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Figure S1. Nup210 role in skeletal muscle growth. Related to Figures 1 and 2. 
(A) U2OS cells were transfected with a vector expressing V5-tagged Zebrafish Nup210. Cells were stained using the V5 
antibody and the NPC antibody mAb414. Top panel shows a cross-section of the nucleus. Bottom panel shows NPCs on the 
nuclear surface. Zebrafish Nup210 localizes to NPCs. n ≥ 3 (B) Zebrafish one-cell embryos were injected with control or two 
different Nup210 morpholinos and slow muscle fibers were stained 48 hours post-fertilization with the F59 antibody. 
Representative image of a maximum projection of 30-40 sections. (C) Schematic illustration of the myogenic waves in Zebrafish 
based on Barresi et al (Barresi et al., 2001). During segmentation slow muscle fibers form in the myotomes from adaxial-derived 
precursors (red, first myogenic wave). When segmentation is complete, at ~24 hpf, new muscle fibers form a different set of 
muscle precursors and are added to the dorsal and ventral side of the myotome in a process known as stratified hyperplasia 
(green, second myogenic wave). Sonic Hedgehog (Shh) is required for the first, but not the second, myogenic wave. Thus, the 
Shh inhibitor cyclopamine inhibits the formation of the early development muscle fibers (red) but not the myofibers that are 
added post-segmentation (green). (D) Illustration showing the experimental approach to study the role of Nup210 in post-
segmentation muscle growth using cyclopamine. (E) Control or Nup210 morphants were stained 48 hpf with the slow muscle 
F59 antibody and the number of myofibers in myotome 20 were quantified. Bar plots represent mean ± SEM, ∗∗∗∗p ≤ 0.0001, 
two-tailed Student's t test, n ≥ 3 replicates. Morpholino depletions were performed with n ≥ 50 embryos. n = 10-20 embryos from 
at least three independent experiments were examined by immufluorescence and quantified.  
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Figure S2. Trip6, Mef2C and Pom121 depletion in Zebrafish embryos. Related to Figures 4 and 5. 
(A) ) Wild-type or Trip6 CRISPR-generated mutants were stained with the F59 antibody at 48 hpf. Slow muscle was imaged 
by confocal microscopy. Representative image of a maximum projection of 30-40 sections. n ≥ 10 embryos. (B) C2C12 cells 
were infected at 36 hours post-differentiation with lentivirus carrying control or MEF2C-specific shRNAs. Cells were 
collected 72 hours post-infection and Mef2C depletion was analyzed by western blot using an anti-Mef2 antibody. According 
to the manufacturer anti-Mef2 recognizes Mef2A, C and D. Western blots show the specific Mef2C protein band. The 
specificity for Mef2A and D was not confirmed (C) The interaction of the nucleoproin Nup210 (green) with nucleoporins 
recognized by the mAb414 antibody, were analyzed by proximity ligation assays. PLA interactions are shown in red. (C) 
MEF2Cα was depleted during Zebrafish development using specific morpholinos previously characterized (Hinits and 
Hughes, 2007).  Slow muscle was stained at 48 hpf and compared to Control or Nup210-depleted animals. Representative 
image of a maximum projection of 30-40 sections. n = 10-20 embryos by triplicate.  (E) The transmembrane Pom121 
nucleoporin was depleted during Zebrafish development and animals were analyzed at 48 hpf. No muscle alterations are 
observed in the absence of Pom121. Representative image of a maximum projection of 30-40 sections. n = 10-20 embryos by 
triplicate. (F) Due to the absence of antibodies that recognize Zebrafish Pom121 we verified the effectiveness of Pom121 
morpholinos by determining their ability to down-regulate the expression of a fusion RNA containing Pom121 5’UTR 
upstream of the RFP coding sequence as described by Veldman et al. Pom121 morpholinos efficiently block the translation of 
the fluorescent reporter (n = 6-10 embryos by duplicate).  
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Figure S3. Nup210 and MEF2C depletion in post-mitotic myotubes. Related to Figure 6. 
(A, B) C2C12 cells were induced to differentiate and 36 hs later were infected with lentivirus carrying Control, Nup210- and 
Mef2C-specific shRNAs. Cells were stained 48 hs post-infection (hpi) with Nup210, Mef2C and myosin heavy chain 
antibodies. (C) Total RNA was extracted from Control, Nup210, or Mef2C shRNA-treated myotubes and the expression levels 
of Nup210, Mef2C or the nucleoporin Pom121 were analyzed by qPCR. (D) The expression levels of several structural genes 
in Nup210-depleted myotubes at 48 hpi (Exp) was compared to the levels of the same genes in myotubes depleted of Nup210 
at different times of depletion from (D'Angelo et al., 2012). Bar plots represent mean ± SEM, n ≥ 3 replicates.  



