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Supplementary Information

1 A∗-augmented Yen’s Algorithm

We briefly describe Yen’s algorithm using Dijkstra’s algorithm as a subroutine, and then
explain how we achieve a considerable speedup in practice by augmenting Yen’s with the A∗

heuristic.

Yen’s Algorithm. Given a directed graph G = (V,E) with n vertices, m edges and two
vertices s and t in V , Yen’s algorithm finds the k shortest loopless paths from s to t in
O(kn(m+ n log n)) time using Dijkstra’s algorithm as a shortest path subroutine [1].

Let the ith shortest s-t path in G be πi and let the jth vertex in that path be πi,j.
Yen’s algorithm operates on the principle that each new shortest path πi can be generated
from some previous shortest path πi′ , i

′ < i, by assuming that πi deviates from πi′ after
some vertex πi′,j′ . Yen’s algorithm computes this path by executing a shortest path search
from πi′,j′ to t on a graph G′, which is constructed by removing from G all the vertices in
{πi′,1, πi′,2, . . . , πi′,j′−1} in addition to any outgoing edges from πi′,j′ , which are in a previously
found path. This construction guarantees that the path found in G′ represents a new,
loopless s-t path. Over all possible deviation vertices πi′,j′ , this process results in O(kn)
calls to Dijkstra’s algorithm to compute shortest paths. Thus, these calls yield the stated
O(kn(m+ n log n)) time complexity for Yen’s algorithm.

∗murali@cs.vt.edu
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Integrating with A∗. The running time of PathLinker is dominated by the use of
Yen’s algorithm to calculate the k shortest loopless paths in a network. We improve the
performance of Yen’s algorithm in practice with a simple modification: rather than using
Dijkstra’s algorithm as the shortest path subroutine, we use the A∗ algorithm. Given a
heuristic function h : v → R for v ∈ V that is an estimate of the shortest path distance
from v to t, A∗ is a “best first search” algorithm that computes an optimal solution to the
shortest path problem while attempting to search a much smaller subset of the graph than
Dijkstra’s algorithm [2].

Let dG(v) be the distance from v to t in graph G. The heuristic h is admissible if and
only if h(v) ≤ dG(v), for all v ∈ V . The tighter the lower bound, the better A∗ will perform.
If the heuristic satisfies the additional property that h(u)− h(v) ≤ w(u, v), for all u, v ∈ V ,
where w(u, v) > 0 is the weight of the edge from u to v, it is said to be monotone. Given an
admissible, monotone heuristic function, A∗ is guaranteed to return the shortest paths from
s to all nodes in G. The A∗ heuristic used by PathLinker is the distance from the target
in the original graph, i.e., h(v) = dG(v). Each call to the shortest path subroutine in Yen’s
algorithm will be on some subgraph G′ ⊆ G. Since all edge weights are non-negative, the
distance of a vertex v to t in the original graph G is a lower bound for the distance of v to
t in all subgraphs G′. Since dG(v) ≤ dG′(v), h is admissible. Furthermore, h is monotone.
Dijkstra’s algorithm keys the priority queue for exploring nodes by c(v), the shortest path
length to v from s considering only nodes that have been explored so far. We implement A∗

as a modification of Dijkstra’s algorithm, where we key the priority queue by c(v) + h(v),
rather than just by c(v).

While this optimization does not affect the asymptotic running time for Yen’s algorithm,
it yields considerable speed ups in practice, running 11 to 41 times faster than the tradi-
tional implementation of Yen’s algorithm on the pathways (Supplementary Figure S1). This
improvement facilitated the computation of the top 20, 000 paths in the interactome.

2 Algorithms for Comparison

We briefly describe each algorithm and discuss the parameters we use (Supplementary Fig-
ure S2). Unless otherwise specified, we run all methods on a weighted, directed network.

RWR [3] is a random walk with restarts, also known as a teleporting random walk or topic-
based PageRank. At each step, a walker moves to a neighbor with probability (1-q) and
“restarts” at one of the receptors with probability q. In practice, the interactome we use is
aperiodic (since there is at least one cycle of length 2 and at least one cycle of length 3), but
not necessarily irreducible. To ensure irreducibility, we add edges from each node to all other
nodes in the interactome with a small teleportation probability of 1/(|V | × 106). We use the
well-known power iteration method to efficiently compute the stationary distribution of the
random walk. We compute flux score for edge (u, v) by multiplying the visitation probability
of u by the edge weight and normalizing by the weighted out degree of u.

