 Average copy number

The average copy number is obtained from the generating function as

〈k(t)〉 ≡
∞∑
k=0

kpk(t) =
∂H(z, t)
∂z

∣∣∣∣
z=1

(S31)

which for the expression of H(z, t) given by eqn. (S23) becomes

〈k(t)〉 = H(z, t)
β R(t)

1− zρR(t)

∣∣∣∣
z=1

=
β R(t)

1− ρR(t)
(S32)

Substituting R(t) by its expression in (S18) we obtain

〈k(t)〉 =
β
(

1− e−(ρa−a′)t
)

ρ(a− 1) + (ρ− a′) e−(ρa−a′)t (S33)

S3.3.1 Neutral genes (σ = 0)

In a neutral scenario, σ = 0⇒ a = max{1, 1/ρ}, a′ = min{1, ρ} and the mean copy number becomes

〈k(t)〉 =
β

ρ− 1

(
e(ρ−1)t − 1

)
(S34)

Three asymptotic regimes are possible depending on the value of ρ:

• If ρ > 1 (duplication bias), then 〈k〉 ∼ β
ρ−1e

(ρ−1)t, and the gene copy number explodes.

• If ρ = 1 (unbiased scenario), then taking the limit ρ → 1 we get 〈k〉 = βt, and the gene copies
accumulate in the genome at a constant rate.

• If ρ < 1 (loss bias), them 〈k〉 → β
1−ρ , and the gene reaches a stable abundance in which losses are

compensated by transfer of new copies.

S3.3.2 Deleterious genes (σ < 0)

In this case it always holds that ρa − a′ > 0 and a > 1. Regardless of the value of ρ, selection prevents
unlimited proliferation of deleterious genes. The asymptotic value of the mean copy number is

〈k〉 =
β

ρ(a− 1)
(S35)

This expression is still valid if ρ = 0, and it takes the value 〈k〉 = β
1−σ .
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S3.3.3 Beneficial genes (σ > 0)

The solution of the model can be applied to beneficial genes provided that 0 < σ < (1 −√ρ)2. In such
case, the copy number reaches a stable asymptotic value if and only if ρ < 1, i.e. if there is a bias towards
losses. The mean copy number is given by eqn. (S35), that is, it follows the same expression as in the
case of deleterious genes.

S3.4 Fraction of genomes without the gene

The fraction of genomes that do not have any copy of the gene is obtained from the generating function
as

p0(t) = H(0, t) = (1− ρR(t))β/ρ (S36)

In the asymptotic limit t→∞

lim
t→∞

p0(t) =

{ (
a−1
a

)β/ρ if σ < 0 or ρ < 1
0 otherwise

(S37)

In the particular case of a neutral gene in a loss biased scenario (σ = 0, ρ < 1), the asymptotic fraction
of genomes without the gene is p0 = (1− ρ)β/ρ.

S3.5 Characteristic time to equilibrium

Here we investigate how long it takes for a gene to reach the mean copy number described above after
a perturbation. In the neutral scenario with loss bias (σ = 0, ρ < 1), the time-dependent term for the
mean copy number decays exponentially as e−(1−ρ)t (eqn. S34). Therefore, the characteristic time for the
relaxation to the equilibrium is τ = (1− ρ)−1, where τ is measured in units of l−1.

The case with selection is less simple due to the presence of the exponential term in the denominator of
eqn. (S33). The equibrium is only approximately approached through an exponential decay if

∣∣∣ ρ−a′ρ(a−1)

∣∣∣�
1. Nevertheless, it is still possible to define a characteristic time as τ = (ρa − a′)−1, where, again, the
time τ is measured in units of l−1.

S3.6 Multiple gene families with equivalent biological properties

Let a and b be two gene families and let Ha and Hb be the generating functions for the copy number
distribution of each family. The fraction of genomes with k copies of gene a is denoted by pk,a, whereas the
fraction of genomes with k′ copies of gene b is denoted by pb,k′ . Because the linearity of the duplication-
transfer-loss model, the copy numbers of a and b are independent random variables. Accordingly, the
distribution of the sum copy number, pa+b,k, is given by the convolution of the copy number distributions
pa,k and pb,k′ . In terms of the generating function, the convolution of two distributions is given by the
product of their generatig functions:

