CHEMISTRY A European Journal

Supporting Information

Dinickel–Salphen Complexes as Binders of Human Telomeric Dimeric G-Quadruplexes

Chun-Qiong Zhou,^[a, b] Ting-Cong Liao,^[b] Zi-Qi Li,^[b] Jorge Gonzalez-Garcia,^[a] Matthew Reynolds,^[a] Min Zou,^[b] and Ramon Vilar^{*[a]}

chem_201700276_sm_miscellaneous_information.pdf

Table S1. Apparent affinity constants (K_a 's, M⁻¹) of complexes **2a-c** and **1** for quadruplexes G2T1, G1 and CT DNA in 10 mM Tris-HCl, 100 mM KCl (pH 7.04) by UV-Vis spectroscopy.

Complex	<i>K</i> _a (G2T1)	<i>K</i> _a (G1)	K _a (CT DNA)	Selectivity for G2T1 vs. G1	Selectivity for G2T1 vs. CT-DNA
2a	^a 1.19±0.16×10 ⁶	^a 2.39±0.35 ×10 ⁶	2.54±0.24×10 ⁵	1	5
2b	^a 2.52±0.24 ×10 ⁶	^a 3.53±0.33 ×10 ⁶	$2.05\pm0.08\times10^{5}$	1	12
2c	^b 1.37±0.25 ×10 ⁷	^b 2.19±0.32×10 ⁶	1.06±0.11×10 ⁵	6	129
1	^a 1.50±0.22 ×10 ⁷	^b 1.15±0.18×10 ⁷	1.20±0.15×10 ⁵	1	125

^a Absorption measured at 310 nm; ^b Absorption measured at 370 nm.

Binder	K	$\Delta T_{ m m}$	References
Cyclic helicene M1	2.31×10 ⁶	/	[1]
QATPE ^a	8.94×10 ⁶	6.6	[2]
TMPipEOPP (p- and m-) ^b	$(1.05 \sim 2.53) \times 10^6$	5.1~13	[3]
RHPS4 ^c and DR4-47 ^d	/	20.5~28.5	[4]
EPI °	2.60×10 ⁷	/	[5]
Ni-M ^f	4.6×10 ⁷	14	[6]
Dimeric berberine	(2.0~2.4)×10 ⁷	-0.5	[7]

Table S2. Binding constants (*K*'s, M⁻¹) and ΔT_m (°C) of previously reported binders towards dimeric quadruplex G2T1 DNA.

^aQATPE = 1, 1, 2, 2-Tetrakis{4-[(trimethylammonium)butoxy]phenyl}tetraphenylethene tetrabromide; ^b TMPipEOPP = cationic porphyrin derivative; ^c RHPS4 = fluoroquinolinoacridinium cation; ^d DR4-47 = Hybrid oxazole-triazole ligand; ^e EPI = epiberberine; ^f Ni-M = Zinc-finger like nanosized chiral Ni(II)-supramolecular complex.

- K. Shinohara, Y. Sannohe, S. Kaieda, K. Tanaka, H. Osuga, H. Tahara, Y. Xu, T. Kawase, T. Bando, H. Sugiyama, *J. Am. Chem. Soc.* 2010,132, 3778-3782.
- [2] Q. Zhang, Y. -C. Liu, D. -M. Kong, D. -S. Guo, Chem. Eur. J. 2015, 21, 13253-13260.
- [3] a) X. -X. Huang, L. -N. Zhu, B. Wu, Y. -F. Huo, N. -N. Duan, D. -M. Kong, *Nucleic Acids Res.* 2014, 42, 8719-8731; b) L. -N. Zhu, B. Wu, D. -M. Kong, *Nucleic Acids Res.* 2013, 41, 4324-4335.
- [4] A. R. O. Cousins, D. Ritson, P. Sharma, M. F. G. Stevens, J. E. Moses, M. S. Searle, *Chem. Commun.* 2014, 50, 15202-15205.
- [5] L. Zhang, H. Liu, Y. Shao, C. Lin, H. Jia, G. Chen, D. Yang, Y. Wang, Anal. Chem. 2015, 87, 730-737.
- [6] C. Q. Zhao, L. Wu, J. S. Ren, Y. Xu, X. G. Qu, J. Am. Chem. Soc. 2013, 135, 18786-18789.
- [7] C. -Q. Zhou, J. -W. Yang, C. Dong, Y. -M. Wang, B. Sun, J. -X. Chen, Y. -S. Xu, W. -H. Chen, Org. Biomol. Chem. 2016, 14, 191-197.