ANAT [4] returns a sub-network connecting receptors to TRs that allows a trade-off between
shortest paths and minimum Steiner trees with a parameter α. We ran the steinprt software
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Figure S1: Comparison of the running time of A∗-augmented Yen’s algorithm (red bars) to
a standard implementation of Yen’s algorithm (blue bars). (a) The running time for each
NetPath pathway (k = 20, 000). The number above each blue bar is the speed up afforded
by the improved algorithm for the corresponding pathway. (b) The total running time over
all NetPath pathways for k = 1, 000, k = 5, 000, and k = 20, 000.

package for ANAT to compute one sub-network for each signaling pathway. We selected
α = 0 since it achieved higher precision than all other values of α on NetPath pathways.

PCSF [5] solves a Prize-Collecting Minimum Steiner Forest problem using a message passing
algorithm, which returns a single sub-network. We introduced a source node connected to
all receptors, set all TRs as terminal nodes, and ran the msgsteiner software package to
identify a set of Steiner trees. PCSF takes two parameters: p, the value of the prize for each
terminal and ω, the penalty on the number of trees. We select p = 1 and ω = 0.01 since this
combination of parameters achieved higher precision (at comparable recall) than all other
parameter combinations tested.

ResponseNet [6] uses a min-cost network flow approach to identify a sub-network that
connects receptors to TRs. We implemented ResponseNet in Python and solved the linear
program using CPLEX. ResponseNet requires a parameter γ that controls the number of
interactions that carry flow. Different parameter values produced similar precision and recall
on NetPath pathways; we set γ = 20. Since RN typically yielded non-zero flow on a small
number of edges, we included any node with incoming positive flow and any edge with
positive flow in the output network.

The Ingenuity Pathway Analyzer (IPA) contains many algorithms that identify subsets of
their interactome. IPA’s Network Generation algorithm identifies a sub-network that links
user-specified nodes [7]. We implemented this algorithm for comparison, calling it IPA. It
operates on an unweighted network, and requires a parameter nmax that determines the size
of the computed networks. We ran IPA on an unweighted version of the interactome using
multiple values of nmax, since different parameter values returned sub-networks with different
values of precision and recall.
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ShortestPaths computes shortest paths between receptors and TRs. Specifically, for every
receptor r and every TR t, we identify the shortest path between r and t. When there are
multiple shortest paths between r and t, we include all of them. We output a network
composed of the union of all shortest paths computed for all receptor-TR pairs. Note that
this algorithm is a variation of ANAT with α = 0.

BowTieBuilder uses a heuristic approach to compute a Steiner tree connecting recep-
tors to TRs [8]. First, BowTieBuilder initializes the reconstructed pathway P to in-
clude the set of receptors and TRs, and sets all receptors and TRs as unvisited. Next,
BowTieBuilder compute a distance matrix D containing the length of the shortest path
from every receptor r to every TR t. BowTieBuilder then iteratively selects the shortest
path in D that connects an unvisited node and a visited node. If there is no such path, it
identifies the shortest path between any two unvisited nodes. The algorithm adds this path
to the network P and marks all the nodes along the path as visited. BowTieBuilder then
updates the matrix D to include the length of the shortest path from any receptor or TR
to nodes along the added path. BowTieBuilder repeats these steps until all receptor and
TR nodes are marked as visited. The network P represents the reconstructed pathway.

3 Datasets

Human interactome. We constructed a directed human protein interactome from numer-
ous protein-protein interaction and signaling pathway databases. The interactome consisted
of nodes representing proteins, bi-directed edges representing physical interactions, and di-
rected edges representing regulatory/signaling interactions. The interactome included 40,447
physical interactions between protein pairs downloaded using PSICQUIC [9] from the fol-
lowing databases: BIND, DIP, InnateDB, IntAct, MINT, MatrixDB, and Reactome. We
ignored interactions from PSICQUIC that were computationally predicted, functional, or
from unspecified experimental methods (Supplementary Table 4). We identified signaling
interactions from three pathway databases: 382 signaling interactions and 3,414 physical
interactions from NetPath [10], 20,154 signaling interactions and 2,286 physical interactions
from KEGG [11], and 12,093 signaling interactions and 41,314 physical interactions from
SPIKE [12]. The signaling pathway databases often annotated interactions differently. For
example, a NetPath physical interaction may be represented in KEGG as a signaling interac-
tion. We used this information to replace 2,856 physical interactions by the more informative
directed signaling interaction. The resulting network contained 12,046 nodes and 152,094
directed edges, where many of the edges were supported by multiple types of evidence. Note
that by construction, the NetPath and KEGG signaling pathways were subgraphs of the
human interactome. However, we did not annotate these interactions with the identities of
the pathways of which they were members. We used UniProtKB protein identifiers for all
analyses.

