
																																																																																					Gareau	et	al.,	Experimental	Dermatology,	2016	

	 1	

Digital Imaging Biomarkers Feed Machine Learning For Melanoma Screening 

Appendix	S1:	Supplementary	Methods	and	Discussion	

S1 – Study Overview 
Figure S1 shows the scheme for our double-blind study, which attempted prediction of 
the biopsy-based histological diagnosis (melanoma or atypical nevus) using only the 
pre-biopsy dermoscopy image.  

 

 

 

 

 

 

 

 

 

 

Figure S1. Study Design This double-blinded study retrospectively tested 
prediction of the histopathological biopsy diagnosis using only the dermoscopy 
images acquired just prior to biopsy. Co-Author S.Y. assembled and distributed 
the latter to Co-Author D.G. and the former to Co-Author J.C. Excluding (8 Out) 
eight images where the algorithm failed to identify the lesion border (see Figure 
S11), the Melanoma Q-score was produced as a standardized diagnostic MIB and 
tested by producing the receiver-operator characteristic (ROC) Curve. 

The study included dermoscopy images of pigmented lesions on 120 patients who 
underwent surgical excision or biopsy of a suspicious pigmented lesion, and provided 
written, informed consent to be part of imaging research as approved by the Institutional 
Review Board of Memorial Sloan Kettering Cancer Center. Cases with extreme atypia 
such as those that were ulcerated, nodular/palpable, or did not fit within the field of view 
of the dermatoscope were excluded. All lesions were pigmented lesions that did not 
demonstrate a benign pattern (1) under dermoscopy. The study cohort included 60 
melanomas and 60 nevi. Alcohol-coupled, non-polarized dermoscopy images were 
acquired with the EpiFlash™ (Canfield Inc., NJ) dermatoscope attached to a Nikon D80 
camera. Each image contained 1-5 megapixels after cropping. After imaging and 
surgical excision of the imaged lesion, the standard diagnostic method of 
histopathological evaluation was carried out as part of routine clinical care to yield a 
diagnosis (melanoma or nevus) for each lesion in the study cohort. The 120 binary 
diagnoses, along with 120 correlating dermoscopic images comprised the study data. 
No information about the patient’s age, sex, state of sun damage or anatomical location 
of the lesion was used. Dermoscopy images were randomized and coded to remove all 
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patient identifiers, then injected into the blind study arm that generated the image-
processing algorithm targeting melanoma features by extracting diagnostic melanoma 
imaging biomarkers (MIBs) without knowledge of the histopathological diagnosis. An 
example of the extraction of an MIB is shown in Figure S2.  The designer of the MIBs 
received only the dermoscopy images, and the designer of the classification scheme 

received only the 
histopathological 

diagnoses and the MIBs.   

Figure S2. Coordinate 
Transformation And 
illustration Of MIB Derivation 
Using Angular Sweep 
Analysis  In images of a 
nevus (a) and a melanoma 
(e), lesion border and center 
(b,f). (c,g) show the blue 
channel data under a 
coordinate transformation 
from x-y to R-θ such that the 
bottom row of pixels in (g) is 
the same pixel in f, namely 
the center pixel (white circle) 
and the top row of pixels in 
(g) traces out the lesion 
border clockwise. (d,h) 
analyze the pixel brightness 
statistics (mean in black and 
standard deviation in blue) 
of (c,g) in the vertical 
direction which is along the 
radial in (b,f). In (d,h), MIB 
B12 is derived from the 
radial variation range, which 
is the vertical separation of 
the horizontal dashed lines 
(d,h). 

 
Ultimately, a machine 
learning algorithm yielded 
an ensemble classifier 
from the set of individual 
classifiers in Table S2, 
each designed to 
combine the MIBs into a 
diagnostic score, the 
probability of melanoma, 
that maximized the partial 
area under a standard 

receiver-operator characteristic (ROC) curve (Figure S3). The partial area chosen was 
the right-hand half of the ROC curve, since high sensitivity is a priority. During 
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construction of the ROC curve, the threshold that was compared to the Q-score for 
binary classification (melanoma/nevus) was varied and at each threshold value, the 
number of true positives, true negatives, false positives and false negatives were 
tabulated and used to specify the sensitivity and specificity at that particular threshold.  

 Figure S3. Diagnostic Performance Results Vs. Published Techniques The 
receiver-operator characteristic (ROC) curves for the individual machine learning 
approaches (thin colored lines) are outperformed by the compound melanoma Q-
score (thick black line) with clinically relevant sensitivity = 98% and specificity = 
36% (red circle). Data points of comparative approaches from the literature are 
marked with symbols that indicate their nature (machine or human-derived) and 
are numbered by the legend references. The machine learning approaches are 
abbreviated in the legend and numbered with their respective literature references 
(see Table S2). 
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As detailed in section S3.2, the study set was randomly partitioned into training (80%) 
and testing sets (20%) for tuning the classification algorithms. This training-testing 
scheme was replicated 1000 times for the evaluation of classifiers robustness. The Q-
score was the median melanoma probability from the ensemble of methods since this 
approach proved to outperform the accuracy of individual classifiers. The ROC curve in 
Figure S3 allows comparison of the Q-score to other dermoscopic diagnostic algorithms 
and computer-automated techniques reported in the literature, besides our approach. 

Thus, our analytical approach, drawing on the image processing and machine learning 
fields, included a two-step process: (1) derivation of discrete MIBs; and (2) combination 
of MIBs into a function that produced an optimized diagnostic score. These two steps 
are detailed in sections S2 and S3, respectively, with explicit formulae for all MIBs in 
section S5. The computational time to extract MIBs from each image ranged from 1 to 
10 minutes, depending on the size of the lesion.  The training of the Q-score classifier 
took 15 hours to run the machine learning algorithms. 
 
S2 – Image Processing And Resulting MIBs 
Images were cropped to exclude artificial pen markings and scale bars commonly used 
in the clinic and for lesions that were small, to exclude vast swaths of surrounding 
normal skin such that the area of lesion and normal skin were comparable. The 
algorithm then operated independently on each color layer of the 3-color 
Red/Green/Blue (RGB) image, and performed a segmentation to determine the border 
of the lesion. Though sophisticated segmentation methods may be applied such as 
active contours, (2) we chose the commonly used Otsu’s method (3) for simplicity. 
A series of 50 computer-generated MIBs, developed to target diagnostic features in 
pigmented lesions, of two types were extracted from each image: A set of 43 single-
color-channel (SC) MIBs was extracted from single color channels, and a set of 7 Multi-
Color (MC) MIBs was extracted from the entire RGB color channel triad directly. While 
MC MIBs were derived from variation between the gray-scale values in the separate 
color channel images and also derived from variations in the MIBs derived from the 
various color channel data, three versions of each SC MIB (one from each color 
channel) were extracted for each lesion. For example, the SC mIB 𝐵12 illustrated in 
Figure 1 and Figure S2 was extracted from each of the 3 RGB color channels of each of 
the 120 dermoscopy images. The rationale for extracting each mIB from each color 
channel was that it was immediately noted that the MIBs had different values when 
extracted from the various color channels.  An example of how this phenomena lead to 
diagnostically preferential extraction from particular channels is shown in Figure S4. 
Overall, 27 MIBs extracted from single color channels were statistically significant 
(p<0.05) for melanomas versus nevi. Four additional statistically significant MIBs used 
information from all color channels. Mathematical formulae for each of the statistically 
significant MIBs are given in section S5. 
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Figure S4. Spectral Diagnostic Content Variance 
MIB B7 was chosen as evaluated on the blue channel over its red color-channel 
version B7 because in the blue channel, MIB B7 had a greater differential between 
nevus and melanoma.  MIB B7, adapted from Equation 13 and visualized in Figure 
S5, quantified deviations in pixel brightness from a smooth mathematical model 
near the edge of the lesion.  
 

