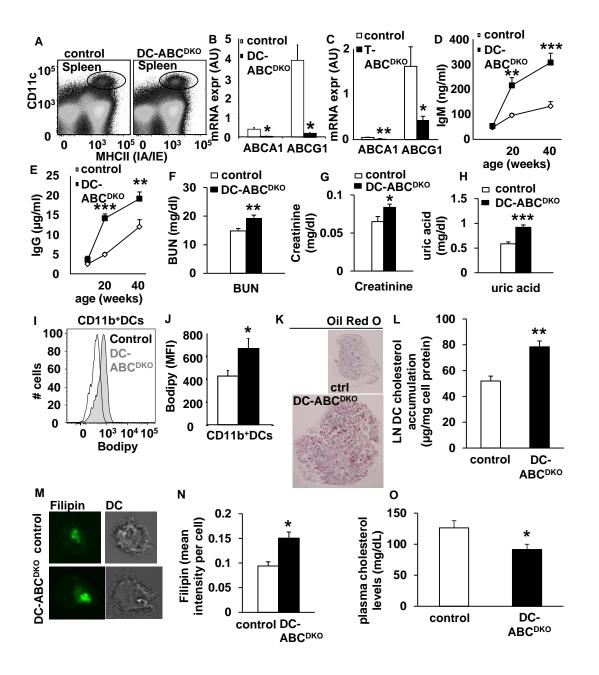
Cell Metabolism, Volume 25


Supplemental Information

Cholesterol Accumulation in Dendritic Cells Links

the Inflammasome to Acquired Immunity

Marit Westerterp, Emmanuel L. Gautier, Anjali Ganda, Matthew M. Molusky, Wei Wang, Panagiotis Fotakis, Nan Wang, Gwendalyn J. Randolph, Vivette D. D'Agati, Laurent Yvan-Charvet, and Alan R. Tall

Supplemental Figures

Figure S1, related to Figure 2. DC-ABC^{DKO} and **T-ABC**^{DKO} mice show >90% and >80% decreased ABCA1 and ABCG1 mRNA expression in dendritic cells (DCs) and **T-cells,** respectively and DC-*Abca1/g1* deficiency induces lipid accumulation in DCs. (A) Gating strategy for isolation of splenic CD45⁺CD115⁻CD11c⁺MHCII⁺ DCs in control and DC-ABC^{DKO} mice. (B) Splenic DCs were sorted by flow cytometry and the *Abca1* and *Abcg1* mRNA expression levels were determined and corrected for the housekeeping gene m36B4. n=6. (C)

Blood CD4⁺ T-cells were sorted by flow cytometry and the *Abca1* and *Abcg1* mRNA expression levels were determined and corrected for the housekeeping gene m36B4. n=4. (**D-E**) Increased plasma levels of IgM (**D**) and IgG (**E**) in DC-ABC^{DKO} mice. n=6-10. (**F-H**) Increased plasma levels of blood urea nitrogen (BUN) (F), creatinine (G), and uric acid (H) in DC-ABC^{DKO} mice. n=10. (I-J) Increased lipid accumulation in splenic DC-ABCDKO CD11b⁺ DCs assessed by BODIPY staining. n=6. (K) Inguinal LNs were embedded in OCT and frozen sections were made and stained for Oil Red O. Lipid accumulation in DC-ABC^{DKO}, but not in control LNs. All sections (n=6) studied showed Oil Red O staining in DC-ABC^{DKO} but not in control LNs. Representative pictures are shown. (L) DC-Abcal/g1 deficiency enhances cholesterol accumulation in DCs. CD11c⁺ cells were isolated from the lymph nodes of control and DC-ABC^{DKO} mice using CD11c positive beads, lipids were extracted, and cholesterol was assessed using an enzymatic assay and corrected for cell protein. n=6. (M-N) Bone marrow cells were differentiated into DCs by treatment with GM-CSF and were stained with filipin. Representative pictures of n=5 fields are shown (M) and filipin staining was quantified (N). (O) Plasma cholesterol levels in 20 week old control and DC-ABC^{DKO} mice fed a chow diet. n=10. Data in **B**, **C-H**, **J**, **L**, **N**, and **O** are presented as mean ± SEM. **P*<0.05, ***P*<0.01, ****P*<0.001, by ttest.