Weighting the human interactome. We weighted each edge in the network using
a Bayesian approach that computes interaction probabilities [6]. This method assigns a
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Parameters used by the algorithms
Algorithm Parameter Meaning
RWR q Teleportation probability
ANAT α Tradeoff between global (Steiner tree) and

local (shortest path) solution
PCSF ω Penalty for adding a new tree

p Prize for each node
ResponseNet γ Number of interactions that carry flow
IPA nmax Maximum sub-network size
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Figure S2: (Top) Description of user-defined parameters for algorithms. (Bottom) Precision
and recall of interactions in the (a) Wnt pathway reconstruction and (b) 15 aggregated
NetPath reconstructions with variation in internal parameters. Gray rounded rectangles
denote parameter values that we used in the precision-recall analysis in the main manuscript.
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high probability to an interaction that is supported by evidence that connects proteins co-
annotated to the same set of user-specified biological processes. The weighting scheme takes
as input the human interactome annotated with experimental evidence sources and a set of
GO terms. We used the experimental evidence codes supplied by PSICQUIC, KEGG edges
(divided into interaction types), NetPath edges, and SPIKE edges as sources of evidence in
the interactome. We selected the GO term “regulation of signal transduction” and eight
other terms that were (i) children of the “signal transduction” and (ii) annotated more than
50 genes (Supplementary Table 5). From these GO terms, we established the set of positives
as all pairs of proteins co-annotated to the same GO term. We also established the set of
negatives as pairs that were not co-annotated to the same GO term, sub-sampling this set
so that it was 10 times as large as the positive set. We computed the probability that each
source of evidence connects pairs of proteins co-annotated to the same GO term and used
these data to compute the probability of each edge. Many evidence probabilities were close
to 1. To mitigate the effect of these evidence types on our algorithms, we set a threshold of
0.75 on all probabilities [6].

Receptor and TR lists. We identified a set of 2,124 signaling receptors from a previously-
published list of human signal receptors [13]. In addition, we manually included three mem-
bers of the CD3-TCR complex (CD3D, CD3E, and CD3G), which serve as receptors for the
T Cell Receptor pathway that were not present in the published list. We retrieved a set
of 2,286 human TRs reported in two studies: i) all TRs listed by Ravasi et al. [14] and ii)
high-quality TRs from Vaquerizas et al. [15]. The latter classified TRs as ‘a’, ‘b’, ‘c’, ‘x’, and
‘other’. We took only TRs classified as ‘a’, ‘b’, or ‘other’ because TRs in these classes have
experimental evidence of regulatory function in a mammalian organism or were manually
curated to be TRs. We identified the receptors and TRs in each signaling pathway by taking
the intersection of the proteins in the pathway with the list of receptors and list of TRs.

The precision and recall results were determined solely by running PathLinker and
other algorithms with the receptor and TR lists described above. When we carefully exam-
ined the NetPath receptors for the Wnt pathway, we observed that two Frizzled receptors,
FZD4 and FZD6, were missing from the literature-determined lists. For analysis to iden-
tify potential hypotheses for followup in the lab, we manually added these receptors to the
PathLinker inputs and re-ran PathLinker.

NetPath pathways. We identified 15 NetPath pathways that met the following criteria:
i) the pathway contained at least one receptor, ii) the pathway contained at least one TR, and
iii) the minimum cut between the receptors and TRs was at least three in the NetPath path-
way (i.e., three edges must be removed from the pathway to disconnect the receptors from
the TRs) (Supplementary Table 2). The first two criteria ensured that each pathway had a
natural beginning and end to the signal propagation. The third criteria ensured the pathway
was sufficiently connected. We included the third criterion because several pathways had a
minimum cut of zero; such curated pathways were likely highly incomplete as there was no
connection (path) from any signaling receptor to a downstream TR. We did not consider
the Notch pathway since its receptors have intracellular domains that are also TRs. We
downloaded NetPath SBML Level 2 Version 1 files from http://www.netpath.org. These
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files represent interactions as a set of reactants, products, and modifiers; we treated each
(modifier,reactant) pair as a pairwise interaction. We treated interactions denoted as ‘phys-
ical’ or ‘interaction’ as bi-directed and all other types were directed (e.g., ‘phosphorylation,’
‘methylation,’ and ‘acetylation’).