Some of the MIBs directly targeted standard dermoscopy analysis features, e.g., 
number of colors present, diameter, characteristics of pigment network branches (4), 
and features of symmetry and border. Other MIBs were indirectly impacted by standard 
dermoscopic melanoma features such as: atypical pigment networks, atypical globules, 
off center blotches, peripheral tan structure-less areas and regression structures.  
A large set of novel MIBs were created based on our novel angular sweep analysis. We 
quantified brightness variation on an angular sweeping arm (Figure S2f) that connected 
the geometric center of the lesion and a point on the border tracing that border 
clockwise. From the center, radial arms projected to the lesion border and rotating 
clockwise were used as regions of interest to quantify image characteristics along the 
arc of rotation. The series of arcs created by radial sweep around the center covering 
the entire 360-degree view of the lesion, was analogous to the sweep of hands around 
an analog clock. The MIB-producing mathematical operations (given in section S5) 
either produced direct transformations of the actual data (i.e. Figure S2) or quantified 
differences between the data and mathematical models used to estimate the data’s 
deviation from smoothly transitioning features (i.e. Figure S5).  
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Figure S5. Fitting for Edge Demarcation Edge demarcation was quantified as 
the slope of the transitioning from dark pixels inside the lesion to bright pixels 
outside the lesion. Increased slope of the fitting mathematical function resulted 
from increased lesion border demarcation. The two radial lines (Line 1, Line 2) 
drawn on the lesion include the lesion border from inside the lesion where the 
pixels are dark inside the lesion to outside the lesion where the pixels are bright in 
normal skin indicate illustrate two locations where the demarcation is gradual 
(Line 1) and sharp (Line 2). The pixel brightness extracted along these two lines (x 
for Line 1 and o for Line 2),  𝒑𝒆 𝒓  was fit to a mathematical model ),  𝒔𝒆 𝒓  to yield 
the fitting parameters, which were used to produce MIBs B3, B4, B9, B13, B14, R1, 
R5 and R10 marked “Border” in Figure 2. This includes the edge demarcation 
slope, which is the slope of the solid line at the lesion border between normal skin 
and lesion and the error in the fit, which is the sum of the squared differences 
between the data points, 𝒑𝒆 𝒓  and the error function fit (solid line) ,  𝒔𝒆 𝒓  . 
Melanomas had a sharper border, a higher degree in variability of border 
sharpness and a greater fitting error. 
 

The full set of 50 MIBs was filtered by excluding 17 non-significant (p>0.05) MIBs using 
univariate two-tailed unpaired t-tests (for continuous variables) and Fisher Exact Test 
(for categorical variables). Eighty-six percent of the 33 significant MIBs had larger 
values for melanomas than for nevi. Significant SC MIBs were found in the blue channel 
(B1-B15), in the red channel (R1-13), and in the green channel (G1).   
Among the most diagnostically significant SC mIBs were edge demarcation features 
(e.g. metric B1, Equation 10, Figure S6), where a sharper edge (higher slope) and more 
edge sharpness variation were present in melanomas. A program to identify length, 
darkness, and end points of each branch in a pigment network is illustrated in Figure 1 
and this information was used for MIBs targeting pigmented patterns such as the 
variation in pigmented network branch length. The complete significant MIB set is 
shown as a heat map in Figure S6. 
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Figure S6. Imaging Biomarkers Heat Map Correlation structure among imaging 
biomarkers and their discriminative ability are represented in a heat map built with 
Hierarchical clustering. Distances among MIBs were evaluated with Euclidean 
distance and Mcquitty algorithm for the standardized set of measurements (z-
scores). In the heat map, the binary partition at the top of the hierarchy isolates a 
subset of MIBs in which z-scores evaluated for nevi are, on average, higher than 
the ones in melanomas. Those MIBs are: R6, R7, R11, R12, R13, MC2 and MC3. 

 

There was a pattern of mutual exclusivity of SC MIB importance in the red and blue 
channels. The data in Figure 2 show that most MIBs were best computed in particular 
color channels, with highest diagnostic value in blue or red channel. Figure S7 
illustrates the most significant 6 metrics with examples of lesions for which they yielded 
high raw values versus low raw values and figure S4 illustrates visually the importance 
of picking the color channel where each MIB is most significant.  In this case, the MIBs 
are expressed as coefficients of variation compared to the average MIB value for the 
entire data set. The MIB B7, which is the degree to which the radial lesion edge profile 
data (see Figure S5) deviate from a smooth mathematical edge function, has a greater 
difference between the melanoma and the nevus in the blue channel because in the 
blue channel, the lesion appears homogeneously dark.  The melanoma evidences its 
deviation as the bright and dark structures are retained to large extent when isolating 
the blue channel. 
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Figure S7. Good Metrics The six most diagnostic MIBs (MC1, B1, R1, R2, R3, B2) 
yielded high values on (a, c, e, g, i, k) and low values on (b, d, f, h, j, l) 
a-b Lesion #037 and #017 contain 6 and two colors, respectively. Lesion 037 has an 
atypical network with central white area with peppering (i.e. atypical dots) 
suggestive of regression.  
c-d Lesion #096 and #095 contain different degrees of instantaneous brightness 
shifting over the angular sweep. Lesion #096 also contains an atypical reticular 
pigment network, which is shown in detail in Figure 1. 
e-f Lesion #021 and #030 contain different levels of variation of the demarcation 
edge slope as illustrated in Figure S5. Lesion #021 contains dark brown and light 
brown atypical reticular network patterns with dots, asymmetry and uneven 
border. The reticular pigmented network has dots overlying the pigment network 
and areas of missing pigmented network which could be interpreted as areas of 
regression. 
g-h Lesion #057 has a higher fractal dimension than #040. Lesion #040 contains 
polygonal lines suggestive of an atypical network, although they may be 
distributed by hair follicle and off centered/ atypical dots. 
i-j Lesion #002 and #119 contain different ratios of branch points to end points in 
pigment network analysis. Lesion 002 contains a patchy reticular pattern with the 
melanoma specific feature off centered blotch. The dark region surrounded by 
lighter pigment with even lighter areas of potential regression caused variation in 
the angular analysis and a high Q-score. Lesion 119 contains light brown 
homogenous lesion with dark brown off centered blotch. 
k-l Lesion #096 and #095 contain different levels of variation over the angular 
sweep of variation along the sweeping arm. 
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S3 – Statistical Methods: MIB Combination To Form The Melanoma Q-score 
In the second computational step where the predictive model was built, the 33 MIBs 
achieving diagnostic statistical significance (p<0.05), 4 MC and 29 SC (using the most 
significant RGB color channel version), were input into the 12 statistical/machine 
learning algorithms as predictive informatics programs listed in Table S2. Our strategy 
for MIB selection was based on choosing the SC MIB from the best color channel when 
there was any color channel for an MIB that achieved statistical significance, including 
that SC MIB, and also including any significant MC MIB. 
 
The statistical classification methods for machine learning were chosen to represent the 
broad universe of base classifiers (5). Figure S8 shows an example classification 
method, the C5.0 decision tree, that prioritized a subset of the MIBs and conducted a 
series of comparisons between these MIBs and a set of thresholds to ultimately lead to 
a classification of each lesion. Each method output the melanoma likelihood for each 
lesion.  