Figure S4. Gene expression down-regulation in Nup210 and Mef2C knock-downs. Related to 
Figure 6. 
C2C12 cells were induced to differentiate and infected 36 hs later with lentivirus carrying Control, 
Nup210 and Mef2C specific shRNAs. Total RNA was collected at 48 hs post-infection and gene 
expression levels were analyzed by qPCR and normalized to the expression of Control cells. Bar plots 
represent mean ± SEM of 3 independent experiments.  
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Figure S5. Gene expression during myogenesis. Related to Figure 7. 
C2C12 cells were induced to differentiate and total RNA was collected at the indicated time points. The expression levels of 
genes were analyzed by qPCR, normalized to Hprt1, Gapdh, Rr18s and represented relative to the expression of dividing cells 
(Div). Cyclin B (CycB), MyoD and Myogenin were used as markers for differentiation. Values represent the mean of 3-5 
independent experiments ± SD. PCR primers are described in Table S5. 
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Figure S6. Predicted Mef2C binding sites in the regulatory sequences of muscle genes. Related to 
Figure 7 and Table S2. 
The 5 kb sequence upstream of the transcription start site (TSS) for the indicated genes was scanned for 
potential Mef2C binding sites using the muscle transcription factor database of Transfact®. Red 
arrowheads show the approximate position of the predicted Mef2C sites (not to scale). For MIR133A1, 
the 2.5 kb sequence between this miRNA and the MIR1-2 was scanned. Blue arrowhead shows the only 
confirmed Mef2C binding site (Liu et al., 2007).  
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Figure S7. Inducible shRNA dependent knock-down of Nup210 in post-mitotic myotubes. Related to Figure 7. 
(A) The C2C12 cell lines carrying a tetracycline regulated Nup210 shRNA were treated with doxycycline and Nup210 down-
regulation was confirmed by western blot. Lamin A and Hsp90 were used as loading controls. n ≥ 3 replicates. (B) The 
expression levels of Nup210, Pom121, Mef2C, and the Nup210/Mef2C targets TNNT1 and MYOM1 was analyzed in the cells 
described in (E)  by real time PCR. Bar plots represent mean ± SEM, n ≥ 3 replicates.  
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Figure S8. Intranuclear positioning of of Nup210/Mef2C target genes. Related to Figure 7. 
(A) Immunofluorescence coupled to DNA-FISH was performed in post-mitotic C2C12 myotubes. Lamin A (green) gene loci 
(red). (B) Maximum projection of differentiated C2C12 cells labeled with the ITGB1BP2 DNA-FISH probe showing the 4 gene 
copies (red), Lamin A (Green). (C) The specificity of DNA-FISH probes was determined by FISH on metaphase spreads from 
mouse splenocytes. Gene loci (reen or red), condensed chromosomes (blue.) (D) Method used to determine the association of 
gene loci with the nuclear envelope. 0.3µm Z sections were used to obtain a 3D reconstructions of the nucleus and the 
association of genes with the nuclear periphery in the XY or ZY planes was determined. (E) RNA-FISH with Myom1 and 
Gapdh probes was performed in Control or Nup210-depleted myotubes. For Myom1 cross-section was performed in the plane of 
the strongest intranuclear foci signal . RNA (red), Lamin A (green).   
Representative images of 3-5 independent experiments.  
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Gene$ Potential$
MEF2C$Sites$ Chrom.$#$ Gene$ Potential$

MEF2C$Sites$ Chrom.$#$

ITGA10' 19# 3# GJA5' 4# 3#
L1CAM' 11# X# CASQ1' 3# 1#
IPP' 11# 4# TMOD3' 3# 9#
MYL9' 10# 2# CAMK2A' 3# 18#
TNC' 10# 4# ACTG2' 3# 6#

TMOD1' 9# 4# MYH7' 2# 14#
TNNT1' 9# 7# ACTN2' 2# 13#
MYL2' 9# 5# TNS1' 2# 1#
COTL1' 7# 8# CDHR1' 2# 14#
ITGA6' 6# 2# LDB3' 2# 14#
MYH3' 5# 11# CRABP2' 1# 3#
CAPN3' 5# 2# PKP1' 1# 1#
MYOM1' 4# 17# PDE2A' 0# 7#
ITGB1BP2' 4# X# GJB4' 0# 4#
CKM' 4# 7# UNC45B' 0# 11#
SGCD' 4# 11# MIR133A1*' 6# 18#

#
Table S2. Potential Mef2C bindings sites in Nup210/Mef2C-regulated genes. Related to Figure 
7. The 5 kb sequence upstream of the transcription start site for the indicated genes was scanned for 
potential Mef2C binding sites using the muscle transcription factor database of TRANSFAC®. 
*For MIR133A1 the upstream sequence that separates this miRNA from the MIR1 gene (~2.5 kb) 
was scanned for MEF2C sites. This sequence has 6 predicted MEF2C binding/regulatory sites one 
of which has been confirmed (Liu et al., 2007). 
#



 
Table S3. Antisense morpholino oligonucleotides. Related to Figures 1-5. All morpholinos were 
designed to target the 5’ untranslated region region of the listed genes. Gene IDs are from the Genome 
Reference Consortium Zebrafish. Lowercase in Control morpholino (CoMO) depicts mismatched bases.  

 
 
!

Gene Gene ID Morpholino name Morpholino sequence (5’- 3’) 

NUP210 570945 MO1 CACGAGCAGACCGACCTTCTCCATA 
MO2 CACTACTATATTTACAGGTTATGGT 

TRIP6 792697 
trip6MO1 CCAGGTGGGACCAGACATATCAGAC 
trip6MO2 CAACACACAATATAAACCATGGCAC 

MEF2CA 30575 mef2caMO TTTCCTTCCTCTTCCAAAAGTACAG 
MEF2CB 798771 mef2cbMO CCCGTCTTTTCGTCTCTCTCTTTCA 
POM121 568298 pom121MO GAAGATATCCCATAATTCCCTGCGC 
Control   CoMO ACCcAgCTTgTCCATACTTAgAcAT 