KEGG pathways. The KEGG database contains 276 human pathways divided into six
categories: Metabolism, Genetic Information Processing, Environmental Information Pro-
cessing, Cellular Processes, Organismal Systems, and Human Diseases. We focused on Envi-
ronmental Information Processing, Cellular Processes, and Organismal Systems since these
groups contained signaling related pathways. We ignored pathways in the Metabolism and
Genetic Information Processing categories since they were not related to signaling. We did
not consider the Human Diseases category either, since our goal in this work was to focus
on normal physiological processes. Each of these categories contains several subgroups of
pathways. We considered only those subgroups related to signaling. Of the remaining 54
KEGG pathways, we analyzed the 32 pathways that met the following criteria: i) the path-
way contained at least one receptor, ii) the pathway contained at least one TR, and iii)
the minimum cut between the receptors and TRs was at least three in the KEGG pathway.
(Supplementary Table 6). We parsed the KEGG KGML pathway files, an XML-style file
format specific to KEGG pathways. Our parser follows the description of the KEGG Markup
Language (KGML) available at http://www.kegg.jp/kegg/xml/docs/. We parsed KEGG
entries that corresponded to genes, proteins, and complexes (gene and group types). We
collected UniProtKB identifiers from the original KGML files. We retained only “reviewed”
UniProtKB identifiers, as defined by the UniProtKB database. If a single KEGG identifier
mapped to multiple reviewed UniProtKB identifiers, then we duplicated the information for
each UniProtKB identifier.We parsed the protein-protein relations (PPRel), treating inter-
actions as bi-directed edges if they were denoted as ‘binding/association’ or ‘dissociation’,
or if they are components of the same complex. We treated all other interaction types (e.g,
‘activation’, ‘inhibition’, ‘phosphorylation’) as directed edges. KEGG contained information
about interactions between protein families, e.g., Wnt and Fzd. In this case, we considered
each (Wnt,Fzd) protein pair as a separate interaction.

We found that there were relatively few TRs from Ravasi et al. and Vaquerizas et al.
that appeared in KEGG pathways. On average, there were about twice the number of TRs
from these lists that appeared in NetPath pathways compared to KEGG (18.6 and 9.8,
respectively). KEGG pathways contained on average 11.9 proteins that were not in the
TR lists but had no outgoing edges in the interactome, which may be considered alternate
“targets” for PathLinker. The number of such proteins was much smaller for NetPath
pathways (4.1 on average). For the KEGG analysis, we included proteins that have no
outgoing edges as end-points for PathLinker, in addition to the TRs.

4 Evaluation Framework

Single pathway. Given a curated pathway and the weighted interactome G, we performed
the following steps to compute precision and recall. We identified the receptors and TRs
in the curated pathway using the receptor and TR lists. We called these pathway receptors
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and pathway TRs. We removed edges incoming to the pathway receptors and edges outgoing
from pathway TRs from G. We performed this step before running PathLinker to ensure
that each path contained exactly one receptor and exactly one TR. We performed this step
for all the other algorithms as well, since we found that it improved their precision. We
applied each algorithm to G, using the pathway receptors as the sources S and the pathway
TRs as the targets T . We ranked the interactions (or proteins) in the solution returned by
each algorithm. For single sub-network solutions, we took the entire set of interactions. For
PathLinker, we ranked each interaction by the first path in which it appeared (increasing
order). For RWR, we ranked the interactions by edge flux score (decreasing order).

We identified the set P of positive interactions as those present in the curated pathway
(ignoring direction). We identified a set N of negative interactions as follows. Ideally, we
would have liked to use a curated dataset of negative examples. However, we are not aware
of a database that contains interactions that are not in any signaling pathway. Therefore, we
adopted the longstanding convention in the computational biology community of sampling
negative examples randomly from the universe [16–19], which in our application was the
set of all interactions in the interactome. We randomly sub-sampled a negative set N of
edges (ignoring direction) from the background interactome in the ratio of 50 negatives to
one positive, ensuring that N did not contain any edges in P . We acknowledge that the
choice of 50 is arbitrary and that each algorithm’s performance will depend on this number.
However, since we only used N in the estimation of precision, the choice of 50 does not affect
the output of the individual algorithms but only their relative performance. In the analyses
where we ignored KEGG positives or ignored pathway-adjacent negatives, we removed these
interactions from G before subsampling N .

We computed the precision and recall using the positive set P , the negative set N , and
the ranked interactions X. Let Xi denote the set of the first i interactions. The precision
and recall for Xi were

Precisioni =
|Xi ∩ P |

i
and Recalli =

|Xi ∩ P |
|P |

. (1)

We applied a similar method for computing the precision and recall when we reconstructed
the proteins in a curated pathway.

Multiple pathways. We computed the precision and recall for a set of m signaling path-
ways p1, p2, . . . , pm. After computing the precision and recall for each pathway individually,
we had m distinct collections of ranked edges, positive edges, and negative edges, denoted as
X(j), P (j), and N (j), respectively. We aggregated the ranked lists by appending the pathway
name to the edge, i.e., we computed,

X =
m⋃
j=1

[
((e, pj), k) for e, k ∈ X(j)

]
,

where e was an edge in pathway pj and k was the rank of that edge in X(j). Finally, we
sorted the elements in X by the value k. We similarly appended the pathway name to the
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positives and negatives:

P =
m⋃
j=1

[
(p, pj) for p ∈ P (j)

]
and N =

m⋃
j=1

[
(n, pj) for n ∈ N (j)

]
.

