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Web Appendix A: Estimation Algorithm

In this section we provide an outline of the proposed estimation procedures and refer the reader
to Şentürk and Nguyen (2011), Şentürk et al. (2013), Chen and Müller (2012) and Di et al.
(2014) for further details. We also present explicit algorithm steps at the end of this section.
Denote the observations collected on the ith subject at subunit j, longitudinal time sijq and
functional time tijq` by {Xij(tijq`|sijq), i = 1, . . . , n; j = 1, . . . , J ; q ∈ Qij; ` ∈ Lijq},
where the sets of observed longitudinal and functional times (Qij and Lijq, respectively)
are allowed to be different across subjects, subunits and longitudinal times. The global
mean surface µ(t, s) is estimated by a two-dimensional smoother applied to all observed data
{sijq, tijq`, Xij(tijq`|sijq), i = 1, . . . , n; j = 1, . . . , J ; q ∈ Qij; ` ∈ Lijq}. The subunit-specific
means ηj(t, s) are similarly estimated by smoothing across all mean-centered observation pairs
{sijq, tijq`, Xij(tijq`|sijq)− µ̂(tijq`, sijq), i = 1, . . . , n; q ∈ Qij; ` ∈ Lijq}.

Let {sq, q = 1, . . . , Q} be the unique set of longitudinal times among {sijq, i = 1, . . . , n; j =
1, . . . , J ; q ∈ Qij}. The two-stage estimation procedure involves the functional principal com-
ponents decompositions of the subject and subunit covariance surfaces over functional time at
a fixed longitudinal time sq in the first-stage. The subject covariance surface Σ(1)(t, t′|sq) is
estimated by a two-dimensional smoothing of the products {Xij(tijq`|sijq) − µ̂(tijq`, sijq) −
η̂j(tijq`, sijq)}{Xij′(tij′q`′ |sij′q) − µ̂(tij′q`′ , sij′q) − η̂j′(tij′q`′ , sij′q)} over functional times {tijq`,
tij′q`′} for all subjects and subunits from different electrodes, observed at sijq = sq, ` ∈ Lijq,
`′ ∈ Lij′q and j 6= j′. The subunit covariance surface is estimated by the difference between the

total and subject covariances, Σ̂(2)(t, t′|sq) =
̂̃
ΣT (t, t′|sq)− Σ̂(1)(t, t′|sq), where the total covari-

ance surface is obtained by the two-dimensional smoothing of {Xij(tijq`|sijq) − µ̂(tijq`, sijq) −
η̂j(tijq`, sijq)}{Xij(tijq`′ |sijq)−µ̂(tijq`′ , sijq)−η̂j(tijq`′ , sijq)} over functional times {tijq`, tijq`′} for
all subjects and subunits from the same electrode, observed at sijq = sq and ` 6= `′ ∈ Lijq. Note
that the diagonal (` = `′) is excluded in the smoothing of the two-dimensional total covariance
surface to eliminate the effects of measurement error. The measurement error variance σ2

sq can
be estimated by smoothing the difference between the left out diagonal and the diagonal of the
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estimated total covariance surface, {Xij(tijq`|sijq)− µ̂(tijq`, sijq)− η̂j(tijq`, sijq)}2−
̂̃
ΣT (t`, t`|sq),

over {tijq`} for all subjects and subunits observed at sijq = sq. The bandwidths used in the
two-dimensional smoothing of the mean and covariance surfaces can be selected using cross-
validation or generalized cross-validation (GCV).

After obtaining the covariance surface estimates at each longitudinal time sq, a nonpara-
metric functional principal component decomposition is employed on the smooth estimates of
the covariance surfaces, Σ̂(1)(t, t′|sq) and Σ̂(2)(t, t′|sq), by a standard discretization procedure to
estimate the subject and subunit level (first and second level) eigenvalues and eigenfunctions,

λ
(1)
k (sq), φ

(1)
k (t|sq) and λ

(2)
p (sq), φ

(2)
p (t|sq), respectively. In order to guarantee the non-negative

definiteness of the covariance matrix, the negative eigenvalue estimates and the corresponding
eigenfunctions are removed from the functional principal component decomposition of the co-
variances. In addition, to maintain the smoothness of φ̂

(1)
k (·|s) and φ̂

(2)
p (·|s) over s, we determine

the signs of consecutive eigenfunctions as follows. Let φ̂
(1)
k (·|sq) be the first level eigenfunction

estimate at the qth longitudinal time sq. The sign of the eigenfunction, φ̂
(1)
k (·|sq), is deter-

mined such that the L2 distance to the previous eigenfunctions {φ̂(1)
k (·|sq−1), . . . , φ̂(1)

k (·|sq−q′)}
is minimized. We found comparisons up to q′ = 5 previous eigenfunctions to yield good results
in our implementations. This is recursively performed for the entire domain of s for both the
first and second level eigenfunctions across k and p, respectively.