Ha(z, t)Hb(z, t) =

( ∞∑
k=0

zkpa,k(t)

)( ∞∑
k′=0

zk
′
pb,k′(t)

)
=

=
∞∑
m=0

zm

(
m∑
k=0

pa,k(t) pb,m−k(t)

)
=
∞∑
m=0

zm pa+b,m(t) = Ha+b(z, t) (S38)

The generating function Ha+b describes the fraction of genomes with a total of m copies, pa+b,m, adding
those from both gene families.
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Let us now consider M families with the same values of σ and ρ (and therefore a and a′). The
transfer rate β does not need to be the same for all families; there are instead M possibly different values
βi (with i = 1, . . . ,M) one for each gene family. The generating function for the total copy number, HT ,
is obtained from eqn. (S23) as

HT (z, t) =
M∏
i=1

Hi(z, t) =
(

1− ρR(t)
1− zρR(t)

)PM
i=1 βi/ρ

(S39)

In consequence, all the results presented above remain valid if we deal with a pool of similar gene families.
The expressions for the pool of genes are obtained by making β =

∑M
i=1 βi, that is, by inferring the total

transfer rate as the sum of the transfer rates of each individual gene family. A practical implication is that
the model parameters estimated from genomic data and the conclusions extracted from those estimates
do not depend on the sequence similarity thresholds used to define gene families, as long as the members
of the same family have similar selection to loss and duplication to loss ratios.

S3.7 Copy number distribution when the initial population has K copies per
cell

Following section S2.3, we present here the generating function that describes the transient dynamics of
the copy number distribution when all cells in the population initially carry K copies of the gene. Using
equations (S20) and (S21), the generating function for the copy number distribution becomes

H(z, t) =
(
R(t) + z[1− (ρa+ a′)R(t)]

1 + (1− ρa− a′)R(t)

)K ( 1− ρR(t)
1− zρR(t)

)K+β/ρ

(S40)
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S4 Equivalence between neutrality and selection

S4.1 Equivalence of the asymptotic distributions

Upon normalization by the loss rate, the duplication-transfer-loss model with selection is characterized by
three parameters: the duplication to loss ratio ρ, the HGT to loss ratio β, and the selection to loss ratio
σ. To simplify notation, we defined the composite parameter a, which absorbs the effects of selection.
In the stationary state, the copy number distribution is described by eqn. (S27), which depends on ρ, β,
and a. It is easy to see, however, that the same copy number distribution can be expressed as a function
of only two parameters:

pk = (1− φ)ψ
φk

k!
Γ(k + ψ)

Γ(ψ)
(S41)

where we defined

ψ = β/ρ (S42)
φ = 1/a

There are infinite combinations of the model parameters ρ, σ and β that result in the same ψ and φ,
and any of those combinations will generate the same copy number distribution in the stationary state.
Such degree of freedom makes it impossible to determine the model parameters only from an observed
distribution, without prior knowledge of at least one of the parameters. Conversely, it implies that
genes with different fitness effects, duplication rates and HGT rates may exhibit identical copy number
distributions.

The equivalence of copy number distributions also affects the distinction between neutral genes and
genes whose copy number is under selection (henceforth denoted as “selected” genes). To illustrate this
point, let us rename the parameters of the model in the absence of selection (σ = 0) as ρeq and βeq.
Comparing the expressions in (S28) and (S41) it is clear that the distributions of selected and neutral
genes are identical, as long as ψ = βeq/ρeq and φ = ρeq. Therefore, there is an equivalence between
the asymptotic distributions of neutral and selected elements, that in terms of the model parameters is
expressed by

β/ρ = βeq/ρeq = ψ (S43)
1/a = ρeq = φ

Extracting σ from a, the second expression in (S43) can be written as

σ =
(1− ρeq)(ρeq − ρ)

ρeq
(S44)

Given a set of parameters estimated from genomic parasite distributions (typically under the assump-
tion of neutrality), the expressions (S43-S44) can be used to re-estimate the fitness cost, proliferation
rate and transfer rate under a general scenario with selection (or vice versa), provided that there is prior
knowledge on the value of at least one of those parameters.