 
 

Figure S8. Decision Tree Built With The C5.0 Algorithm  The algorithm was applied 
to predict lesions type (melanoma vs. nevus) with the full data set that included 
112 lesions and 33 MIBs. The final decision tree has 10 decision nodes (#1, #2, #3, 
#5, #9, #10, #11, #14, #15, #16) and 11 terminal nodes (#4, #6, #7, #8, #12, #13, #17, 
#18, #19, #20 and #21). The algorithm selected decision nodes based on four mIBs 
from the blue channel (B1, B6, B7, and B15), five mIBs from the red channel (R4, 
R6, R8, R12, and R13) and one multicolor mIB (MC1).  At the terminal nodes the 
proportion of melanomas (light gray) and nevi (dark gray) are shown with stacked 
bar plots. The final classification has yielded 7 pure terminal nodes (#4, #6, #7, #8, 
#13, #19 and #21) where melanoma or nevi have 100% prevalence. The nodes #4 
and #20 together have 59.8% of the lesions and they perfectly discriminate nevi 
and melanoma, respectively. 
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The likelihoods produced by all methods were combined into the overall endpoint of the 
analysis, the ultimate best estimate of melanoma probability between zero and one, the 
melanoma Q-score. Thus, we built a predictive model that combined the MIBs into a risk 
score for probability of melanoma. Figure S9 shows how the Q-scores of the entire 
image set were optimized to fill the dynamic range from 0 to 1. 
 

 
 

 
Figure S9. Distribution Of The Melanoma Q-Score Over The Entire Data Set  
The melanoma Q-Scores for each lesion (x-axis) were obtained by the median 
melanoma probabilities according to the classification methods in Table S2. These 
median Q-scores are shown as horizontal black lines. The box-plot diagram shows, 
for each lesion, the variability in Q-Score from the Monte Carlo experiment 
described in the Statistical Methods (see supplementary material). A total of 1000 
training and test sets with 75% and 25% of the lesions, respectively were randomly 
selected and every time a particular lesion was included in the test set, the Q-
Score was evaluated.  The number of evaluations for each lesion was 
approximately 250, the expected number of times a lesion would be selected as 
part of the test sample. In this diagram, the 25th, 50th (median) and 75th 
percentiles for the Q-Score, over different test sets, are delimiters for the boxes 
and the whiskers are obtained from the minimum and maximum Q-Score. The 
lesions are ranked on the x-axis from the lowest median Q-Score to the highest.  
 
 

Figure S10 illustrates several examples of nevi, melanomas and their assigned Q-
scores to provide a frame of reference for the overall classification method.  Shown are 
examples of lesions that were well classified (i.e. true positives and true negatives) 
versus images that were not (i.e. false positives and false negatives). Since sensitivity is 
more important than specificity, the characteristics of misclassified melanomas were 
particularly important. Two of these melanomas are largely “featureless,” and two others 
appear to have significant regression, which is not directly scored in the current method. 
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Figure S10.  Well vs. Poorly-Classified Images  Ensembles of well-classified 
(top two rows) and poorly-classified (bottom two rows) lesions.  
 

Our framework was set first to identify the most discriminative MIBs upon which the 
predictive model will be built. These MIBs and their discriminative ability are illustrated 
in the heat map in Figure S6. To this end, we first evaluate the differences between 
melanoma and nevus for each one of the seven multicolor MIBs and also for the RGB 
channel-specific MIBs (41 MIBs for each Red, Green and Blue channels). For this 
univariate assessments, two-sided unpaired t-tests, Wilcoxon-Mann-Whitney and chi-
square tests were used for continuous (e.g. MIB B1), ordinal (e.g. MIB MC1) and 
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categorical (e.g.  MIB MC4) MIBs, respectively.  Of the total 130 MIBs, 33 (4 multicolor, 
13 Red, 1 Green and 15 Blue MIBs) were selected as the most significant discriminators 
(p<0.05) between melanoma and nevi (See Figure 2) to continue to the multivariate 
discrimination stage. When significant differences for a given MIB were found in more 
than one channel the most discriminative channel regarding its p-value was selected. 
Among the selected 33 most discriminative MIBs were Blue(15), and Red(12)-channel 
MIBs, followed by four multicolor MIBs and only one MIB from the Green channel. This 
set of 33 discriminative MIBs measured from all the 112 lesions were used as inputs for 
our predictive model.  
  
S3.1 – Predictive model 
We used a collection of 12 classification methods that range from simple to 
sophisticated and altogether cover different data structures. The collection of 
classification algorithms is listed in Table S2 and includes the K-nearest neighbors 
(KNN) (6), a simple and efficient nonparametric distance-based method that has been 
successfully applied for more than 60 years. Artificial neural networks (7) and support 
vector machines (SVM) (8, 9) were included as to represent high-dimensional complex 
nonlinear functions. To accommodate complex interactions between predictors we 
incorporated four methods following the decision tree/recursive partitioning paradigm: 
CART (10), C5.0 (11), Multiple Adaptive Regression Splines (MARS) (12) and Random 
Forests (13). Logistic regression (14) and Linear Discriminant Analysis  (15) are based 
on solid statistical foundations.  The former permits inference upon parameters by a 
probabilistic approach and the latter is one of the oldest techniques for dimensionality 
reduction.  Partial Least Squares (PLS) regression (16)  (17) is of more recent 
development and simultaneously performs regression/classification and dimensionality 
reduction. 
 
S3.2 – Model Estimation/Training 
To estimate each of the classifiers’ parameters and to evaluate the distribution of the 
prediction error empirically, we created a Monte-Carlo experiment. During each of 500 
iterations, the set of 112 lesions was randomly partitioned into training (75%) and test 
(25%) sets. For each classifier, model parameters were estimated by maximizing a 
partial area under the ROC curve obtained by limiting the specificity to be within the 
range 0-40% and tuning parameters were estimated by 10-fold Cross-Validation. The 
best configuration for each classifier was used to predict the 25% hold-out lesions in the 
test set. The performance of each classifier on the test set (across the 500 iterations) is 
shown in Figure S3 and clearly indicates that the CART(RP) algorithm is outperformed 
by all others. Notably, as measured by the AUC curve, the classifiers performance 
become more similar in the specificity range 0-0.4 where the partial AUC was 
maximized. Despite the fact that the Random Forests algorithm performed slightly better 
than the Q-Score (see Figure S3) in the region of high sensitivity, the Q-Score was 
more robust over the entire range of specificities, and it reached the highest value for 
the Total Area Under the Curve. Moreover, considering the bootstrapped 95% 
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confidence interval estimate for the Partial Area Under the Curve (specificity between 0 
and 0.4) both Random Forests and Q-Score were equivalent.  
Recent developments in machine learning and pattern recognition have been shown 
that an ensemble of predictive algorithms is likely to generate more accurate predictions 
than a single algorithm (18),  (19). Following this paradigm, we developed the 
melanoma Q-Score, a diagnostic for melanoma discrimination obtained by evaluating 
the median probability across K available classifiers. 

 
Where Prob! ∈ {0,1}  is the probability of the lesion being a melanoma, as predicted by 
the i-th classifier based on a set of MIBs 𝐌. The Monte Carlo experiment setting allows 
us to obtain the empirical distribution of the Q-Score for each lesion, which is 
represented in Figure S9. The Q-score distribution shows that the number of false-
positives (melanomas classified as nevi) is lower than the false-negatives; indicating 
that our classification strategy is more sensitive than specific. If we set up a threshold of 
0.5 for the Q-Score, only in 5 melanomas (lesions D031, D13, D83, D66 and D23) the 
75th percentile of the Q-Score distribution is below 0.5. 
Classification performance was assessed through a set of standard approaches 
including: sensitivity, specificity, positive and negative predictive values, as presented in 
Supplementary Table S4. Supplementary Table S4 shows that the strategy (Best 
Channel+Multicolor) outperforms the classification obtained within any individual color 
channel, resulting in a classification 8% more sensitive than the most discriminative 
channel (Blue). 
 