The decompositions given in (2) and (5) are truncated to include only the components
containing the largest modes of variation. Specifically, the number of first-stage subject level
(K) and subunit level (P) principal components are selected using percentage of variation
explained. Let Ksq and Psq be the smallest number of components satisfying the criteria

{
∑Ksq

k=1 λ̂
(1)
k (sq)}/{

∑M1

k=1 λ̂
(1)
k (sq)} > 0.9 and {

∑Psq

p=1 λ̂
(2)
p (sq)}/{

∑M2

p=1 λ̂
(2)
k (sq)} > 0.9 for first

and second levels, respectively, where M1 and M2 are large. We select K ≡ maxq(Ksq) and
P ≡ maxq(Psq) to ensure the same number of principal components at each sq for subsequent
modeling of the first-stage eigenscores. The number of first (K ′k) and second level components
(P ′p) of the second-stage decomposition are selected similarly to explain at least 90% of the
total variation. Other methods for selecting the number of principal components include cross-
validation (Rice and Wu, 2001) and Akaike’s Information Criterion (Yao et al., 2005).

The first-stage subject and subunit level eigenscores, ξik(sq) and ζijp(sq), are estimated
using their best linear unbiased predictors (BLUP) as described in Di et al. (2014). Next,
second-stage functional principal components decompositions are applied to the longitudinally
observed first-stage eigenscores separately for k = 1, . . . , K and p = 1, . . . , P . This involves
the two-dimensional smoothing of the raw covariances {ξ̂ik(sq)ξ̂ik(sq′)} over {sq, sq′}, q, q′ =

1, . . . , Q and {ζ̂ijp(sq)ζ̂ijp′(sq′)} over {sq, sq′}, q, q′ = 1, . . . , Q; j, j′ = 1, . . . , J . As with the
first-stage decompositions, the smooth covariance surface estimates are discretized to estimate
the second-stage subject and subunit level eigenvalues and eigenfunctions {λkk′ , ψ(1)

kk′(s)} and

{λpp′ , ψ(2)
pp′(s)}, respectively, for k = 1, . . . , K; k′ = 1, . . . , K ′k; p = 1, . . . , P ; p′ = 1, . . . , P ′p.

The second-stage eigenscores are also estimated using BLUP, yielding ξ̂′ikk′ , ζ̂
′
ijpp′ . Estimated

model components from both stages yield predictions of the subject and subunit trajectories
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over functional and longitudinal time,

X̂ij(t|s) = µ̂(t, s) + η̂j(t, s) +
K∑
k=1

K′
k∑

k′=1

ξ̂′ikk′ψ̂
(1)
kk′(s)φ̂

(1)
k (t|s) +

P∑
p=1

P ′
p∑

p′=1

ζ̂ ′ijpp′ψ̂
(2)
pp′(s)φ̂

(2)
p (t|s).

The MD-FPCA estimation algorithm implemented in the MATLAB function
MultiLevelFuncLong.m is outlined below. The custom functions developed specifically for
MD-FPCA are listed alongside the relevant steps. For more detailed comments, please see the
MATLAB code posted on the Biometrics website on Wiley Online Library. The runtime of a
single Monte Carlo run for the sparsely observed data described in Web Appendix D with a
sample size of N = 30 is 15 minutes and 32 seconds on a 2.4 GHz 6-Core Intel Xeon processor
operating MATLAB R2015B. The runtime for the data analysis are 10 minutes and 17 seconds
and 11 minutes and 31 seconds for the ASD and TD groups, respectively.

MD-FPCA Algorithm [MultiLevelFuncLong.m]

1. Estimate µ(t, s) with a two-dimensional smoother applied to all observed data
{sijq, tijq`, Xij(tijq`, sijq), i = 1, . . . , n; j = 1, . . . , J ; q ∈ Qij; ` ∈ Lijq}. [MeanSmooth2D.m]

2. Estimate ηj(t, s) with a two-dimensional smoother applied to all mean-centered obser-
vation pairs {sijq, tijq`, Xij(tijq`, sijq) − µ̂(tijq`, sijq), i = 1, . . . , n; q ∈ Qij; ` ∈ Lijq}.
[MeanSmooth2D.m]

3. First-stage Karhunen-Loève decomposition:

(a) For each longitudinal time sq, q = 1, . . . , Q, perform a multilevel FPCA for all data
{tijq`, Xij(tijq`|sijq), i = 1, . . . , n; j = 1, . . . , J ; ` ∈ Lijq} observed at sijq = sq.
[MultilevelFPCA.m]

i. Estimate Σ(1)(t, t′|sq) with a two-dimensional smoother applied to the products
{Xij(tijq`|sijq) − µ̂(tijq`, sijq) − η̂j(tijq`, sijq)}{Xij′(tij′q`′ |sij′q) − µ̂(tij′q`′ , sij′q) −
η̂j′(tij′q`′ , sij′q)} over functional times {tijq`, tij′q`′} for all subjects and sub-
units from different electrodes, observed at ` ∈ Lijq, `