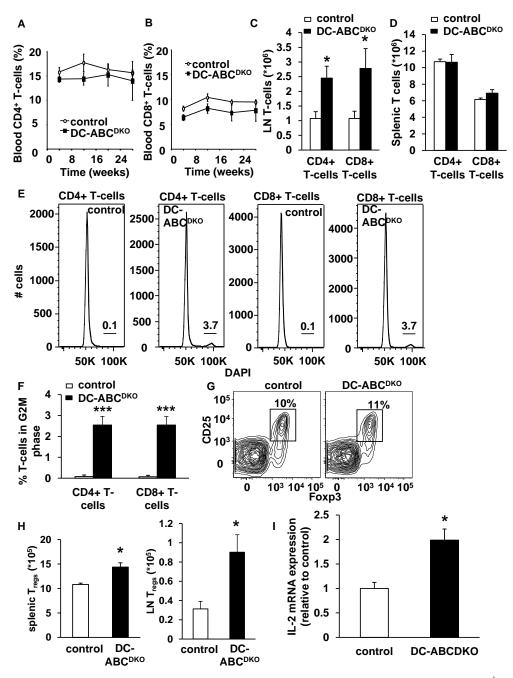
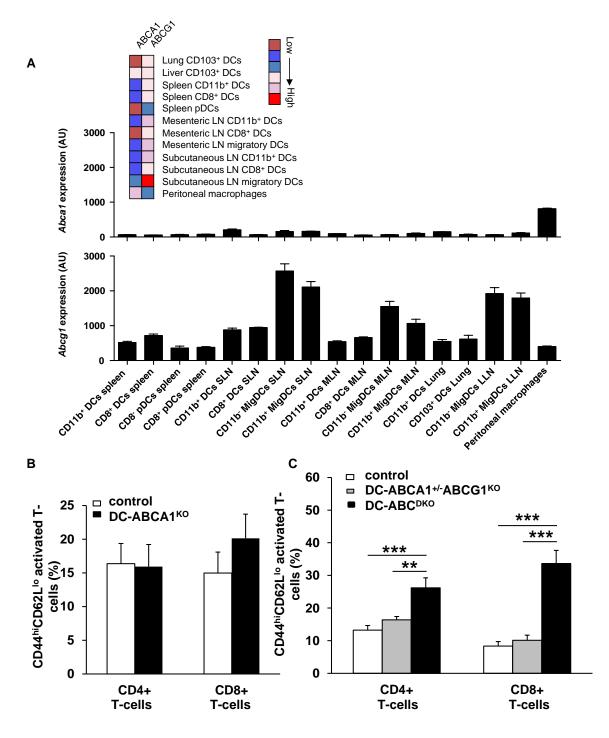



Figure S2, related to Figure 3. Effect of DC *Abca1/g1* deficiency on CD4⁺ and CD8⁺ T-cell numbers, T-cell proliferation, and T_{regs} . CD4⁺ and CD8⁺ T-cell percentage was assessed in blood (A-B), and CD4⁺ and CD8⁺ T-cell numbers in inguinal lymph nodes (C) and spleen (D) n=5-8. All data in (A-D) were measured concurrently with T-cell activation measurements. (E and F) CD4⁺ and CD8⁺ T-cell proliferation was assessed using DAPI in lymph nodes and

calculated in Flow Jo using the Watson model. (**E**) T-cell proliferation graphs. Percentages show cells in the G2M phase. (**F**) Quantification of T-cells in the G2M phase. n=5. (**G**) and (**H**) DC-ABC^{DKO} mice show increased T_{regs} in spleen and lymph nodes. (**G**) Gating strategy. (**H**) Splenic T_{reg} and lymph node T_{reg} numbers. n=7. (**I**) DC-ABC^{DKO} increases IL-2 mRNA in CD4⁺ T-cells. CD4⁺ T-cells were sorted from LNs using flow cytometry, RNA extracted, and IL-2 mRNA levels assessed. Data in **A-D**, **F**, **H**, and **I** are presented as mean ± SEM. **P*<0.05, ****P*<0.001, by t-test.