The equivalence between the stationary copy number distributions of neutral and selected parasites
also holds in the special case ρ = 0 described by eqn. (S30). In a strict non-proliferative scenario, the
stationary copy number distribution can be described by a single parameter ϕ = β

(1−σ) = βeq. Any
combination of β, σ and βeq that yields the same value of ϕ produces the same stationary distribution.
Importantly, distributions of neutral genes with ρeq = 0 can only be matched to distributions of selected
genes with ρ = 0 and vice versa. As a result, the cases ρ = 0 and ρ > 0 are mutually distinguishable
regardless of the presence or lack of selection.
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S4.2 Equivalence of transient distributions

Let us consider the transient distribution given by eqn. (S26). Now let us suppose that we have access to a
population for which we do not have any knowledge on the time variable t. The copy number distribution
for such population will have the form:

pk = (1− Φ)ψ
Φk

k!
Γ(k + ψ)

Γ(ψ)
(S45)

where ψ = β/ρ as before and Φ = ρR(t). In general, the value of Φ grows from Φ = 0 when t = 0
to Φ = a−1 when t → ∞. Comparing eqn. (S41) and (S45) it is clear that the family of distributions
that describe the transient states is the same as the family of stationary distributions. As a result, it is
impossible to say if a population has reached the stationary state just by looking at a single snapshot of
the copy number distribution.

S4.3 Recovery time after perturbations

Beyond their equivalence in terms of the copy number distribution, the dynamics of neutral and selected
genes have different characteristic times that may allow distinguishing them after a perturbation. Fol-
lowing Section S3.5, the characteristic time is τeq = (1 − ρeq)−1 for a neutral gene and τ = (ρa − a′)−1

for a gene under selection. In the case of two genes with the same stationary distribution we have

τ

τeq
=

1− ρeq
ρa− a′

=
a− 1

a(ρa− a′)
=

1− ρ− σ +
√

(1 + ρ− σ)2 − 4ρ√
(1 + ρ− σ)2 − 4ρ

(
1 + ρ− σ +

√
(1 + ρ− σ)2 − 4ρ

) (S46)

which tends to 1 in the limit σ → 0. The derivative of this expression with respect to σ has the form

d(τ/τeq)
dσ

=
1− ρ− σ

((1 + ρ− σ)2 − 4ρ)3/2
(S47)

For ρ < 1, the quotient τ/τeq monotonically increases with σ in the whole range of validity of the solution,
with τ/τeq = 1 for σ = 0. As a result, deleterious genes reach their stationary state faster than their
“equivalent” neutral genes, whereas beneficial genes are slower. For ρ > 1, only deleterious genes reach
a stationary state. In that case the quotient τ/τeq has a minimum at ρ = 1− σ, where it takes the value

τ/τeq =
(

2− 2σ + 2
√
σ(σ − 1)

)−1

< 1/2. Again, deleterious genes reach the stationary state faster than
their equivalent neutral genes.
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S5 Maximum likelihood estimation of the duplication to loss
ratio

In this section we obtain a maximum likelihood estimate of the parameter ρ using the copy number of
genes that are present in a single genome within an ATGC (henceforth called ORFans). It is reasonable to
assume that those genes are the result of a single HGT event to the recipient genome and that multiple
copies are the result of duplication events. Based on such assumptions, we first obtain the likelihood
function for ρ given a collection of ORFans, their copy numbers and the time since the last branching
event in the phylogenetic tree. Then we describe how the likelihood-based approach was implemented to
estimate ρ from the genomic dataset.

S5.1 Likelihood function

To derive the expresion of the log-likelihood we need the probability P (ki|ρ, ki > 0) that ki copies of an
element i are present in a genome, conditioned to the existence of at least one copy. Conditioning on the
time when the element arrived in the genome we can write:

P (ki|ρ, ki > 0) =
∫ ∞

0

P (ki|t, ρ, ki > 0)P (t|ρ, ki > 0)dt (S48)

The first term in the integral is equal to

P (ki|t, ρ, ki > 0) =
P (ki|t, ρ)

1− P (0|t, ρ)
(S49)

The second term in the integral is obtained applying the Bayes theorem to the probability that at least
one copy of the element persists in the genome after a time t:

P (t|ρ, k > 0) =
P (ki > 0|t, ρ)P (t)∫∞

0
P (ki > 0|u, ρ)P (u) du

(S50)

where the integral in the denominator is done with respect to the time variable u. Assuming that the
element arrived after the last branching event in the phylogenetic tree, we take a non-informative prior
P (u) = 1/Ti in the interval 0 ≤ u ≤ Ti, where Ti is the time since the last branching event. With this
assumption, equation (S50) becomes

