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SUPPLEMENTAL METHODS 

Neural Signal Processing and Decoding: Neural signals recorded at 30 kHz on each of 192 channels were band-pass filtered (250-
3000 Hz), common average referenced, and down-sampled to 15 kHz in real time. To perform the common average reference, we 
selected the 60 channels on each array that had the lowest signal power (variance) and averaged them together to yield an array-specific 
common average reference, which was then subtracted from each channel. At every 20 millisecond time step, 192 threshold crossing 
rates and 192 high frequency power values were computed using the past 20 ms of data for each channel and concatenated into a 384 × 
1 feature vector. Threshold crossing rates were defined as the number of times that the voltage time series on a given channel crossed a 
channel-specific threshold from above (-4.5 × RMS), divided by the width of the time window (which could be less than 20 ms for FES 
blocks due to stimulus artifact “blanking”). High frequency power was defined as the average power during that window on a band-pass 
filtered channel. For FES blocks, to ensure that a stimulation artifact did not affect our features, we “blanked” the channels by ignoring 
all data for a 15 ms window during which stimulation occurred. This resulted in one or two shorter time windows every 80 ms (with the 
minimum window length being 5 ms). 

At each time step, we mapped the neural features to a “control” vector with the equation ut=Dft, where ft is a 384 × 1 neural feature 
vector, D is an M x 384 decoding matrix, and ut is a M × 1 decoded control vector, with M denoting the number of decoded dimensions 
(for single-joint movements, M is 1; for 2 and 3-joint movements, M is 2 and 3, respectively). To calibrate the decoding matrix using 
attempted movement and/or closed-loop virtual reality blocks, we made the assumption that neural features were linearly tuned to a joint 
angle error vector of unit magnitude: ct=(gt-pt)/||gt-pt||, where gt is a vector of the target joint angles and pt is a vector of the virtual arm’s 
current joint angles. To ensure that each joint was weighted equally, joint angles were first normalized by dividing by the range of angles 
spanned by the targets.  

To calibrate the optimal linear estimator, we first found the top 120 features that were most highly correlated with ct (measured by 
Pearson’s r). We then assumed that the reduced neural feature vector ft linearly encodes ct: 
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where ft is the 120 x 1 reduced neural feature vector that has been z-scored to have zero mean, E is a 120 x M encoding matrix containing 
preferred directions, ct is the M x 1 joint error vector (called the decoder calibration signal in Supplementary Figure 2), and εt is an 120 
x 1 noise vector (where εt ~ N(0, Σ)). We used least squares regression to estimate E and Σ using all 20 ms samples that occurred between 
0.3 to 1.5 seconds after the start of each trial. We then computed the optimal linear estimator using the equation ܦ ൌ ሺ்ܧΣିଵܧሻିଵ்ܧΣିଵ 
(this procedure has been called “full OLE” 22). Finally, we expanded D to a 2 x 384 matrix by placing zeros in the columns of features 
that were not among the 120 most highly correlated features.  

We used a first-order, low-pass filter to smooth the decoded control vector ut and determine the gain: vt+1=vt+(1-)But, where vt is the 
smoothed control vector at time step t, ⍺ is a scalar smoothing parameter (set to 0.96 for virtual reality blocks and 0.9 for FES blocks), 
and B is a diagonal gain matrix that controls the gain of each dimension separately. The smoothing values were set based upon manual 
tuning and visual inspection of the resultant motion. 

For virtual reality blocks, vt controlled the velocity of each joint of the virtual arm directly, while for FES blocks vt was the Decoded ∆ 
Pattern (Supplementary Figure 2) and determined the rate of change of each stimulation pattern’s activation percentage (Stimulation 
Pattern % in Figure 1B and Supplementary Figure 2). In other words, during FES blocks, the new muscle stimulation values at each 
time step were set equal to the old muscle stimulation values plus vt multiplied by the time elapsed (20 ms time step). For virtual reality 
blocks, we set the gains such that at maximum speed (when ut=1), each joint would travel 30% of its range in one second. For FES 
blocks, we tuned the gain for each joint separately (with values allowing 10 - 30% of a stimulation pattern to be traversed in one second). 
Supplementary Figure 2 illustrates example time series of important variables during all three conditions (AM, VR, FES) of the VR vs. 
FES comparison sessions. 