We used these three aggregated collections to compute precision and recall for X, P , and
N using Equation (1). We computed aggregate precision and recall for nodes in a similar
manner.

Quantifying Distance in the Interactome To calculate the distance from an edge in
a reconstructed pathway to the signaling pathway (such as the Wnt signaling pathway in
NetPath), we defined a measure δ based on the shortest path length. We first describe δ(n),
the distance from a node u to the signaling pathway. We computed the shortest path length
d(u, v) from u to every node v in the pathway using Dijkstra’s algorithm; we ignored direction
in this calculation. Let VP be the set of nodes in the signaling pathway (the positive set).
We defined

δ(u) = min
v∈VP

d(u, v),

where δ(u) = 0 if node u is in the signaling pathway. Let Ep be the set of edges in the signaling
pathway. We defined δ(u, v), the distance from edge (u, v) to the signaling pathway, as

δ(u, v) =

{
0 if (u, v) ∈ Ep

min (δ(u), δ(v)) + 1 otherwise.

Intuitively, δ((u, v)) is 0 if (u, v) is in the pathway. Otherwise, it is the length of the shortest
path connecting the edge to the pathway. Note that δ(u, v) = 1 for an edge (u, v) that is
not a member of the pathway, even if u and v are proteins in the pathway. For a ranked list
of edges in a pathway reconstruction, we visualized the distribution of these distances δ as
a bar chart.

Sampling receptors and TRs. We define a sampling percentage ρ relative to the pathway
receptors S and pathway TRs T . For example, when ρ = −30%, we omit 30% of the
receptors and 30% of the TRs. When ρ = 30%, we add 30% new receptors and 30%
new TRs. When ρ = 0%, we use the correct receptors and TRs. We considered ρ =
[−50%,−30%,−10%, 0%, 10%, 30%, 50%]. For each non-zero value of ρ and for each NetPath
pathway P , we randomly generate 25 sets of receptors and TR and apply PathLinker to
each set. For each value of ρ, we compute the median precision-recall curve by partitioning
the recall values into 1,000 bins.

5 Experimental Methods

Efficacy of siRNA silencing. Cells were routinely passaged and cultured as described in
Clark et al. [68] in DMEM containing 10% fetal bovine serum and 1% penicillin/streptomycin
at 37 ◦C in the presence of 5% CO2. Invitrogen silencer select validated siRNAs (Dab2:
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s3896, Ryk: s12390, CFTR: s2945) were dissolved in 500 µL of provided water resulting in
a final concentration of 10 mM and stored in 30 µL aliquots at -20 ◦C. Efficacy of siRNA
silencing was determined by western blot in a dose dependent manner. Approximately
200,000 HEK293 were plated in 24 well plates and allowed to adhere for 24 h in 1 mL complete
media. Cells were washed twice with room temperature (22 ◦C) dPBS and incubated with
900 µL of complete media. A siRNA-RNAiMax solution was prepared as described by the
manufacturer. Briefly, 3 µL of RNAiMax and 0-4 µL of respective siRNA (10 mM stock
concentration) were added to separate tubes of 50 µL of DMEM and allowed to incubate
for 15 min. Solutions were subsequently pooled, mixed by gentle pipetting, and allowed to
incubate at room temperature for 30 min. Complexed siRNA solution (100 µL) was added
to each well and incubated for 48 h. Cells were washed twice with room temp dPBS and
harvested in 100 µL NP-40 buffer containing protease inhibitor and flash frozen in liquid
nitrogen. 25 µL of 5x Loading dye was added to each sample, mixed and heated to 80 ◦C
for 5 min.

Western blots. Processed samples were run via SDS-PAGE on a 7.5% polyacrylamide
gel of 1.5 mM thickness. Samples were transferred for 1.5 h at a constant 300 mA onto
hybond-C extra membranes. Membranes were kept submerged in 20 mL of PBS-T (Sigma
P3813 + 0.1% Tween20) + 3% BSA for 1 h at room temperature. Appropriate primary
antibody was spiked in (Table 7) and membranes were stored overnight at 4 ◦C on an orbital
shaker. Membranes were washed thrice with 20 mL of PBS-T for 10 min while shaking.
Membranes were probed with appropriate secondary antibody (Table 7) for 1 h at room
temperature while shaking. Membranes were washed twice with 20 mL of PBS-T for 10 min
shaking and stored in 20 mL PBS for no more than 10 min. Membranes were exposed to 8
mL of chemiluminescence substrate (SuperSignalTM West Pico Chemiluminescent Substrate
34080) for 5 min in the dark and subsequently imaged in a Chem-Doc XRS+ workstation
using Image Lab Software. Images were recorded over 10 min every 10 s.