S4 – Discussion 
 
S4.1 – Clinical Impact and Translation 
Our results show that discrete, quantitative MIBs achieved diagnostic significance.  
Combining MIBs with machine learning to stratify risk during screening may augment 
current techniques that guide biopsy.  
Because false negative screening must be avoided, we evaluated our technology in the 
high sensitivity range of the ROC (Figure S3). The Q-score diagnostic precision 
(sensitivity/specificity=98%/36%) is exceeded by the technique (sensitivity/specificity 
=98%/44%) (20) it was initially modeled after and the preliminary study 
(sensitivity/specificity=98%/44%) (21) of the commercial technology that achieved 
se/sp=98%/10% in subsequent studies (22). Because no other reports in the literature 
specify a sensitivity of 98% or greater, we believe our result to be the most promising in 
the high sensitivity range that is required for clinical utility.   
Though we report the median melanoma likelihood produced by the various machine 
learning approaches as the Q-score, one approach (the C5.0 decision tree approach) 
outperformed the Q-score at 98% sensitivity, yielding sensitivity/specificity = 98%/44%. 
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This result was produced using branching logic.  Figure S8 shows an illustration of this 
branch choice approach, which may be the most promising approach as instructive to 
visual examination. This analysis may be able to  “teach back” to dermatologists both 
new visual dermoscopic features and new ways to combine MIB evaluations 
sequentially. Our full diagnostic, which involves calculating a melanoma probability for 
each machine learning approach and taking the median of those probabilities as the Q-
score can likely be reduced for translation to visual screening. Thus, automated, 
unconstrained digital engineering of diagnostically optimized decision trees revealed 
intriguing analytical pathways, though the feasibility of translation for human use without 
computer vision remains to be shown.  Also, it may be desirable from the point of view 
of decreasing computation time and/or complexity during evaluation to reduce the 
number of statistical classification approaches from the 13 used here to 1 or 2 (e.g. the 
C5.0 tree in figure S8) if such a small subset continues to outperform the Q-score 
ensemble approach that uses the median result of all the classifiers. 
The goal of algorithms performing automatic differentiation, diagnosis, and/or screening 
is to avoid subjective judgment.  However, there are many potential dermoscopic MIBs 
and it is unclear if a “one size fits all” approach will be optimal, since dermatologists 
evaluate features that may be particular to their patients’ skin type and other factors. 
Furthermore, MIBs and our statistical approach may be applicable to screening and 
differential clinical identification of other skin diseases and conditions besides 
melanoma such as non-melanoma skin cancer and seborrheic keratosis. To remain 
objective in this study, we removed the least diagnostic (below the p = 0.05 threshold, 
see Figure 2) from the MIB library. However, the significance of various MIBs will 
change when this analysis is applied to different image databases, from different 
dermoscopists, on different patient populations. Future investigation must quantify the 
variability of the level of statistical significance of each MIB among image databases. 
The reproducibility of each MIB may become a second-degree quality measurement to 
the p-values used in this work.  
 
S4.2 – Limitations 
Though promising based on the ROC in Figure S3, our algorithm for melanoma 
detection had several limitations. The limitations of the algorithm were:  
1) In the image-processing phase, eight images (Figure S11) were excluded due to the 
algorithm’s inability to automatically identify the lesion border. The inability of the 
algorithm to converge on a lesion border in 6.7 % of the cases was due to either 
excessive hair or lesion segments that extended beyond the image border, particularly 
in lesions that had extremely subtle border in which the whole field of view could be 
considered lesion. In 11 single color channels of 10 lesions, the algorithm identified two 
lesion segments separated by normal skin. In these cases the largest lesion segment 
was chosen as the lesion segment and smaller segments were ignored. In 9 out of 10 of 
those cases, the algorithm completed the border analysis but in one the algorithm failed. 
That failure along with 7 other failures are the 8 cases out of 120 shown in Figure S11 
where the algorithm failed to produce a result due to the inability to identify the lesion 
border.  
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Figure S11.  Failed Border Detection  In the eight 
cases for which the algorithm failed to determine the 
lesion border, the lesions that did not result in a 
defined border were either covered with hair or 
markers or had borders that extended beyond the 
field of view in one or more color channels. Lesions 
019 and 062 were melanomas, the rest were nevi. 
Lesion 019 was covered too heavily with hair 
Lesion 043 had two lesion segments in both the blue 
and green channels 
Lesion 061 had pen markings that were too difficult 
to remove 
Lesion 062 had a poorly defined border that 
extended beyond the field of view 

 
2) Our algorithm was only semi-automated. 
Non-automated tasks were the cropping of the 
image to include a spatial range roughly equal 
to twice the lesion diameter and choice of 
sample dermoscopic colors in the data set. 
Though the training exercise of choosing 
dermoscopic colors led to good overall 
performance in mimicking what trained 
dermoscopists identify as particular colors, at a 
rate of about 10%, the trained algorithm 
identified colors that may not be supported by 
trained dermoscopists.  
 
3) The limitation to generalization of the Q-

score diagnostic thus far is that it considered only one group of clinicians with one 
dermatoscope and camera combination. A logical expansion to include multiple devices 
and users is needed to quantify inter-observer agreement, although the approach may 
be optimized with a single imaging platform. We must determine the degree to which 
the Q-score needs training for each imaging platform and user. Future work will analyze 
multiple data sets from different users, identifying methods to overcome variations in 
such data towards a generalizable endpoint diagnostic that may be presented as a 
mobile medicine solution. 
4) The study cohort of 120 patients represents a small sample size.  By comparison, the 
study size that enabled the Melafind system to achieve FDA approval was 
approximately ten times larger. We intentionally chose a small data set on which to 
develop our algorithm with the intention to expand to multiple data sets in future studies.  
Our choice of a small data set for this work facilitated the evaluation of feature 
recognition efficacy, visually, on the entire data set.  This made rapid development 
possible.  The ROC curve we present in Figure S3 with the point showing 98% 
sensitivity and 36% specificity is an average result that was obtained after evaluating 
probabilities of melanoma and nevus in randomly selected test sets. The data was 
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balanced regarding the prevalence of positive cases and the evaluation in this Monte 
Carlo experiment was performed in an attempt to overcome the small sample size. 
5) Only a small fraction of the established dermoscopy nomenclature has been 
automated in this report and the MIB library needs expansion. One important example is 
that the presence of regression and negative networks is not specifically targeted by 
any MIB.  These features impact the MIBs indirectly but are worth some future efforts to 
specifically target.  
 

Figure S12. Determination 
of Border Asymmetry The 
border asymmetry was 
analyzed perpendicular to 
the axis of most symmetry 
as dermoscopy texts train 
practitioners to do. Each 
image in this figure 
represents analysis at a 
particular angle, in 
increments of 10 degrees, 
over a 180-degree range. 
The image whose center is 
marked with a blue dot 
indicates the angle where 
the lowest variable value 
was found and the image 
whose center is marked 
with a red dot indicates the 
perpendicular angle where 
the MIB was scored. The 

MIB R13 measuring border asymmetry as determined in the clinically conventional way, the 
degree of symmetry of the silhouette of the lesion, proved to be less effective at differentiating 
melanoma from nevi thank MIB R11, which, instead of evaluating A at the figure marked by the 
blue dot, simply took the maximum value of A and divided it by the elipsity of the lesion. 