Chance Success Rates: Chance success rates for each task (dashed red lines shown in Figure 3 and Supplementary Figure 4) were 
determined by collecting two additional blocks of the same task while replacing the typical decoder output with phase-randomized 
decoder output from two previous experimental sessions. The success rate for these two blocks were then averaged together to yield a 
chance success rate for that task. We randomized the phase of the decoder output by computing a discrete Fourier transform of the time 
series, randomizing the angle of each coefficient (drawing from a uniform distribution), and then computing an inverse Fourier transform 
to yield a new time series with the same frequency content but a different phase content that was unrelated to the target locations. 
Example trajectories resulting from this procedure are shown in Supplementary Figure 6. 

Electrogoniometer Calibration: Electrogoniometers (Biometrics Ltd.-US, Ladysmith, VA) were placed on the joint(s) of interest and 
the range of attainable values was found by using an automatic routine that stimulated each joint automatically, driving it through its 
range of motion. During FES performance evaluation, joint angle targets spanned 70% to 85% of this range (a reduced range was used 
to minimize the effect of muscle fatigue). To map recorded voltage to joint angle, we passively stepped each joint through its range of 
motion while measuring the physical angle.  

Stimulation Pattern Design: Before designing the stimulation patterns, we first profiled each electrode by stimulating it individually 
and noting the resultant joint motion. Then, we designed each pattern manually by grouping together electrodes that were profiled to 
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produce the desired motion. The timing and relative blending of each electrode was determined manually based on our expertise and 
visual examination of the resultant motion. These stimulation patterns sometimes changed during the course of the study as we optimized 
them for performance. The manual design of these stimulation patterns is an established method that has been implemented in previous 
FES hand and arm systems20. To improve control, we sometimes used an automatic routine that first recorded the equilibrium position 
of the joint at different increments of the stimulation pattern, then “warped” the pattern to make joint equilibrium position a linear 
function of stimulation pattern activation (Supplementary Figure 8). 
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Supplementary Figure 1. Cortical and FES implants. (A) [Left] Structural MRI scan of the participant’s brain. The implant locations 
of the two intracortical arrays are indicated with red squares. Both arrays were surgically targeted to the “hand” area of motor cortex. 
[Top Right] Photo of microelectrode arrays and wire bundles shortly after intracortical implantation. [Bottom Right] SEM of an 
example microelectrode recording array (Photo courtesy of Blackrock Microsystems). (B) Example FES implanted lead and electrode 
[Left]. The insulated leads exited the skin, where pins were attached and placed into connectors [Right] that allowed external cables 
to interface with the external stimulator. The stimulating tips were surgically targeted to specific muscles (Supplementary Table 3) 
to achieve the desired elbow, wrist and hand movements. 
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Supplementary Figure 2. Example time series from blocks of single-joint wrist flexion/extension movements made during a VR vs. 
FES comparison session. Gray squares indicate target joint angles. In condition I, the participant attempts to make the wrist 
movements shown on screen (illustrated in red). Afterwards, a decoder is calibrated to predict the “decoder calibration signal” 
(illustrated in blue) from the neural activity. The calibration signal represents the desired direction of joint motion and serves to define 
what the output of the decoder “should” be. In condition II, the participant uses that decoder to make virtual wrist movements by 
controlling the angular velocity of the wrist joint (illustrated in green) to acquire wrist position targets. In condition III, we enable the 
participant to make FES movements of his own wrist by mapping the output of the decoder to the change in stimulation pattern 
activation (illustrated in green). The pattern activation level itself (“Stimulation Pattern %, illustrated in gray) is the result of 
integrating the “Decoded ∆ Pattern” signal, and can range from 0% (full extension stimulation) to 100% (full flexion stimulation) and 
determines the pulse widths applied to each FES electrode (illustrated in blue and orange). 
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Supplementary Figure 3. Examples of channels that were tuned to single-joint elbow, hand, and shoulder movements during all 
three experimental conditions. Consistency of tuning across several channels for the three conditions allowed for development of 
decoders during virtual arm training that were used to initialize decoders during FES arm movements for the VR vs. FES comparison 
sessions. 
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Supplementary Figure 4. Multi-joint FES and mobile arm support (MAS) movements under real-time brain control. (A) Example 
virtual reality (left column) and FES (right column) movements for each of the two-joint tasks (rows). Each target is drawn as a 
colored rectangle whose size indicates the tolerance allowed for successful acquisition. Each line corresponds to a single movement 
and is colored to match its target. Targets and trajectories are plotted in joint space, where each axis is a joint angle (trajectories were 
generated by plotting the joint angles recorded at each time step on the 2D plane and connecting them with a line). Black dots represent 
the termination points of the reach trajectories in joint angle space. Blocks with high success rates were chosen for illustration. For 
the elbow and hand task, we did not test hand open/close movements when the elbow was extended because hand movements were 
difficult to see at full arm extension in the VR environment. For the elbow and shoulder task, we omitted off-axis targets due to the 
participant’s inability to fully flex his elbow when the arm was fully raised, due to an interaction with the mobile arm support. (B) 
Success rate and average movement time is summarized for each FES block (circles). Circles are different colors if they occurred on 
different days. Average virtual reality performance (blue dotted line) and chance performance (red dotted line) are shown for 
reference. 