Transient overexpression of Wnt proteins in siRNA silenced background. Cells
were silenced via lipofection as described above. The Wnt plasmid library (addgene Kit #
1000000022) [20], specifically secreted Wnt proteins lacking any engineered epitopes, were
utilized for the study. Approximately 24 h post RNAiMAx transfection, cells were washed
twice with room temp dPBS and incubated with 900 µL of complete media. Lipofectamine
LTX- plasmid solution was prepared as described by the manufacturer. Briefly, 4 µL of Lipo-
fectamine was added to a tube containing 50 µL of DMEM. 1 µL of plus solution and 100
ng of a given secreted Wnt, pM50 Super 8x TOPFlash (7 sequencing TCF/LEF promoter
binding sites fused to firefly luciferase) [21], and constitutive expression of Renilla luciferase
plasmid (pGL4.74[hRluc/TK], promega E6921) was added to a separate tube containing
50 µL of DMEM. Tubes were allowed to incubate for 15 min and the solutions were subse-
quently pooled, mixed by gentle pipetting, and allowed to incubate at room temp for 30 min.
The LTX -plasmid solution (100 µL) was added to each well and incubated for 30-36 h prior
to the luciferase reporter assay or determination of β-catenin levels via western blot.
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Luciferase reporter assay. The dual glow luciferase reporter assay was conducted as
described by the manufacturer (Promega #E2940). Briefly, treated cells were washed once
with room temp dPBS, and incubated in 100 µL of dual glow buffer for 5 min at 37 ◦C.
Luminescence was determined via integration of 1000 ms top reading using a SpectraMax
M5. Subsequently, 100 µL of freshly prepared Stop and Glow buffer was added to each
well and incubated for 5 min at 37 ◦C. Renillia control luminescence was determined via
integration of 1000 ms top reading using a SpectraMax M5. Normalized luminescence was
determined by dividing the dual glow luminescence (firefly luciferase activity) by the Stop
and glow luminescence (Renilla luciferase activity).

Co-immunoprecipitation. HEK293 cells (106 cells) were transfected with sWnt and con-
trol plasmids and incubated as previously described for approximately 48 h. Cells were gently
washed 2x with room temp dPBS and re-suspended in 1 mL of Extraction Buffer in the pres-
ence of protease inhibitors (Roche #11697498001) and incubated on ice for 15 min. Antibody
coupling to Dynabeads (M-270 Epoxy) resin and co-immunoprecipitation via magnetic sep-
aration was followed as described by the manufacturer (Invitrogen #14321D). 1.5 mg of
antibody (150 µL) was transferred to a fresh tube and washed with 900 µL of Extraction
Buffer using magnetic separation. Cell lysate was added to washed beads and incubated for
45 min at 4 µC on a vertical rotator. Magnetic beads were washed three times with 200 µL
of Extraction Buffer. Beads were incubated with 200 µL of Last Wash Buffer for 5 min at
room temp on a vertical rotator. Beads were transferred to a clean tube and re-suspended
in 60 µL of Elution Buffer using magnetic separation. Samples (10 µL) were run on a 7.5%
SDS-PAGE gel and probed with appropriate antibody pairs (Supplementary Table 7).

6 PathLinker’s Reconstruction of the Wnt Signaling

Pathway

Here, we discuss PathLinker’s reconstruction of the Wnt signaling pathway (Figure 3(b)).

Differences between NetPath and KEGG. In the canonical branch of Wnt signal-
ing, β-catenin activity is controlled by the destruction complex. The PathLinker net-
work included the core constituents of the β-catenin destruction complex (AXIN1, APC and
GSK3β), as well as the accessory proteins Dishevelled 1, 2, and 3 (DVL1, DVL2, DVL3) [22].
While proteins in the Fzd and Dvl families are present in NetPath, the interactions among
them are captured better in the KEGG database.