Figure S1. ¹H NMR (400 MHz) of compound **5a** in d_6 -DMSO.

Figure S2. ¹³C NMR (75.4 MHz) of compound **5a** in d_6 -DMSO.

Figure S3. HR-ESI-MS of compound 5a.

Figure S4. ¹H NMR (400 MHz) of compound **5b** in d_6 -DMSO.

Figure S5. ¹³C NMR (75.4 MHz) of compound **5b** in d_6 -DMSO.

Figure S6. HR-ESI-MS of compound 5b.

Figure S7. ¹H NMR (400 MHz) of compound **5c** in d_6 -DMSO.

Figure S8. ¹³C NMR (75.4 MHz) of compound **5c** in d_6 -DMSO.

Figure S9. HR-ESI-MS of compound 5c.

Figure S10. ¹H NMR (400 MHz) of compound **6a** in d_6 -DMSO.

Figure S11. ¹³C NMR (75.4 MHz) of compound **6a** in d_6 -DMSO.

Figure S12. HR-ESI-MS of compound 6a.

Figure S13. ¹H NMR (400 MHz) of compound **6b** in d_6 -DMSO.

Figure S14. ¹³C NMR (75.4 MHz) of compound **6b** in *d*₆-DMSO.

Figure S15. HR-ESI-MS of compound 6b.

Figure S16. ¹H NMR (400 MHz) of compound **6c** in d_6 -DMSO.

Figure S17. ¹³C NMR (75.4 MHz) of compound **6c** in d_6 -DMSO.

Figure S18. HR-ESI-MS of compound 6c.

Figure S19. ¹H NMR (400 MHz) of complex **2a** in d_6 -DMSO.

Figure S20. ¹³C NMR (75.4 MHz) of complex 2a in d_6 -DMSO.

Figure S21. MALDI-TOF MS of complex 2a.

Figure S23. ¹³C NMR (75.4 MHz) of complex 2b in d_6 -DMSO.

Figure S24. MALDI-TOF MS of complex 2b.

Figure S25. ¹H NMR (400 MHz) of complex 2c in d_6 -DMSO.

Figure S27. MALDI-TOF MS of complex 2c.

Figure S28. UV-Vis absorption spectra of nickel complexes 2a (a), 2b (b), 2c (c) and 1 (d) ([complex]=20 μ M) with increasing the concentration (from 0~10 μ M in 10 mM Tris-HCl and 100 mM KCl, pH 7.04) of G2T1 DNA. Inset: a reciprocal plot of ([G2T1]/ $\Delta \varepsilon_{ap}$)×10¹⁰ versus [G2T1]×10⁶, $\Delta \varepsilon_{ap}$ =($A_{observed}$ - $A_{free complex}$)/[complex].

Figure S29. UV-Vis absorption spectra of nickel complexes 2a (a), 2b (b), 2c (c) and 1 (d) ([complex]=20 μ M) with increasing the concentration (from 0~10 μ M in 10 mM Tris-HCl and 100 mM NaCl, pH 7.04) of G2T1 DNA. Inset: Inset: a reciprocal plot of ([G2T1]/ $\Delta \varepsilon_{ap}$)×10¹⁰ versus [G2T1]×10⁶, $\Delta \varepsilon_{ap}$ =($A_{observed}$ - $A_{free complex}$)/[complex].

Figure S30. UV-Vis absorption spectra of nickel complexes 2a (a), 2b (b), 2c (c) and 1 (d) ([complex]=20 μ M) with increasing the concentration (from 0~10 μ M in 10 mM Tris-HCl and 100 mM KCl, pH 7.04) of G1 DNA. Inset: a reciprocal plot of ([G1]/ $\Delta \varepsilon_{ap}$)×10¹⁰ versus [G1]×10⁶, $\Delta \varepsilon_{ap} = (A_{observed} - A_{free complex}) / [complex].$

Figure S31. UV-Vis absorption spectra of nickel complexes 2a (a), 2b (b), 2c (c) and 1 (d) ([complex]=20 μ M) with increasing the concentration (from 0~10 μ M in 10 mM Tris-HCl and 100 mM NaCl, pH 7.04) of G1 DNA. Inset: a reciprocal plot of ([G1]/ $\Delta \varepsilon_{ap}$)×10¹⁰ versus [G1]×10⁶, $\Delta \varepsilon_{ap}$ =($A_{observed}$ - $A_{free complex}$)/[complex].