 



7 

 

 

Supplementary Figure 5. Example movement trajectories made during the simultaneous control of three joints (elbow, wrist, and 
MAS) from a virtual reality block (left column) and an FES block (right column). Black dots represent the termination points of the 
reach trajectories in joint angle space. The top row plots the trajectories in 3D space while the bottom rows show different two-
dimensional projections. The FES block illustrated in the right column is the block with the highest success rate shown in Figure 3B. 
Note that we only tested 6 targets because including off-axis targets would have added 8 (23) more targets, making for too few 
repetitions per target given the number of movements we were able to collect per session. 
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Supplementary Figure 6. Example single-joint (A) and two-joint (B) movements from the chance and voluntary movement blocks. 
Chance movements were generated by replaying phase-randomized decoded command signals from previous blocks as input to the 
FES system. The resulting motions have a similar frequency content to brain-controlled FES movements but no relationship to the 
target, yielding an estimate of what kinds of motions and target acquisitions could be expected “by chance” if brain signals were 
random and unrelated to the target. Voluntary movements were made by the participant with the FES system turned off and represent 
the extremely limited arm motions he can make by using his residual shoulder movement. 
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Supplementary Figure 7. Example time series of single-joint movements illustrating the three failure modes (see Supplementary 
Table 2 for the number of trials categorized in each failure mode): (A) fatigue, (B) poorly decoded command signals, and (C) 
limitations of our pattern-based control interface. Joint angles (red lines) and corresponding stimulation pattern activation levels (blue 
lines) are plotted on top of the target regions (green and red rectangles). Acquired targets are green and failed targets are red. 

(A) We coded a trial for fatigue if the activation level of the stimulation pattern was at 0 or 100% but the joint could not reach the 
target. In the example, the hand is initially able to open enough to acquire the “open” targets but later becomes too fatigued. 

(B) We coded a trial for command interface (or “decoding”) failure if the activation level of the stimulation pattern did not consistently 
change in the right direction (e.g. did not move more towards extension for an extension target). In the example, the activation level 
hovers near the middle and even moves in the opposite direction. As a result, the wrist does not extend and the trial is failed. 

(C) We coded a trial for control interface failure if the command signal moved in the correct direction but the corresponding joint 
overshot the target instead of slowing down or stopping accurately in the target region. We also coded for control interface if the 
movement of one joint caused other joints to move in the wrong direction due to coupling dynamics (common with multi-joint 
movements that included the mobile arm support). Overshooting and coupling between joints are two problems that our control 
interface does not compensate for. In theory, a well-designed control system could compensate for these properties, enabling the user 
to make accurate movements without requiring the user to adapt their command signal. In the example given, the command signal 
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moves in the correct direction but the hand oscillates around the middle target instead of slowing down within the target region to 
acquire it. In this case, oscillation occurs due to a non-linear relationship between pattern activation level and hand movement: some 
regions of the pattern contain little or no sensitivity, while one region near the center is too sensitive and causes uncontrolled motion. 

 

Supplementary Figure 8. Stimulation pattern warping. We employed an automatic procedure to warp a stimulation pattern so that 
the joint equilibrium position is a linear function of pattern activation. The left column illustrates a manually designed pattern (top 
row) whose equilibrium positions are a highly non-linear function of pattern activation (bottom row). Our warping procedure enlarges 
the sensitive region of the pattern (top row) to linearize the equilibrium positions (bottom row). 
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Supplementary Figure 9. Unit counts for each microelectrode array estimated with an automatic offline spike sorting algorithm 
applied to data during the attempted movement condition (A) and example spike panels showing sorted waveforms from each 
identified unit on an example day (B). 
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Supplementary Figure 10. A neural tuning analysis performed on all blocks of single-joint movement included in the study. Results 
show that there was significant tuning to each joint and each condition, though the quality of the tuning varied substantially from 
block to block.  