The KEGG database documents the Ca2+ branch of Wnt signaling, which occurs in a
β-catenin-independent fashion [23]. Even though the NetPath database does not include
this branch, PathLinker’s reconstruction (Figure 3(b)) included paths from Frizzled re-
ceptors to phospholipase C proteins (PLCB1, PLCB2, PLCB3, PLCB4) and protein kinase
C (PRKCA). In the presence of Wnt, Frizzled receptors activate phospholipase C proteins,
resulting in increased intracellular concentrations of Ca2+, the production of diacylglycerol,
and the subsequent activation of protein kinase C [24]. However, the reconstruction did not
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Figure S3: Quantification of western blot band Intensity. We applied the Bio-Rad Image Lab
software on SCN files obtained from the Bio-rad ChemiDoc-XRS+ system. We normalized
Band Intensity by GAPDH intensity and then against control No Wnt samples. We per-
formed qualifications and comparisons only for samples on a given scan. Black or gray colors
for individual bar graphs signify a normalized intensity less than or greater than the No Wnt
control, respectively. QNβ: Qualification of Normalized β-catenin intensity, “++”: ≥1.3-
fold, “+”: 1.3-fold>x≥1-fold, “-”: <1-fold. We compared QNβ values to qualifications of
the normalized relative luminescence (NRL), “VS”: very strong (≥30-fold),“S”: strong (30-
fold>X≥15-fold), “W”: weak (<15-fold).
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include the Ca2+-sensitive protein phosphatase calcineurin PPP3CC, CHP1, CHP2) family
of proteins or their activation of the NFAT family of transcriptional regulators [24].

Proteins not in NetPath or KEGG. The PathLinker network included 16 proteins
not previously known to be in the NetPath or KEGG representations of the Wnt path-
way (Figure 3(b)). Ten of these proteins (MAPK1, MAPK3, EGFR, NOTCH1, SMAD2,
SMAD3, SMAD7, PIK3CA, PIK3R1, and SRC) have been shown to crosstalk with the
Wnt signaling pathway. Through a feedback loop, MAPK1 and MAPK3 phosphorylate
GSK3β and activates the Wnt signaling pathway, thereby stabilizing β-catenin and acti-
vating Raf-1, which in turn activates MAPK1 and MAPK3 [25]. WNT1 and WNT5 have
been shown to transactivate EGFR in mammary epithelial cells [26]. Through its interac-
tion with the NOTCH1 intracellular domain, Dishevelled links the Wnt and Notch signaling
pathways [27]. The SMAD proteins (SMAD2, SMAD3, and SMAD7), β-catenin, and LEF
form a transcriptional complex in the nucleus [28]. Finally, PIK3CA and PIK3R1 are mem-
bers of the PI3K/Akt signaling pathways. Though this pathway and the Wnt pathway
share a key protein (GSK3β), the extent of crosstalk between the two pathways has been
disputed [29, 30]. The SRC kinase catalyzes several signal transduction pathways, and is
known to phosphorylate β-catenin [31].

Two G-protein coupled receptors in the PathLinker reconstruction (GNAQ and GNAO1)
have been shown to be involved in β-catenin signaling in Drosophila and murine models, re-
spectively [32, 33]. Two other proteins identified by PathLinker, UBA52 and RPS27A,
both encode for ubiquitin. The reconstruction may have included them because ubiqui-
tination is a common post-translational protein modification. A third protein, FLNA, is
a cytoskeletal scaffold for other membrane-bound proteins [34]. It is unknown if FLNA
specifically scaffolds Wnt/β-catenin signaling proteins.

CFTR was the highest ranked of all proteins not previously known to be in Wnt pathway
in the NetPath or KEGG databases. PathLinker indicated that CFTR acted as a signal
transducer from Ryk, a receptor tyrosine kinase involved in Wnt signaling and organismal
development [35–38], to Dab2, a known negative regulator of β-catenin signaling [39, 40]. As
Wnt signaling is associated with several types of cellular differentiation and specification, the
closing of membrane channels to facilitate morphological changes is biologically relevant [41].
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Figure S4: Precision and recall of 25 PathLinker reconstructions sampled for every value
of ρ in [−30%,−10%, 0%, 10%, 30%].
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Table 1: Precision and Recall of Networks from Figure 3(a).

Ignoring Interactions
in KEGG

Method Threshold #Edges Precision Recall Precision Recall
PathLinker top 247 paths 193 0.648 0.203 0.745 0.203
RWR flux ≥ 8.26× 10−4 208 0.614 0.203 0.680 0.203
IPA nmax = 10 213 0.723 0.198 0.739 0.198

Table 2: NetPath pathways used for analysis. Recoverable receptors/TRs are those remain-
ing after removing incoming edges to receptors and outgoing edges from TRs (see “Evaluation
Framework”).