 
S4.3 – Competing Technology  
Though there are a number of mobile medicine services that will transfer an image of a 
pigmented lesion to a certified dermatologist, there are relatively few that offer any 
automated diagnostic capabilities. The FDA-approved device and service to automate 
interpretation of pigmented lesions used “wavelet” transforms of features that largely 
distinguish normal, benign nevi from melanomas in a proprietary analysis algorithm. As 
commercialized, this approach had 98% sensitivity and 10% specificity for melanoma 
classification (22) which is far inferior to accuracy of the best manual methods. (20) (23) 
These mathematical transformations of visual characteristics produce diagnostic data 
that are not strongly and intuitively linked to visual or structural features of pigmented 
lesions. Early App. technologies may miss-classify 30% or more of melanomas as un-
concerning. (24) Some have high sensitivity such as SkinVision and others are more 
specific such as Skin Analytics but none yet deliver significantly more than 10% 
specificity at the requisite 98% sensitivity that is clinically useful.  Thus, in this work, we 
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set goals of having high sensitivity and at least as good specificity as the median 
dermatologist in the USA, with the added benefit of potentially instructing dermatologists 
about new image characteristics that may be helpful in overall lesion evaluations, and 
with the potential to eventually expand non-expert, standardized approaches into 
primary care settings. 
The emergence of Watson Health from International Business Machines, Inc. 
represents an upcoming trend that will likely set the pace for advancing computational 
diagnostics. Watson is originally a project that aimed to use language processing and 
machine learning to reveal insights from large amounts of data. Watson analyzes this 
data and through trial and error improves its performance, becoming smarter and 
smarter over time. (25) While the first efforts were made towards language recognition, 
Watson has lately been focusing on using its databases for medical purposes. Notably, 
the group working closely with the Memorial Sloan Kettering Cancer Center to train its 
software to recognize many different kinds of cancers, including melanoma. (26) 

 This tool could be used for diagnosis on personal devices (such as phone apps), 
but currently Watson is focused on creating a support system for physicians specifically. 
The system would prompt the physician for characteristics and questions regarding the 
patients, and the software would then present several hypotheses with various degrees 
of confidence, as well as providing publications and guidelines used to form those. 

 While Watson seems to be working towards automated machine diagnosis, there 
have been no major efforts to translate this technology into accessible medical software 
for non-physician users. (27) Though non-peer reviewed internet publications claim that 
Watson is 95% accurate in identifying melanoma (28), we could find no rigorous tests of 
Watson’s melanoma diagnostic potential in the literature.  In the context of early 
melanoma detection based on computational image processing, there is a limitation to 
Watson Health in that although images can be fed directly into machine learning 
approaches with gold standard histological diagnoses as training material, the 
dermoscopic diagnostic criteria are not yet digitized.  Thus, unconstrained machine 
learning does not yet leverage dermoscopy pattern recognition that has been developed 
to date. The digitization of dermoscopic features achieved by our MIBs is one of the 
components that this work cannot be achieved by machine learning alone.  MIBs 
provide constraints that will likely outperform unconstrained machine learning by 
leveraging visual pattern recognition.  Our second machine-learning step (after the MIBs 
that digitize the dermoscopy features are created) can be substituted with the Watson 
Health analysis. 
 
S4.4 – The Light-tissue Interaction 
Some logical clinical MIBs correlated well with melanoma such as the presence of 
multiple dermoscopic colors (marked “Color” in Figure 2). Other intuitive MIBs, such as 
the asymmetry of the lesion border (“Asymmetry” in Figure 2, illustrated in Figure S10) 
had lower values for melanomas than for nevi and were of marginal diagnostic 
significance. 
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Our results supported the general principle that melanomas have more spectral and 
structural irregularity than benign nevi and that red, blue, and green light-based images 
show differing tissue characteristics. MIBs naturally segregated as either diagnostic in 
the blue channel or the red channel, but not both.  
A hypothesized mechanism for the spectral dependence of diagnostic importance is 
deeper penetration by longer wavelengths (eg. red), and thus ability to differentially 
visualize differing 3-dimensional tissue or chromophore characteristics of melanoma 
invading the dermis as well as superficial epidermal imaging by the shorter (eg. blue) 
wavelengths of basal layer atypia or junctional nests of melanocytes associated with 
melanoma. The green channel may have included some information from both but 
mixed the information content becoming nonspecific to either. This study raises the 
question whether ultraviolet and infrared imaging may enable even more specific 
surveillance of the superficial and deep atypia, respectively. The resulting spectral 
dependence of diagnostic importance (Figure 2) suggests that RGB MIBs may be 
missing spectral information to be probed using MIBs in conjunction with hyperspectral 
imaging. 
 
Though the melanoma Q-score combined information from the red green and blue 
channels, analysis at isolated single color channels showed the blue channel 
outperformed the red channel and the red channel outperformed the green channel 
(Table S4).  
The diagnostic criteria we developed still need to be related to underlying tissue 
structure, including proliferative and invasion patterns of melanoma cells, and molecular 
pathways that could produce differing pigmentation. Beyond these features, one also 
needs to consider the contribution of hemoglobin to lesion pigmentation. Optically 
testing hemoglobin for saturation/desaturation may effectively detect metabolically 
active areas of growing melanoma cells or active areas of immune-response to tumors. 
If improved with additional analysis of multiple discrete wavelengths in the green range, 
hemoglobin spectroscopy may enable oxymetric measurement of metabolic activity as 
well as surveillance of polymorphic vasculature associated with melanoma and other 
skin cancers such as basal cell and squamous cell carcinoma. Within a hyperspectral 
image of a pigmented lesion, one can include measures of hemoglobin saturation and 
desaturation, which may help to identify metabolically active regions within lesions. The 
basis for the “steeper edge slope” (MIB R5) in melanomas does not yet have a cellular 
basis, but we speculate that it might represent growth of melanocytes in nests at the 
dermal-epidermal junction at the edge of a melanoma, whereas atypical nevi tend to 
have only individual junctional melanocytes (nevus cells) that are decreasing in number 
at the edge of this kind of lesion, whereas deeper nests of melanocytes/nevus cells are 
organized in the central or “body” region of an atypical nevus. (29) 
 
S5 – Mathematical formulae for MIBs 
S5.1 – Multi-Color MIBs 
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The process for dermoscopic color identification was as follows: Sample dermoscopic 
colors were chosen within the data set blind to the gold standard diagnoses and visually 
inspected the entire data set. At least three examples of each dermoscopic color were 
chosen for pixel extraction and generation of the threshold values in Table S3. This 
simplified colorimetric approach then classified each lesion pixel in each image as 
potentially one of 6 dermoscopic colors [light brown, dark brown, black, red, blue-gray 
and white].  
For each potential color, if the pixel ratio of red to blue (R/B) was within one standard 
deviation of the mean for that color, and the same was true for R/G and B/G, then the 
pixel was assigned that color. For each pixel, a sequential check was made for the 
presence of colors in the order [light brown, dark brown, black, red, blue-gray and 
white]. In this manner, the two most common colors [light brown, dark brown], were first 
identified as the least suspicious group. Next, red black and red were identified as more 
suspicious. Finally blue-gray and white were identified as most suspicious. The 
algorithm checked each pixel for each color, leaving the assignment of the last checked 
(most suspicious) color as the designated color for that pixel. 
A color list CL was produced for each lesion indicating the presence or absence of each 
color. For instance CL = [1 1 1 0 0] would result from a dermoscopic image where the 
lesion contained light brown, dark brown and red but no black or blue-gray/white. MC1 
is then the number of dermoscopic colors identified in the lesion. 