Figure S3, related to Figure 3. ABCG1 is highly expressed in several DC subtypes but only combined deficiency of ABCA1 and ABCG1 induces T-cell activation. (**A**) Expression of *Abca1* and *Abcg1* in several DC subtypes and peritoneal macrophages as assessed by microarray. Top: heatmap. Bottom: quantification of *Abca1* and *Abcg1* expression. These data were obtained

as part of the Immunological Genome Project. (**B-C**) Combined deficiency of ABCA1 and ABCG1 in DCs is required for the T-cell activation phenotype. (**B**) CD44^{hi}CD62L^{lo} activated CD4⁺ and CD8⁺ T-cells in the blood of control and DC-ABCA1^{KO} mice. n=5. (**C**) CD44^{hi}CD62L^{lo} activated CD4⁺ and CD8⁺ T-cells in the blood of control, DC-ABCA1^{+/-} ABCG1^{KO} and DC-ABC^{DKO} mice. n=5. **B** and **C**, ***P*<0.01, ****P*<0.001, by one-way ANOVA with Bonferroni post-test.

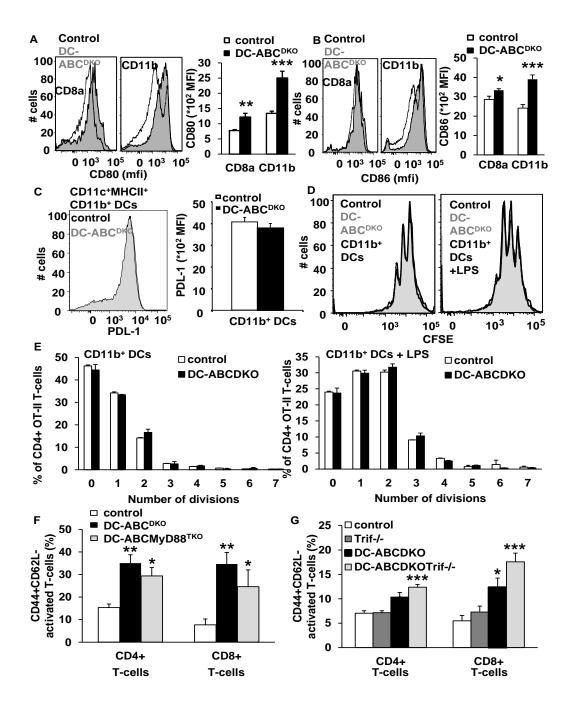


Figure S4, related to Figure 4. DC-*Abca1/g1* deficiency enhances CD80/86 expression, but does not affect PDL-1 surface expression in CD11b⁺ DCs and antigen presentation by CD11b⁺ DCs *in vitro*, and T-cell activation in DC-ABC^{DKO} mice is not due to enhanced MyD88 or Trif signaling. (A-C) CD80 (A) and CD86 (B) surface levels on splenic CD11c⁺MHC-II⁺CD8a⁺ and CD11c⁺MHC-II⁺CD11b⁺ DCs and PDL-1 (C) surface levels on

splenic CD11c⁺MHC-II⁺CD11b⁺ DCs determined by flow cytometry. Representative examples and quantification. n=4-6. **P*<0.05, ***P*<0.01, ****P*<0.001, by t-test. (**D-E**) Bone marrow cells were stimulated with GM-CSF for 8 days to generate CD11b⁺ DCs, incubated with or without LPS for 24 h, and then incubated with OT-II peptide in the presence of CFSE labeled CD4⁺OTII T-cells (ratio DC:T-cells 1:5). CFSE dilution in CD4⁺ T-cells was assessed at 72 h after coincubation. Representative CFSE dilutions are shown (**D**) and quantified using Flow Jo software (**E**). n=4. Mice were fed chow diet for 16-20 weeks (**F** and **G**) and activated CD44⁺CD62L⁻ CD4⁺ and CD44⁺CD62L⁻ CD8⁺ T-cells in blood were measured using flow cytometry. n=6. The experiment was done twice at different timepoints. Data are presented as mean ± SEM. **P*<0.05, ***P*<0.01, ****P*<0.001, compared to control, by one way ANOVA and Bonferroni post-test.