Min # # # Recoverable # Recoverable
Pathway #Nodes #Edges Cut Receptors TRs Receptors TRs
BDNF 72 139 4 5 4 5 4
EGFR1 231 1456 30 6 33 6 33
IL1 43 178 7 3 5 3 5
IL2 67 242 16 3 12 3 12
IL3 70 176 5 2 9 2 9
IL6 53 162 6 4 14 4 14
IL7 18 52 5 2 3 2 3
Kit Receptor 76 207 5 6 8 6 8
Leptin 55 135 8 3 15 3 15
Prolactin 68 199 10 4 10 4 10
RANKL 57 142 4 2 12 2 12
TCR 154 504 8 7 20 6 20
TGFβ Receptor 209 863 32 5 77 5 77
TNFα 239 913 15 4 44 4 44
Wnt 106 428 7 14 14 14 13
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Table 3: Proportion of positive proteins and interactions in the interactomes. A protein or
an interaction is a positive if it appears in any of the 15 NetPath pathways.

Proteins Interactions
Interactome # Pos Total Fraction # Pos Total Fraction

Original interactome 1,254 12,063 0.104 3,795 95,617 0.040
Interactome without

Netpath-only interactions 1,235 12,044 0.102 2,493 94,315 0.026

Table 4: Physical interaction experimental evidence codes from PSICQUIC that we ignored
during interactome construction.

Proteomics Standard Initiative
Molecular Interaction (PSI-MI) ID Description

MI:0036 domain fusion
MI:0046 experimental knowledge based
MI:0063 interaction prediction
MI:0064 interologs mapping
MI:0085 phylogenetic profile
MI:0087 predictive text mining
MI:0105 structure based prediction
MI:0363 inferred by author
MI:0364 inferred by curator
MI:0686 unspecified method coexpression
MI:0045 experimental interaction detection

Table 5: GO terms considered for evidence-based weighting. The first eight terms are children
of the “signal transduction” GO term.

# Genes GO Term GO Description
155 GO:0030522 intracellular receptor signaling pathway
387 GO:0002764 immune response-regulating signaling pathway
73 GO:0030968 endoplasmic reticulum unfolded protein response
252 GO:0097190 apoptotic signaling pathway
80 GO:0007602 phototransduction

1898 GO:0007166 cell surface receptor signaling pathway
1023 GO:0035556 intracellular signal transduction
179 GO:0023014 signal transduction by phosphorylation
1728 GO:0009966 regulation of signal transduction
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Table 6: KEGG pathways used for the aggregate precision and recall computation.

Name KEGG ID Name KEGG ID

Adherens junction hsa04520 Adipocytokine signaling pathway hsa04920

Apoptosis hsa04210 Axon guidance hsa04360

Chemokine signaling pathway hsa04062 Circadian entrainment hsa04713

Dopaminergic synapse hsa04728 Endocytosis hsa04144

ErbB signaling pathway hsa04012 Focal adhesion hsa04510

FoxO signaling pathway hsa04068 GnRH signaling pathway hsa04912

HIF-1 signaling pathway hsa04066 Hippo signaling pathway hsa04390

Insulin signaling pathway hsa04910 Jak-STAT signaling pathway hsa04630

Prolactin signaling pathway hsa04917 MAPK signaling pathway hsa04010

Melanogenesis hsa04916 Natural killer cell mediated cytotoxicity hsa04650

Neurotrophin signaling pathway hsa04722 NF-kappa B signaling pathway hsa04064

Notch signaling pathway hsa04330 Osteoclast differentiation hsa04380

TGF-beta signaling pathway hsa04350 Thyroid hormone signaling pathway hsa04919

Tight junction hsa04530 Toll-like receptor signaling pathway hsa04620

VEGF signaling pathway hsa04370 Wnt signaling pathway hsa04310

Leukocyte transendothelial hsa04670 Signaling pathways regulating hsa04550

migration pluripotency of stem cells

Table 7: Antibodies used and paired for this study. Abbreviation Hose Radish Peroxidase
(HRP).

Antigen Antibody Source Dilution Vendor Catalog #

CFTR Primary Rabbit Polyclonal IgG 1:2,000 Santa Cruz sc-10747
Secondary Goat Anti-Rabbit Polyclonal IgG-HRP 1:10,000 GE Healthcare RPN4301

Dab2 Primary Rabbit Polyclonal IgG 1:2,000 Santa Cruz sc-13982
Secondary Goat Anti-Rabbit Polyclonal IgG-HRP 1:10,000 GE Healthcare RPN4301

Ryk Primary Rabbit Polyclonal IgG 1:2,000 abcam ab135670
Secondary Goat Anti-Rabbit Polyclonal IgG-HRP 1:10,000 GE Healthcare RPN4301

β-catenin Primary Mouse Monoclonal IgG1 1:10,000 Santa Cruz sc-7963
Secondary Goat Anti-Mouse Polyclonal IgG-HRP 1:10,000 R&D Systems HAF007

GAPDH Primary Goat Polyclonal IgG 1:20,000 R&D Systems AF5718
Secondary Rabbit Anti-Goat Polyclonal IgG HRP 1:10,000 R&D Systems HAF017
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