(A) The number of channels where either the threshold crossing rate or the high frequency spike power was significantly tuned to a 
given movement (elbow, wrist, hand or MAS) during the given condition (attempted movement, control of the virtual arm, or control 
of the FES system). Each circle shows the results from a single block. We considered a neural feature to be “tuned” to a certain 
movement if that feature’s mean value was significantly different (t-test, p<10-3) between the two opposing commands, such as hand 
opening versus closing. For each trial, we averaged the feature within a 300 ms window occurring at the beginning of the movement 
(but after the participant’s reaction time of 340 ms), yielding a single data point for each trial. The t-test was performed on these 
individual trial averages.  

(B) The signal-to-noise ratio of a cross-validated (10-fold) linear decoder, which gives a measure of how well we were able to extract 
information about joint movement from the entire neural population. The decoder was calibrated on each block using the methods 
described in Supplemental Methods and was applied to the data offline. To measure the SNR, we averaged the unsmoothed decoder 
output (ut) during a 300 ms window occurring at the beginning of the movement (but after the participant’s reaction time of 340 ms), 
yielding an average decoder output for each trial. We modeled the average output as the sum of decoding error plus a one-dimensional 
vector pointing from the current joint angle to the target joint angle. We fit the following linear model: 

ݑ ൌ ܾ
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where ui is the averaged decoder output for trial i, gi is the target joint angle, pi is the current joint angle, b0 is a model parameter and 
εi is Gaussian noise. We fit b0 and the standard deviation of the noise (σ) using least squares regression and computed the SNR as 
b0/σ. 

 

 

  



13 

 

 

 

Date 
Day Post 
Implant 

Elbow Wrist Hand MAS 
Elbow 

&  
Hand 

Elbow 
& 

MAS 

Elbow 
& 

Wrist 

Elbow 
& 

Wrist & 
MAS 

2015.10.08 311   1             

2015.10.09 312     2           

2015.10.12 315     1           

2015.10.13 316 1       3       

2015.10.19 322 2               

2015.10.20 323 1     1         

2015.10.26 329     1           

2015.10.30 333     2           

2015.11.02 336   2             

2015.11.03 337         2       

2015.11.05 339         3       

2015.11.09 343           6     

2015.11.10 344         4 2     

2015.11.12 346             2   

2015.11.16 350             3 5 

2015.11.17 351             2 3 

2015.11.23 357 
Chance and Voluntary Motion (2 chance and 1 voluntary block per game) 

2015.11.24 358 

2016.01.25 420 1 1 1 1         

2016.01.26 421   1             

2016.03.08 463 Quantified Functional Coffee Drinking Task 

TOTAL 20 5 5 7 2 12 8 7 8 

  

Date 
Day Post 
Implant 

Video Collection Tasks 

2015.11.03 337 Video 2: Multi-Joint Movements 

2015.12.28 392 Video 4: Functional Coffee Drinking Task 

2016.01.07 402 Video 3: 3D Audio Cued Movements 

2016.01.25 420 Video 1: Single-Joint Movements 

2016.01.26 421 Videos 1 & 3: Single-Joint Movements and 3D Audio Cued Movements 

2016.11.07 717 Video 5: Functional Self-Feeding Task 

 

Supplementary Table 1. (Top) Session table indicating the number of blocks of each task completed on each day. Each block was 
approximately 4 minutes in length, resulting in 39 ± 20 movement attempts per block.  (Bottom) Session table indicating the number of 
days post implant each supplemental video was collected. 
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Game Fatigue 
Command  

Interface Only 
Control  

Interface Only 

Command & 
Control 

Interface 
Elbow 0 (0%) 0 (0%) 3 (100%) 0 (0%) 

Wrist 1 (33%) 2 (67%) 0 (0%) 0 (0%) 

Hand 3 (13%) 0 (0%) 21 (88%) 0 (0%) 

Shoulder (MAS) 0 (0%) 0 (0%) 3 (100%) 0 (0%) 

Elbow & Hand 0 (0%) 27 (32%) 48 (56%) 10 (12%) 

Elbow & Sho. 4 (9%) 4 (9%) 28 (65%) 7 (16%) 

Elbow & Wrist 16 (59%) 5 (19%) 7 (26%) 0 (0%) 

Elbow & Wrist & Sho. 5 (9%) 16 (30%) 22 (42%) 11 (21%) 

Total 29 (12%) 54 (22%) 132 (55%) 28 (12%) 

 

Supplementary Table 2. Breakdown of the causes for failed trials during each game. Supplementary Figure 7 gives an example of 
each failure mode and its definition. 
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Muscle # of Electrodes 
Anterior Deltoid 2 