 
Let L(y,x) denote an image mask of the lesion segment with value 1 inside the lesion 
and value 0 outside the lesion. Let L!"#(y, x) , L!"##$(y, x)  and L!"#$(y, x)  be masks 
derived from the red, green and blue channels of the color image, respectively. MC2 is 
then the normalized difference in lesion size between the red and blue color channels 

 
Let R(θ) be the length of the radial between the geometric center of the lesion and a 
point on the lesion border that sweeps over the angle θ from θ = 0 to θ = 2π radians. 
Let R!(θ),R!(θ) and R!(θ) be three versions where the geometric centers and the 
borders are those extracted from L!"#(y, x), L!"##$(y, x) and L!"#$(y, x), respectively. 

 
MC3 is then the mean coefficient of variation of lesion radii among the color channels, 
where ⟨⟩ denotes the expectation value or mean operator. 
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where, as an illustration of the definition of the mean value, for a set x that contains n 
elements: 

 
MC4 is the binary presence of blue-gray or white in the image. 

 
S5.2 – MIBs With Blue Channel Diagnostic Significance 
Let p(r!) be the pixel brightness along a radial line r! connecting the center point of the 
lesion and a point on the peripheral edge of the lesion. Let R!(θ) be the mean pixel 
brightness ⟨p(r!)⟩ along a set of lines that vary as specified by the angle θ. As θ varies 
in increments of dθ one full rotation from zero to 2π radians (360 degrees), the set of 
lines r! sweep the lesion like a clock arm sweeping an analog clock. 

 
where, an illustration of the definition of the standard deviation, for a set x that contains 
n elements: 

 
B1 is then the average of the absolute value of the derivative of R!(θ) over the angular 
sweep is the mean instantaneous brightness shift from one angular analysis position to 
the next over the entire 360-degree angular range. 

 
B2 is the variance over the angular sweep of the variance in pixel brightness over the 
radial sampling arm. This variable is increased when there are some angles at which 
the lesion contains even pigmentation but others that contain variable pigmentation 
such as in reticular or globular patterns of bright and dark areas. 
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Let p!(r!) be the pixel brightness along a second radial line r! of the same length as r! 
and at the same angular sweep angle θ but extending from half-to-1.5 times the lesions 
radius R(θ) instead of 0-to-1 such as to be centered on the border between lesion and 
normal skin. p!(r) has the characteristic that half of its pixels (within the lesion) are 
darker than the other half of its pixels (outside the lesion). Let s!(r) be a mathematical 
model error function across the lesion border with three fitting parameters: Min, Max and 
Slope that are iteratively adjusted to minimize the least squares difference between 
p! (r), the data and s! (r) (Figure S5). erf(x) is defined as twice the integral of the 
Gaussian distribution with 0 mean and variance of 1/2, as shown below with the dummy 
variable t. Considering r! as the lesion border pixel with approximately the mean pixel 
brightness in p!(r) and exactly the mean brightness of s!(r), s!(r) is defined as: 

 
B3 is then the mean error between the model s!(r) and the data p!(r) evaluated over a 
range equal to the distance between the center and the lesion border but centered on 
the edge of the lesion. This error measurement is high if the lesion brightness does 
smoothly transition between dark inside the lesion and bright outside the lesion. The 
fitting algorithm, fminsearch() in Matlab (Mathworks Inc., Natick MA) , was limited to 200 
fitting iterations. If convergence was reached before the 200-iteration limit, the result 
was flagged as one type while fits that were cut off at the 200-iteration limit were flagged 
as a second type. B3 included only results of the second type, that did not converge by 
the time the iteration limit was reached. 

 
B4 Is the mode error, calculated the same as B3 but with the mode() operator instead of 
the mean⟨⟩ operator, calculated for only the data that exceeded the number (200) of 
fitting iterations allowed. 
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B5 is the standard deviation of the set of derivative values of the mean brightness. The 
variance of the derivative of brightness describes how much variability in the 
instantaneous change in brightness there is over the angular sweep. If some angular 
ranges are flat (low intra-range brightness derivative) and some ranges vary wildly, this 
variable will have a high value. 

 
B6 was calculated like B3 except that it used all data and was not restricted to the data 
requiring more fitting iterations than Matlab was allowed to execute. Similarly, B7 used 
only the fits that did not require more iterations than (200) the maximum number of 
fitting iterations allowed. 
A watershed analysis was developed to identify pigmented network branches. First, 
gray-scale images extracted from individual channels were passed through a rank filter 
which reset the gray-scale value of each pixel to the rank in brightness of the pixel 
under consideration with its group of neighboring pixels. This step was needed prior to 
the watershed analysis to act as a high-pass spatial filter and eliminate overall 
brightness variations in the lesion, leaving the local variations such as those caused by 
pigmented networks to be identified by the watershed analysis. Branches, which were 
skeletonized to a single pixel width down their spine, were characterized by three 
features: their length, their mean brightness and their angle with respect to the lesion 
centroid. The MR clock sweep scored the mean pixel intensity of the branches 
I!"#$%&(θ), the standard deviation of intra-branch pixel intensity variation σ!"#$%&, the 
mean length of the branches L!"#$%&(θ) and the total number of branches N!"#$%&(θ) 
within a differential angle element that traced with the clock MR clock sweep. B8 is then 
the normalized inter-branch pixel intensity variation. 

 
B9 Is the standard deviation of the error measurement like in B3, except that the 
standard deviation operator σ  is used instead of the mean <>  operator. B9  was 
evaluated only for fits requiring more fitting iterations than the 200 iterations allowed. 

 
B10 is the normalized angular coefficient of brightness variation. 

 
B11 The standardized variance of branch lengths. 
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B12 is the normalized range of angular brightness depicted in Figure 1 and Figure S2. 

 
B13 is calculated B6 except the standard deviation operator σ is used instead of the 
mean <> operator. Like B6, B13 used all the data. 

 
B14 Is the standard deviation σ() of the error measurement as in B13 except that B14 
was evaluated only for the fits that completed within the allowed number (200) of fitting 
iterations. 
Let Perim! be the length of the perimeter of the lesion segment in the green channel 
L!"##$. G1 is the length of the lesion segment border normalized by the square root of 
the area of the lesion segment. 

 
B15 Is the mean intra-branch coefficient of variation. 

 
S5.2 – MIBs With Red Channel Diagnostic Significance 

The fitting algorithm depicted in Figure S5 yielded a slope S for the sigmoidal edge fit. 
R1 was the standard deviation of the slope fit values 

 
R2 is the fractal dimension of the lesion segment binary image as defined by (30) 

 
Each branch segment in terminated on two ends in either a branch point or an end 
point. R3 is the connectedness of the pigmented network, defined as the ratio of the 
number of branch points N!" to the number of endpoints N!". 
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R4 is the size of the lesion segment L!"#, which is the sum of the binary mask valued at 
one inside the lesion segment and zero outside the lesion segment. 

 
R5 is the mean slope (S) for the edge fit function s!(r) (as used in Eq. 13) evaluated 
only for the fits that did not require more iterations of the fminsearch() operator than the 
200 allowed. 

 
Let the instantaneous radius of the lesion, as in Eq. 3, be denoted by R!(θ) over the 
angular sweep of θ. R6 is then the coefficient of variation in the lesion radius over the 
angular sweep 

 
Let N!(θ, dθ) be the number of pigmented network branches identified in a differentiual 
angle emelment dθ as a function of angle θ over the angular sweep. R7 is then the 
range in number of branches detected as a function of angle. 

 
R8 is the range in the standard deviation of pixel brightnes on the angular sweep arm 
over the angular sweep. 

 
Pixels with the lesion segment were scored as a set P!"#$%&. The coefficient of variation 
for pixels within the lesion segment was calculated by dividing the standard deviation of 
intra-lesional pixel brightness by the mean lesional pixel brightness. R9 is then the 
coefficient of variation in pixel brightness within the lesion. 