P (t|ρ, k > 0) =
1− P (0|t, ρ)∫ Ti

0
(1− P (0|u, ρ)) du

(S51)

The expression for P (ki|ρ, ki > 0) results from combining equations (S48), (S49), and (S51)

P (ki|ρ, ki > 0) =

∫ Ti
0
P (ki|t, ρ) dt∫ Ti

0
(1− P (0|t, ρ)) dt

(S52)

Because we assume that genes that are present in a single genome within an ATGC (ORFans) are the
result of a single HGT event, the expression for P (ki|t, ρ) can be derived from a duplication-transfer-loss
process with β = 0 and initial condition pk(0) = δ1,k. A series expansion of equation (S40) with β = 0
provides, in the neutral limit σ → 0, the result

P (0|t, ρ) = p0(t) = R(t) (S53)

P (k|t, ρ) = pk(t) = (1−R(t)) (1− ρR(t)) (ρR(t))k−1 (S54)
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where

R(t) =
1− e−(1−ρ)t

1− ρe−(1−ρ)t (S55)

Given a set of ORFans as the ones described above, i ∈ I, with copy number ki, and being Ti the length
of the terminal branch leading to the host genome in the phylogenetic tree, the loglikelihood function for
the paremeter ρ becomes

LL(ρ) =
∑
i∈I

log

[∫ Ti

0

(1−R(t)) (1− ρR(t)) (ρR(t))ki−1

]
−
∑
i∈I

log

[∫ Ti

0

(1−R(t))

]
(S56)

S5.2 Practical implementation

Because the parameters of the model were normalized by the loss rate, the appropriate units for the
branch lengths Ti in eqn. (S56) are those corresponding to the gene loss time scale. Accordingly, we used
the branch lengths provided by the software COUNT, which are based on gene copy number divergence
due to duplication, loss and transfer events. Moreover, we added a second variable ω to the likelihood
function that accounts for the proportionality between the time scale at which genes are lost and the
average time scale at which the gene copy number diverges in sister lineages. Specifically, if Bi is the
branch length provided by COUNT, we made Ti = ωBi and maximized the function

LL(ρ, ω) =
∑
i∈I

log

[∫ Biω

0

(1−R(t)) (1− ρR(t)) (ρR(t))ki−1

]
−
∑
i∈I

log

[∫ Biω

0

(1−R(t))

]
(S57)

The maximization of the loglikelihood function LL(ρ, ω) was carried out using the Nelder-Mead simplex
method as implemented in MATLAB R2016b and yielded the estimates ρ = 0.126 and ω = 3.15.
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S6 Model with proliferation bursts

This section explores a modified model in which the duplication-transfer-loss dynamics is punctuated by
bursts of proliferation that occur at exponentially distributed intervals with characteristic time T = 1/φ
and reset the copy number to K. Specifically, we are interested in the mean copy number generated by
such model in the long-term average, which is equivalent to the mean copy number expected for a pool
of genomes with independent burst histories.

The mean copy number averaged in time is equal to

〈〈k〉〉 =
∫ ∞

0

dt

∞∑
k=0

(
k p

(K)
k (t)

)
φ e−φt (S58)

where p(K)
k (t) is the copy number distribution with initial condition p

(K)
k (0) = δk,K and the term φe−φt

denotes the probability that the time interval since the most recent burst is equal to t. To simplify the
calculation, we first obtain the sum term, which corresponds to the time-dependent mean copy number:

〈k(t)〉 =
∞∑
k=0

k p
(K)
k (t) =

∂H(z, t)
∂z

∣∣∣∣
z=1

(S59)

The generating function H(z, t) that corresponds to the initial condition p
(K)
k (0) = δk,K is given by

eqn. (S40). After some manipulation, it results that the time-dependent mean copy number can be
expressed as

〈k(t)〉 = κ1(t) +K κ2(t) (S60)

where

κ1(t) =
βR(t)

1− ρR(t)
(S61)

κ2(t) =
1− (ρa+ a′)R(t)

1 + (1− ρa− a′)R(t)
+

ρR(t)
1− ρR(t)