Middle Deltoid 1 

Posterior Deltoid 4 

Pectoralis Major 2 

Triceps 2 

Biceps 3 

Extensor Carpi Radialis Longus 2 

Extensor Carpi Ulnaris / 
Extensor Digitorum Communis 

1 

Flexor Carpi Radialis 1 

Flexor Carpi Ulnaris 1 

Extensor Digitorum Communis 2 

Extensor Indicis Proprius / 
Extensor Digitorum Communis 

1 

Flexor Digitorum Superficialis 1 

Abductor Pollicis Brevis 1 

Abductor Pollicis Brevis /  
Flexor Pollicis Brevis 

1 

Adductor Pollicis 2 

Extensor Pollicis Longus 4 

Flexor Pollicis Longus 1 

 

Supplementary Table 3. A list of all implanted muscles and the number of FES electrodes that stimulate it. For each electrode, the 
main muscle it activates was estimated by the surgical target and visual examination of the effect of stimulation. Four anodes were also 
implanted, one near each connector (forearm proximal, forearm distal, upper arm, shoulder), for a total of 36 implanted electrodes. 
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Success Rates 

Condition Elbow Wrist Hand MAS 
Elbow &  

Hand 
Elbow & 

MAS 
Elbow & 

Wrist 

Elbow & 
Wrist & 

MAS 

FES 0.95 0.97 0.89 0.99 0.66 0.75 0.86 0.61 

VR 0.99 * 0.99 1 * 1 0.95 * 0.97 * 0.99 * 0.99 * 

Chance 0.45 * 0.33 * 0.63 * 0.62 * 0.075 * 0.13 * 0.17 * 0.15 * 

 

Movement Times 

Condition Elbow Wrist Hand MAS 
Elbow &  

Hand 
Elbow & 

MAS 
Elbow & 

Wrist 

Elbow & 
Wrist & 

MAS 

FES 3.4 ± 2.3 3.4 ± 1.6 4.1 ± 2.9 2.7 ± 1.5 6.6 ± 3.4 6.4 ± 4.1 5.8 ± 3 8.6 ± 3.8 

VR 2.1 ± 0.87 * 2.6 ± 1.1 * 2.3 ± 1 * 2.5 ± 1.1 3.7 ± 1.6 * 2.8 ± 1.3 * 2.9 ± 0.94 * 3 ± 0.9 * 

Chance 5.5 ± 3.2 * 6 ± 3 * 5.5 ± 3.7 * 4.7 ± 3 * 9 ± 2.1 * 7.5 ± 1.5 11 ± 2.9 * 11 ± 2.4 * 

 

Supplementary Table 4. Mean success rates (top table) and movement times (bottom table) for all FES, VR, and Chance movements 
pooled together across blocks within each combination of joints tested. In the movement time table, mean ± SD is reported. For each 
joint combination, we compared the FES success rates and movement times to the VR and Chance success rates and movement times 
using a two sample binomial test and a t-test. P-values ≤ 0.001 are indicated with an asterisk. Higher success rates and lower movement 
times in VR vs FES may be attributable to more practice in VR (65 vs. 15 hours), but may have also been caused by the more difficult 
control task presented by an FES-activated arm: dynamics due to arm mass, muscle contractile properties, interactions between joints, 
and MAS motor dynamics. 
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Supplementary Video 1 

FES+iBCI single-joint movements done with virtual reality feedback (for comparison with virtual reality arm movements). Video 
taken 420 and 421 days post implant. 

 

 

Supplementary Video 2 

FES+iBCI multi-joint movements (elbow and hand) done with virtual reality feedback (for comparison with virtual reality arm 
movements). Decoder output, stimulation patterns, and joint angle measurements are illustrated. Video taken 337 days post implant. 

 

 

Supplementary Video 3 

FES+iBCI audio-cued single-joint movements done just before the functional task was attempted. Comparison of achievable 
single-joint movements with FES+iBCI system turned off vs turned on. Video taken 402 and 421 days post implant. 

 

 

Supplementary Video 4 

Functional task video – drinking from a straw. The participant successfully completes a reach-to-grasp movement to acquire a cup 
of coffee. He brings the cup to his mouth and takes a drink, and then returns the cup. Video taken 392 days post implant; the 
participant had practiced this task for 6 sessions prior. 

 

 

Supplementary Video 5 

Demonstration of study participant performing a self-feeding task for the first time. Using a modified fork (a standard rehabilitation 
device), the participant successfully moves his arm and hand between a plate of mashed potatoes and his mouth, taking several bites. 

 

 