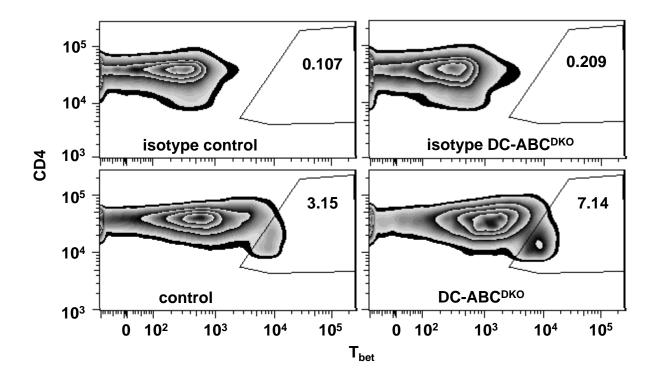


Figure S5, related to Figure 5. Splenic cell homogenates were stained with an antibody to CD4, fixed and permeabilized, and stained for T_{bet} or its isotype control. Representative FACS plots are shown.

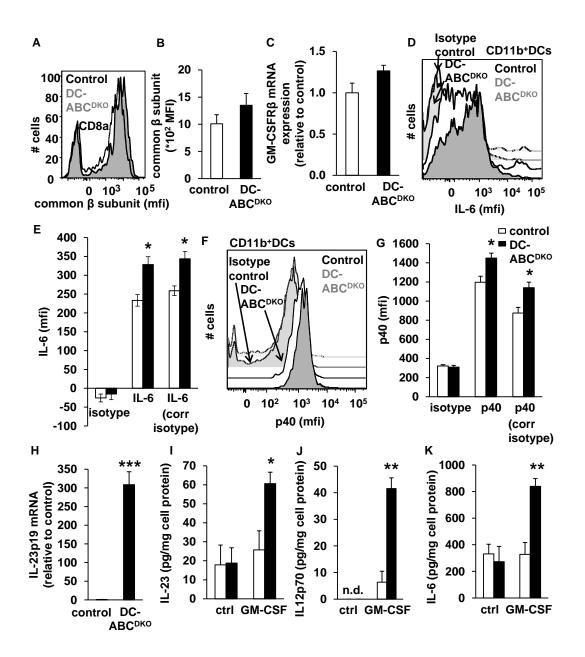
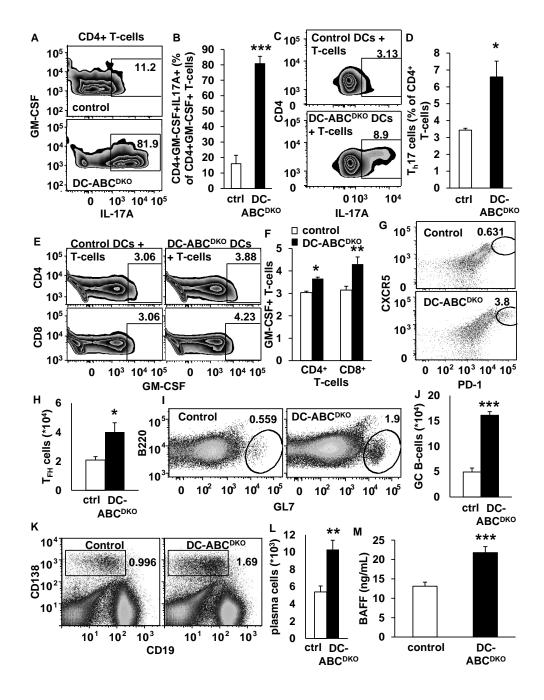