Substituting this into eqn. (S58), the integral for the time-averaged mean copy number becomes:

〈〈k〉〉 = φ

∫ ∞
0

κ1(t)e−φtdt+Kφ

∫ ∞
0

κ2(t)e−φtdt (S62)

This integral admits a convoluted solution in terms of hypergeometric functions. However, for practical
purposes, its value must be calculated numerically. Note that if the characteristic interval between bursts
is much larger than the characteristic time of the transient dynamics, φ << ρa − a′, it is possible to
approximate this model with exponentially separated bursts by a similar model with regularly separated
bursts. Such approach provides the following approximated value for the average mean copy number:

〈〈k〉〉 ≈ β

ρ(a− 1)
+ φK

ln(a′/ρ)
(a′ − ρ)(a− 1)

− φ β

a′ − ρ
ln
(
ρ(a− 1)
ρa− a′

)
(S63)
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S7 Correlations with effective population size

The effective population sizes (Ne) were inferred for each ATGC as described in (1). In short, non-
synonymous to synonymous nucleotide substitution ratios (dN/dS) were evaluated for each ATGC using
concatenated sequences of core genes. The values of dN/dS were subsequently translated to effective
population sizes by applying the expression dN

dS ≈
Nesc

1−e−Nesc (2), where the selection coefficient of core
genes sc was set such that the effective population size for Escherichia coli is 109.

The correlations between the model parameters and Ne follow the same pattern as those between the
model parameters and genome size. Specifically, there is a significant association between Ne and h/l
(Spearman’s ρ = 0.40, p = 0.017) as well as with the number of ORFan families per genome (Spearman’s
ρ = 0.64, p < 10−4). In contrast, Ne is not associated with d/l (Spearman’s ρ = 0.16, p = 0.35) or with
the fraction of ORFan families with more than one copy (Spearman’s ρ = 0.20, p = 0.26).

To determine which variable, genome size or Ne, is responsible for the trends observed in h/l we
performed a partial correlation analysis. When both variables are considered, the association between
h/l and Ne disappears (p = 0.81), which implies that variations in genome size are the primary cause of
the variations in h/l.
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S8 Supplementary Figures

Figure S1. Non-synonymous to synonymous mutation ratio (dN/dS) for different gene categories. A:
The color intensity represents, in logarithmic scale, the median dN/dS of the ATGC-COGs that belong
to a specific ATGC and category. The cases where the number of informative pairs was too small to
infer the dN/dS are indicated in grey. B: ATGC-wise rank of functional categories according to their
dN/dS. Lower ranks correspond to lower dN/dS. C: Comparison of the dN/dS mean ranks among
functional categories. Circles are the mean ranks, averaged across ATGCs, error bars represent the
standard error of the mean. The horizontal grey lines indicate the theoretical 95% CI expected for the
means of a null model where the dN/dS of all categories follow the same distribution (points
above/below this interval indicate that the dN/dS of a category is significantly higher/lower than
average).
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Figure S2. Selection coefficients in free-living (FL) and facultative host-associated (FHA) microbes,
under the assumption that the intrinsic duplication to loss ratio (d/l) is the same in both lifestyles. The
designations of functional classes in the x-axis are the same as in Figure 1 and Table 1. Error bars were
obtained by combining the 95% CI for the median d/le and the intrinsic d/l. The scale on the left axis
corresponds to a lower estimate using a loss rate d = 5× 10−9 per gene per generation, the scale on the
right axis corresponds to an upper estimate with d = 4× 10−8 per gene per generation.
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S9 Supplementary Tables

Table S1. Contributions of selection and the duplication/loss ratio to the evolution of different 
functional subcategories of genes within category N (secretion and motility).

s (×10−8)

d/le s/l Lower Upper

N, secretion and motility 0.247 0.37 0.19 1.49
N(i), flagellum components 0.261 0.38 0.19 1.54
N(ii), cellulose production and glycosyltransferases 0.141 0.10 0.05 0.39

The table shows the estimated values of the effective duplication/loss ratio (d/le), selection to loss ratio
(s/l) and selection coefficient (s) for different functional categories of genes The s/l values were
calculated assuming an intrinsic duplication/loss ratio d/l = 0.125. Loss rates equal to 5× 10−9 and
4× 10−8 per gene per generation were used to obtain the lower and upper estimates of s, respectively.
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