Figure S32. UV-Vis absorption spectra of nickel complexes **2a** (a), **2b** (b), **2c** (c) and **1** (d) ([complex]=20 μ M) with increasing the concentration (from 0~10 μ M in 10 mM Tris-HCl and 100 mM NaCl, pH 7.04) of CT DNA. Inset: a reciprocal plot of ([CT DNA]/ $\Delta \varepsilon_{ap}$)×10¹⁰ versus [CT DNA] ×10⁶, $\Delta \varepsilon_{ap} = (A_{observed} - A_{free complex})/[complex].$

Figure S33. CD spectra of quadruplex dimer (G2T1, 2.5 μ M) from 20 °C to 95 °C without (a) and with complexes **2a** (5 μ M, b), **2b** (5 μ M, c), **2c** (5 μ M, d) and **1** (10 μ M, e) in the buffer of 10 mM Tris-HCl and 100 mM KCl (pH 7.04).

Figure S34. CD spectra of quadruplex dimer (G2T1, 2.5 μ M) from 20 °C to 95 °C without (a) and with complexes **2a** (5 μ M, b), **2b** (5 μ M, c), **2c** (5 μ M, d), and **1** (10 μ M, e) in the buffer of 10 mM Tris-HCl and 100 mM NaCl (pH 7.04).

Figure S35. CD spectra of G1 (5 μ M), G2T1 (2.5 μ M), G2T2 (2.5 μ M), G2T4 (2.5 μ M) and G2T6 (2.5 μ M) in 10 mM Tris-HCl buffer (100 mM NaCl, pH 7.04).

Figure S36. CD melting profiles at 295 nm for monomeric quadruplex G1 (a, 5.0 μ M), and a series of dimeric quadruplexes G2T2 (b, 2.5 μ M), G2T4 (c, 2.5 μ M) and G2T6 (d, 2.5 μ M), respectively, when bound to di-nickel complex **2c** (5.0 μ M) and mono nickel complex **1** (10.0 μ M) in 10 mM Tris-HCl and 100 mM NaCl (pH 7.04).

Figure S37. GE analysis of G2T1 in 10 mM Tris-HCl and 100 mM NaCl (pH 7.04) in the presence of four nickel complexes: lane 1, G2T1 (8 μ M); lane 2~5, G2T1 (8 μ M) with complex **1** (32 μ M), **2a** (16 μ M), **2b** (16 μ M) and **2c** (16 μ M), respectively; lane 6, DNA ladder.

Figure S38. (a) GE analysis of G2T1 in 10 mM Tris-HCl and 100 mM KCl (pH 7.04) in the presence of **2c**. Lanes 1~2: G1 (16 μ M) in the absence and presence of complex **2c** (16 μ M); lanes 3~4: G2T1 (8 μ M) in the absence and presence of complex **2c** (16 μ M); lane 5: a mixture of G1 (16 μ M) and G2T1 (8 μ M); lanes 6~9: mixtures of G1 (16 μ M) and G2T1 (8 μ M) in the presence of 4, 8, 16 and 32 μ M of complex **2c**, respectively; lane 10: DNA ladder. (b) GE analysis of G1, G2T1 and their mixture in 10 mM Tris-HCl and 100 mM KCl (pH 7.04) in the presence of complex **1**. Lanes 1~2: G1 (16 μ M) in the absence and presence of complex **1** (32 μ M); lanes 3~4: G2T1 (8 μ M) in the absence of complex **1** (32 μ M); lanes 3~4: G2T1 (8 μ M) in the absence of Complex **1** (32 μ M); lanes 3~4: G2T1 (8 μ M) in the absence of Complex **1** (32 μ M); lanes 3~4: G2T1 (8 μ M) in the absence of Complex **1** (32 μ M); lanes 5. a mixture of G1 (16 μ M) and G2T1 (8 μ M); lanes 6~9: mixtures of G1 (16 μ M) and G2T1 (8 μ M); lanes 6~9: mixtures of G1 (16 μ M) and G2T1 (8 μ M); lanes 6~9: mixtures of G1 (16 μ M) and G2T1 (8 μ M); lanes 6~9: mixtures of G1 (16 μ M) and G2T1 (8 μ M); lanes 6~9: mixtures of G1 (16 μ M) and G2T1 (8 μ M) in the presence of 8, 16, 32 and 64 μ M of complex **1**, respectively; lane 10: DNA ladder.