 
R10 is the mode error, calculated the same as B4 but evaluated only for the fits that did 
not exceed the number of fitting iterations (200) allowed. 
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The maximum asymmetry of the lesion (Figure S12) was normalized by the eccentricity 
of the lesion E  as calculated using the stats.Ecentricity function in Matlab. This 
normalization enabled de-emphasis of uniform ovals as asymmetric. R11 is then the 
maximum asymetry of the lesion silhouette 

 
R12 is the sum of the normalized derivitive in lesion radius D over the angular sweep 

 
R13 is the asymetry of the lesion sihlouette evaluated in the standard technique (Figure 
S10) 
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Supplementary Tables 
Table S1. Diagnostic sensitivity and specificity for melanoma detection by human 

pattern recognition (*) and by machine-augmented pattern recognition (**). The 

final two listed other techniques (***) represent the current commercially available 

clinical machine-vision systems. † = dermatologist referral by general practitioner 

non-expert dermoscopist ‡ = averaged over in situ and stage I melanoma.  

Method  Sensitivity Specificity  

*GP Referral † (Argenziano, Puig et al. 2006)  51%  71%  

*GP Referral, Dermoscopy † (Argenziano, Puig et al. 2006)  79%  72%  

*Pattern Analysis (Nachbar, Stolz et al. 1994) 85%  79%  

*ABCD (Nachbar, Stolz et al. 1994) 84%  75%  

*ABCD † (Malvehy, Hauschild et al. 2014) 56%  92%  

*7-Point Checklist (Rigel, Russak et al. 2010) 78%  65%  

*7-Point Checklist ‡ (Malvehy, Hauschild et al. 2014) 58%  92%  

*CASH (Henning, Dusza et al. 2007) 98%  68%  

*Menzies (Rigel, Russak et al. 2010) 85%  85%  

*Malignancy Grading ‡ (Malvehy, Hauschild et al. 2014)  73%  81%  

*Total Body Photography (Drugge, Nguyen et al. 2009)  75%  74%  

*Dermoscopy (Vestergaard, Macaskill et al. 2008) 90%  90%  

*Confocal Microscopy (Hofmann-Wellenhof, Wurm et al. 2009) 90%  86%  

**Prelim. SIAscopy (Emery, Hunter et al. 2010) 50%  84%  

**Prelim. SIAscopy (Emery, Hunter et al. 2010) 44%  95%  

**Solar Scan (Menzies, Bischof et al. 2005) 91%  68%  

**Prelim. Melafind 1 (Friedman, Gutkowicz-Krusin et al. 2008) 98%  44%  

**Prelim. Melafind 2 (Friedman, Gutkowicz-Krusin et al. 2008) 91%  38%  

**Image Processing (Ramezani, Karimian et al. 2014) 77%  87%  

***SIAscopy (Sgouros, Lallas et al. 2014) 86%  65%  

***Melafind (Monheit, Cognetta et al. 2011) 98%  10%  

Q-score (This Work) 98%  36% 



					Gareau	et	al.,	Experimental	Dermatology,	2016 

	
Table	S1	References	

Argenziano,	G.,	et	al.	(2006).	"Dermoscopy	improves	accuracy	of	primary	care	physicians	to	
triage	lesions	suggestive	of	skin	cancer."	J	Clin	Oncol	24(12):	1877-1882.	

Drugge,	R.	J.,	et	al.	(2009).	"Melanoma	screening	with	serial	whole	body	photographic	
change	detection	using	Melanoscan	technology."	Dermatol	Online	J	15(6):	1.	

Emery,	J.	D.,	et	al.	(2010).	"Accuracy	of	SIAscopy	for	pigmented	skin	lesions	encountered	in	
primary	care:	development	and	validation	of	a	new	diagnostic	algorithm."	BMC	Dermatol	
10:	9.	

Friedman,	R.	J.,	et	al.	(2008).	"The	diagnostic	performance	of	expert	dermoscopists	vs	a	
computer-vision	system	on	small-diameter	melanomas."	Arch	Dermatol	144(4):	476-482.	

Henning,	J.	S.,	et	al.	(2007).	"The	CASH	(color,	architecture,	symmetry,	and	homogeneity)	
algorithm	for	dermoscopy."	J	Am	Acad	Dermatol	56(1):	45-52.	

Hofmann-Wellenhof,	R.,	et	al.	(2009).	"Reflectance	confocal	microscopy--state-of-art	and	
research	overview."	Semin	Cutan	Med	Surg	28(3):	172-179.	

Malvehy,	J.,	et	al.	(2014).	"Clinical	performance	of	the	Nevisense	system	in	cutaneous	
melanoma	detection:	an	international,	multicentre,	prospective	and	blinded	clinical	trial	on	
efficacy	and	safety."	Br	J	Dermatol	171(5):	1099-1107.	

Menzies,	S.	W.,	et	al.	(2005).	"The	performance	of	SolarScan:	an	automated	dermoscopy	
image	analysis	instrument	for	the	diagnosis	of	primary	melanoma."	Arch	Dermatol	141(11):	
1388-1396.	

Monheit,	G.,	et	al.	(2011).	"The	performance	of	MelaFind:	a	prospective	multicenter	study."	
Arch	Dermatol	147(2):	188-194.	

Nachbar,	F.,	et	al.	(1994).	"The	ABCD	rule	of	dermatoscopy.	High	prospective	value	in	the	
diagnosis	of	doubtful	melanocytic	skin	lesions."	J	Am	Acad	Dermatol	30(4):	551-559.	

Ramezani,	M.,	et	al.	(2014).	"Automatic	Detection	of	Malignant	Melanoma	using	Macroscopic	
Images."	J	Med	Signals	Sens	4(4):	281-290.	

Rigel,	D.	S.,	et	al.	(2010).	"The	evolution	of	melanoma	diagnosis:	25	years	beyond	the	
ABCDs."	CA	Cancer	J	Clin	60(5):	301-316.	

Sgouros,	D.,	et	al.	(2014).	"Assessment	of	SIAscopy	in	the	triage	of	suspicious	skin	tumours."	
Skin	Res	Technol.	

Vestergaard,	M.	E.,	et	al.	(2008).	"Dermoscopy	compared	with	naked	eye	examination	for	
the	diagnosis	of	primary	melanoma:	a	meta-analysis	of	studies	performed	in	a	clinical	
setting."	Br	J	Dermatol	159(3):	669-676.	

	





																																																																																					Gareau	et	al.,	Experimental	Dermatology,	2016	

	 27	

References: 

1.	 Marghoob	Ashfaq	A.,	Malvehy	Josep,	Braun	Ralph	P.,	.	Memorial	Sloan-Kettering	
Cancer	Center.	Atlas	of	dermoscopy.	2012.	

2.	 Mete	M.,	Sirakov	N.	M.	Dermoscopic	diagnosis	of	melanoma	in	a	4D	space	
constructed	by	active	contour	extracted	features.	Comput	Med	Imaging	Graph.	
2012;36(7):572-9.	

3.	 Otsu	N.	A	threshold	selection	method	from	gray-level	histogram.	IEEE	Transactions	
on	System	Man	Cybernetics.	1979;SMC-9(1):62-6.	

4.	 Leachman	S.	A.,	Cassidy	P.	B.,	Chen	S.	C.,	Curiel	C.,	Geller	A.,	Gareau	D.,	Pellacani	G.,	
Grichnik	J.	M.,	Malvehy	J.,	North	J.,	Jacques	S.	L.,	Petrie	T.,	Puig	S.,	Swetter	S.	M.,	Tofte	S.,	
Weinstock	M.	A.	Methods	of	Melanoma	Detection.	Cancer	Treat	Res.	2016;167:51-105.	doi:	
10.1007/978-3-319-22539-5_3.	PubMed	PMID:	26601859.	

