Supporting material

Iron L_{2,3}-edge X-ray Absorption and Magnetic Circular Dichroism Studies of Molecular Iron Complexes with Relevance to the FeMoco and FeVco Active Sites of Nitrogenase

Joanna K. Kowalska¹, Brahamjot Nayyar², Julian A. Rees^{1,3 \perp}, Christine E. Schiewer⁴, Sonny C. Lee², Julie A. Kovacs³, Franc Meyer⁴, Thomas Weyhermüller¹, Edwige Otero⁵, Serena DeBeer^{1,*}

¹ Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany

² Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

³ Department of Chemistry, University of Washington, Box 351700, Seattle, WA

98195-1700, USA

⁴ University of Göttingen, Institute of Inorganic Chemistry, Tammannstraβe 4, D-37007 Göttingen, Germany

⁵ SOLEIL, L'Orme des Merisiers, 91190 Saint-Aubin, France

 $^{\perp}$ Current Address: Chemical Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 70A-1150, Berkeley, CA 94720, USA

Serena.DeBeer@cec.mpg.de

Figure S1. Experimental Fe $L_{2,3}$ -edge X-ray Absorption spectra of $K_3[Fe(CN)_6]$ complex obtained with right (black) and left (red) polarized photons (A); experimental Fe XMCD spectrum of $K_3[Fe(CN)_6]$ (B).

Figure S2. Calculated Fe L_{2,3}-edge XAS (A) and XMCD (B) spectra of an Fe³⁺ system in T_d symmetry with different values of Δ .

Figure S3. Calculated Fe $L_{2,3}$ -edge XAS (A) and XMCD (B) spectra of an Fe³⁺ system with different charge transfers values. Note: the right (magenta) y-axis corresponds to the spectrum with charge transfer parameters set to 0.

Figure S4. Calculated Fe $L_{2,3}$ -edge XAS (A) and XMCD (B) spectra of a Fe³⁺ complex in T_d symmetry with 10Dq=-0.5, B=100 meV and reduced Slater-Condon-Shortley integrals (Sl). For clarity, only every second step is shown in the plot.

Figure S5. Calculated Fe $L_{2,3}$ -edge XAS (A) and XMCD (B) spectra of an Fe³⁺ complex for different d-d repulsion parameters (F_{dd})

Figure S6. Experimental Fe $L_{2,3}$ -edge XMCD spectra of $[Fe^{II}(SDur)_4]^-$ (red) and $[Fe^{II}(SPh)_4]^{2-}$ (black) complexes. The blue spectrum represents an empirical "prediction" for an $Fe^{II,III}_2S_2$ system generated by adding the inverse signal of the XMCD spectrum of $[Fe^{II}(SPh)_4]^{2-}$ to the XMCD spectrum of $[Fe^{III}(SDur)_4]^-$. This assumes that the S=5/2 Fe(III) site is the majority spin (with a negative sign at the L₃-edge) and the S=2 Fe(II) site is the minority spin (with a positive sign at the L₃-edge).

Figure S7. Experimental Fe L_{2,3}-edge XAS spectra of $[Fe^{III}Cl_4]^-$ (A), $[Fe^{II}Cl_4]^{2-}$ (B), $[Fe^{III}(SDur)_4]^-$ (C), $[Fe^{II}(SPh)_4]^{2-}$ (D), $[Fe^{III}_2S_2(SPh)_4]^{2-}$ (E), $[Fe^{III}_2S_2Cl_4]^{2-}$ (F), $[L_2Fe^{III}_2S_2]^{3-}$ (G), $[L_2Fe^{III}_2S_2]^{2-}$ (H), $[MoFe_3^{II,III,III}S_4]^{3+}$ (I), $[VFe_3^{II,II,III}S_4]^{2+}$ (J) complexes presented in the extended energy range showing the coalesce of the spectra in the normalization range to 1.

Figure S8. Experimental Fe $L_{2,3}$ -edge XAS spectra of $[Fe_2^{III}S_2(SPh)_4]^{2-}$: averaged of 12 single scans (A); processed averaged data (B); 2 sets (first and last one) of single spectra collected with different polarization (CR, CL) at 0T magnetic field (C); zoom into the L3-edge of the spectra in panel C in order to show the les than 1% deviation in the intensity (based on integrated area) (D). Pink line in panel B indicates the normalization edge jump (equal to 1).

[Fe ^{III} Cl ₄]	1. 706.3 eV
	2. 707.0 eV
	3. 707.9 eV
- CO - E- O	4. 713.5 eV
	5. 719.8 eV
	6. 721.9 eV
705 710 715 720 725 Energy [eV]	
$[\mathrm{Fe}^{\mathrm{H}}\mathrm{Cl}_{4}]^{2}$	1. 705.2 eV
0.0 - 7 - 7	2. 706.2 eV
-0.5 - 4	3. 706.7 eV
	4. 708.3 eV
× -1.0 - 2	5. 709.4 eV
-1.5	6. 710.1 eV
-2.0	7. 721.9 eV
$[Fe^{III}(SDur)_4]^-$	1. 705.6 eV
0.0	2. 707.2 eV
	3. 708.5 eV
Q 2 2 2 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3	4. 720.7 eV
-2.0 -	
-2.5	
705 710 715 720 725 Energy [eV]	
$[\mathrm{Fe}^{\mathrm{II}}(\mathrm{SPh})_4]^{2^-}$	1. 706.5 eV
0.0	2. 708.6 eV
	3. 719.4 eV
-10 - 	
₹ -2.0 -	
-2.5 - V	
-3.0	

Table S1. Energy values of the main features in the XMCD spectra of the measured compounds. All energies provided within ± 0.02 eV error. Blue color indicates positive features.

Figure S9. Experimental Fe $L_{2,3}$ -edge XAS spectra of $[MoFe^{II,III,III}_{3}S_{4}]^{3+}$ at 6T magnetic obtained with circular right (A) and circular left (C) polarized light of three successive sets. Zoom into the L₃-edge of the spectra in panel A and C are shown in B and D, respectively.