Figure S6 related to Figure 7. DC *Abca1/g1* deficiency does not affect GM-CSFR β surface on CD8a⁺ DCs or GM-CSFR β mRNA expression in CD11b⁺ DCs, but enhances intracellular cytokines in CD11b⁺ DCs, and secretion of interleukins induced by GM-CSF in CD11c⁺ DCs. Spleens were isolated from 20 week old mice. Spleens were isolated (A-B), stained for DC markers in combination with the indicated antibodies, and analyzed by flow cytometry. (A-B) DC-*Abca1/g1* deficiency did not affect the surface level of the common β subunit of the GM-CSF receptor on splenic CD8a⁺ DCs. n=6. (C) CD11c⁺MHCII⁺CD11b⁺ DCs were sorted using flow cytometry, RNA was extracted and GM-CSFR β mRNA levels assessed. n=4. (D-G) Intracellular staining of IL-6 (D, E), and p40 (F, G) in CD11c⁺MHCII⁺CD11b⁺ DCs. FACS plots (**D**, **F**) and quantifications (**E**, **G**) are shown. n=4. (**H**) IL23p19 mRNA levels in CD11c⁺MHCII⁺CD11b⁺ DCs as sorted in (**C**). n=4. (**I-K**) CD11c⁺ cells were sorted from the spleen of 20 week old control and DC-ABC^{DKO} mice using CD11c positive beads and then incubated with or without GM-CSF (20 ng/ml) for 24 h. IL-23 (**I**), IL-12p70 (**J**), and IL-6 (**K**) secretion were assessed and corrected for cell protein. n=4. Data in **B**, **C**, **E**, **G-K** are presented as mean \pm SEM. **P*<0.05, ***P*<0.01, ****P*<0.001, by t-test.

Figure S7, related to Figure 7. DC*-Abca1/g1* **deficiency leads to expansion of several T-cell subsets.** Spleens were isolated from 20 week old mice. (**A-B**) In DC-ABC^{DKO} mice, GM-CSF⁺ T-cells are highly positive for IL17A. Splenic cell homogenates were stained with antibodies to CD4, fixed and permeabilized, stained for GM-CSF and IL17A, and IL17A expression was

assessed in GM-CSF⁺ T-cells. FACS plots (**A**), and quantification (**B**). n=4. (**C-F**) *Abca1/g1* deficiency in DCs stimulates differentiation of T-cells towards T_h17 cells (**C-D**) and GM-CSF⁺ T-cells (**E-F**) in co-incubation experiments of DCs with naïve T-cells. CD11b⁺ DCs were isolated from splenic homogenates of control and DC-ABC^{DKO} mice using CD11b⁺ beads and co-incubated with splenic T-cells of 8 week old wild-type mice. Cells were co-cultured in a DC:T-cell ratio of 1:5 for 5 days and subsequently stained with antibodies to CD4, fixed and permeabilized, stained for IL17A, and T_h17 -cells were assessed (**C-D**). n=4. Alternatively, after co-incubation, cells were stained with antibodies to CD4 and CD8, fixed and permeabilized, stained for GM-CSF and GM-CSF⁺ T-cells were assessed (**E-F**). n=4. (**G-L**) Splenic T- and B-cell subsets were analyzed by flow cytometry. T follicular helper (T_{FH}) cells were identified as TCR β^+ CD4⁺CXCR5⁺PD1⁺ (**G-H**). Germinal center B-cells were identified as B220⁺GL7⁺ (**I-J**). Plasma cells were identified as CD19⁻CD138⁺ (**K-L**). n=6. (**M**) DC-*Abca1/g1* deficiency increased plasma BAFF levels. n=10. Data in **B**, **D**, **F**, **H**, **J**, **L**, and **M** are presented as mean ± SEM. **P*<0.05, ***P*<0.01, ****P*<0.001, by t-test.