5.	 Kuncheva	L.	Combining	Pattern	Classifiers.	Methods	and	Algorithms.	2	ed:	Wiley;	
2014.	

6.	 Fix	E.,	Hodges	J.L.	Discriminatory	Analysis,	nonparametric	discrimination:	
Consistency	properties.	1951.	

7.	 Haykin	Simon.	Neural	Networks	and	Learning	Machines.	3	ed.	New	York:	Prentice	
Hall;	2008	November.	

8.	 Cortes	Corinna,	Vapnik	Vladimir.	Support-vector	networks.	Machine	Learning.	
1995;20(3):273-97.	

9.	 Scholkopf	B.	,	Smola	A.	.	Learning	with	Kernels.	MIT	Press.	2002.	

10.	 Breiman	Leo,	Friedman	Jerome,	Stone	Charles	J.,	Olshen	R.	A.	Classification	and	
Regression	Trees	(Wadsworth	Statistics/Probability).	1	ed:	Chapman	and	Hall/CRC;	1984	
January.	

11.	 Quinlan	J.R.:	Morgan	Kaufmann	Publishers;	1993.	

12.	 Friedman	Jerome	H.	Multivariate	Adaptive	Regression	Splines.	The	Annals	of	
Statistics.	1991;19(1):1-67.	

13.	 Breiman	Leo.	Random	Forests:	Kluwer	Academic	Publishers;	2001.	5-32	p.	

14.	 Friedman	J.,	Hastie	T.,	Tibshirani	R.	Regularization	Paths	for	Generalized	Linear	
Models	via	Coordinate	Descent.	Journal	of	Statistical	Software.	2010;33.	

15.	 Fisher	R.A.	The	use	of	multiple	measurements	in	taxonomic	problems.	Annals	of	
Eugenics.	1936;7:179-88.	

16.	 Wold	H.	Soft	Modeling	by	Latent	Variables;	the	Nonlinear	Iterative	Partial	Least	
Squares	Approach.	Perspectives	in	Probability	and	Statistics	Papers	in	Honour	of	M	S	
Bartlett.	1975.	



																																																																																					Gareau	et	al.,	Experimental	Dermatology,	2016	

	 28	

17.	 Rosipal	Roman,	Krämer	Nicole.	Overview	and	Recent	Advances	in	Partial	Least	
Squares.	In:	Saunders	C,	Grobelnik	M,	Gunn	S,	Shawe-Taylor	J,	editors.	Subspace,	Latent	
Structure	and	Feature	Selection:	Springer	Berlin	Heidelberg;	2006.	p.	34-51.	

18.	 Polikar	R.	Ensemble	based	system	in	decision	making.	IEEE	Circuits	and	Systems	
Magazine.	2006;6:21-45.	

19.	 Rokach	Lior.	Ensemble-based	classifiers.	Artificial	Intelligence	Review.	2010;33:1-
39.	

20.	 Henning	J.	S.,	Dusza	S.	W.,	Wang	S.	Q.,	Marghoob	A.	A.,	Rabinovitz	H.	S.,	Polsky	D.,	
Kopf	A.	W.	The	CASH	(color,	architecture,	symmetry,	and	homogeneity)	algorithm	for	
dermoscopy.	J	Am	Acad	Dermatol.	2007;56(1):45-52.	

21.	 Friedman	R.	J.,	Gutkowicz-Krusin	D.,	Farber	M.	J.,	Warycha	M.,	Schneider-Kels	L.,	
Papastathis	N.,	Mihm	M.	C.,	Jr.,	Googe	P.,	King	R.,	Prieto	V.	G.,	Kopf	A.	W.,	Polsky	D.,	
Rabinovitz	H.,	Oliviero	M.,	Cognetta	A.,	Rigel	D.	S.,	Marghoob	A.,	Rivers	J.,	Johr	R.,	Grant-Kels	
J.	M.,	Tsao	H.	The	diagnostic	performance	of	expert	dermoscopists	vs	a	computer-vision	
system	on	small-diameter	melanomas.	Arch	Dermatol.	2008;144(4):476-82.	

22.	 Monheit	G.,	Cognetta	A.	B.,	Ferris	L.,	Rabinovitz	H.,	Gross	K.,	Martini	M.,	Grichnik	J.	M.,	
Mihm	M.,	Prieto	V.	G.,	Googe	P.,	King	R.,	Toledano	A.,	Kabelev	N.,	Wojton	M.,	Gutkowicz-
Krusin	D.	The	performance	of	MelaFind:	a	prospective	multicenter	study.	Arch	Dermatol.	
2011;147(2):188-94.	

23.	 Rigel	D.	S.,	Russak	J.,	Friedman	R.	The	evolution	of	melanoma	diagnosis:	25	years	
beyond	the	ABCDs.	CA	Cancer	J	Clin.	2010;60(5):301-16.	

24.	 Wolf	J.	A.,	Ferris	L.	K.	Diagnostic	inaccuracy	of	smartphone	applications	for	
melanoma	detection--reply.	JAMA	Dermatol.	2013;149(7):885.	doi:	
10.1001/jamadermatol.2013.4337.	PubMed	PMID:	23864095.	

25.	 Doyle-Lindrud	S.	Watson	will	see	you	now:	a	supercomputer	to	help	clinicians	make	
informed	treatment	decisions.	Clin	J	Oncol	Nurs.	2015;19(1):31-2.	doi:	
10.1188/15.CJON.31-32.	PubMed	PMID:	25689646.	

26.	 Lynch	M.,	Carroll	F.,	Kavanagh	A.,	Honari	B.,	Collins	P.	Comparison	of	a	
semiautomated	hand-held	device	to	test	minimal	erythema	dose	before	narrowband	
ultraviolet	B	phototherapy	with	the	conventional	method	using	matched	doses.	J	Eur	Acad	
Dermatol	Venereol.	2014;28(12):1696-700.	doi:	10.1111/jdv.12371.	PubMed	PMID:	
24456040.	

27.	 Billings	Steven	D.,	Cotton	Jenny.	Inflammatory	dermatopathology	a	pathologist's	
survival	guide.	New	York,	NY:	Springer,;	2011.	Available	from:	
http://dx.doi.org/10.1007/978-1-60327-838-6.	

28.	 Levis	W.	R.,	Holzer	A.	M.,	Leonard	L.	K.	Topical	diphenylcyclopropenone	as	a	
measure	of	immune	competence	in	HIV-seropositive	subjects.	J	Drugs	Dermatol.	
2006;5(9):853-8.	PubMed	PMID:	17039650.	



																																																																																					Gareau	et	al.,	Experimental	Dermatology,	2016	

	 29	

29.	 Elder	D.	E.	Dysplastic	naevi:	an	update.	Histopathology.	2010;56(1):112-20.	

30.	 Costa	Alceu	Ferraz.	Hausdorff	(Box-Counting)	Fractal	Dimension.	2013.	

31.	 McCullagh	P.,	Nelder	John	A.	Generalized	Linear	Models.	Second	ed:	Chapman	and	
Hall/CRC;	1989	August.	

32.	 Hofner	Benjamin,	Mayr	Andreas,	Robinzonov	Nikolay,	Schmid	Matthias.	Model-
based	boosting	in	R:	a	hands-on	tutorial	using	the	R	package	mboost.	Computational	
Statistics.	2014;29(1-2):3-35.	

 


