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1 Proof of Theorem 1

We first calculate
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So it is sufficient to show that
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Letting 7, = Cov(Zy, Z;), Schwartzman and Lin (2011) showed that
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Because Z;, and Z; are bivariate normal we can rewrite P(|Z;| > t;,|Z;| > t;) as
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Plugging back in yields:
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2 Proof of the GHC p-value calculation

Using the results in the main text, we have
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where the ¢ are defined in equation (5) of the main text. We are able to write the
intersection over all ¢ > 0 as an intersection of p events due to the monotone nature
of hy/ Var(5(t)) + 2p®(t) combined with the fact that S(t) can only take on the values
{0,1, ..., p}. Applying the chain rule of conditioning leads to:
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2.1 Proof of Theorem 2

Let 0,(t) = \/Var(S(t)) and o,(t) = \/2p®(t)(1 — 2®(t)), and then let HC(t) =
{S(t) — 2p®(t)}/os(t) and GHCO(t) = {S(t) — 2p®(t)}/0.(t). Noting that GHC(t) is a



mean 0 variance 1 random variable,
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Hence for ¢ = O(logp) we have that pry,(GHC > ¢) — 0. Without loss of generality
take ¢ = log p.

Now we study the behavior of GHC under the alternative. By Arias-Castro
etal. (2011) we have that if max; |3;| > v/6logp, then

HC(\/5logp) = p** S.1)

with probability greater than 1 — o(1/,/p). For the rest of the alternatives satisfying

A < max; |8;] < v/6logp, it suffices to show that there existsa t € [\/2min(1, 4c*(a)) log p, v/5log p]N
By, (GHC(t))

N such that Ey, (GHC(t)) > logp and vara GHCO) — 0.
Letting HC(t) = GHC(t) Z“Eg , we have that
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In Arias-Castro et al. (2011), proof of theorem 3, they show that for ¢ = /2 min(1, 4) log p,
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We will show that for that same ¢, Ey, (GHC(t)) = "3(3 En,(HC(t)) > logp.
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For the same ¢, Arias-Castro et al. (2011) show that Ey, (HC(t)) > (logp)>vA. This
implies that Ey, (GHC(t)) > 2 (log p)2V/A.
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Arias-Castro et al. (2011) showed that Varg,(HC(t')) < ¢ (logp)*A for some

constant ¢ > 0. Combine this inequality with the fact that Vary, (HC(t')) = LAGHA
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Hence,
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Ey,(GHC(t)) > (log p)*V'A = O(log p)
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Therefore Ey, (GHC(t)) > logp as required. Using equation (5.1) we evaluate the
case where t = /blog p as
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GHC(+/5logp) = HC(y/5logp)———= > p”/"—= > logp.
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