′ ∈ Lij′q and j 6= j′.
[CovarianceSmooth.m]

ii. Estimate Σ̃T (t, t′|sq) with a two-dimensional smoother applied to the prod-
ucts {Xij(tijq`|sijq)− µ̂(tijq`, sijq)− η̂j(tijq`, sijq)}{Xij(tijq`′ |sijq)− µ̂(tijq`′ , sijq)−
η̂j(tijq`′ , sijq)} over functional times {tijq`, tijq`′} for all subjects and subunits
from the same electrode, observed at ` 6= `′ ∈ Lijq. [CovarianceSmooth.m]

iii. Estimate Σ(2)(t, t′|sq) = Σ̃T (t, t′|sq) − Σ(1)(t, t′|sq) by taking the difference of̂̃
ΣT (t, t′|sq)− Σ̂(1)(t, t′|sq).

iv. Estimate σ2
sq = {Xij(tijq`|sijq)− µ̂(tijq`, sijq)− η̂j(tijq`, sijq)}2−Σ̃T (tijq`, tijq`′|sq),

observed at ` = `′ ∈ Lijq.

(b) Employ a FPCA on Σ̂(1)(t, t′|sq) to estimate {λ(1)k (sq), φ
(1)
k (t|sq)}.
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(c) Employ a FPCA on Σ̂(2)(t, t′|sq) to estimate {λ(2)p (sq), φ
(2)
p (t|sq)}.

(d) For each longitudinal time sq, q = 1, . . . , Q, let Ksq and Psq be the smallest number

of components satisfying the criteria {
∑Ksq

k=1 λ̂
(1)
k (sq)}/{

∑M1

k=1 λ̂
(1)
k (sq)} > 0.9 and

{
∑Psq

p=1 λ̂
(2)
p (sq)}/{

∑M2

p=1 λ̂
(2)
k (sq)} > 0.9, where M1, M2 are large.

(e) Set K = maxq(Ksq) and P = maxq(Psq).

(f) For each longitudinal time sq, q = 2, . . . , Q, determine the sign of φ̂
(1)
k (·|sq) by

minimizing the L2 distance to the previous eigenfunction φ̂
(1)
k (·|sq−1). Repeat the

procedure for φ̂
(2)
p (·|sq).

(g) Estimate ξik(sq) and ζijp(sq) using their multilevel best linear unbiased predictors
(BLUP). [ComputeScores.m]

4. Second-stage Karhunen-Loève decomposition:

(a) Perform a two-dimensional smooth of the raw covariances {ξ̂ik(sq)ξ̂ik(sq′)} over

{sq, sq′}, q, q′ = 1, . . . , Q, and {ζ̂ijp(sq)ζ̂ij′p(sq′)} over {sq, sq′}, q = 1, . . . , Q; j, j′ =
1, . . . , J .

(b) Employ a FPCA on the smooth covariance surface obtained in 4 (a) to estimate

{λkk′ , ψ(1)
kk′(s)}.

(c) Employ a FPCA on the smooth covariance surface obtained in 4 (a) to estimate

{λpp′ , ψ(2)
pp′(s)}.

(d) Let K ′k and P ′p be the smallest number of components satisfying the criteria

{
∑K′

k

k′=1 λ̂
(1)
kk′}/{

∑M1

k′=1 λ̂
(1)
kk′} > 0.9 and {

∑P ′
p

p′=1 λ̂
(2)
pp′}/{

∑M2

p′=1 λ̂
(2)
pp′} > 0.9, where M1,

M2 are large.

(e) Estimate ξ′ikk′ and ζ ′ijpp′ using their BLUP.

Web Appendix B: The Meta-preprocessing

Due to the low SNR of the ERP, components such as the P3 peak are hard to identify on trial
specific ERPs. The meta-preprocessing of Hasenstab et al. (2015), utilizing a moving average
of ERPs across sliding trial windows, increases the SNR without collapsing the longitudinal
dimension (via the typical practice of averaging across all ERP trials) to extract longitudinal
information from ERPs. For illustration of the increase in the SNR and identification of the
P3 and N1 components, consider a single ERP waveform for one subject from a single trial
recorded in the right frontal region of the scalp and an average of 30 ERP waveforms from
adjacent trials plotted in Web Figures 1 (a) and (b), respectively. While the components are
unrecognizable in Web Figure 1 (a) due to low SNR, P3 peak and N1 dip are easily recognized
in the meta-preprocessed ERP in Web Figure 1 (b). Note that a limitation inherent to the
problem at hand is that components such as P3 and N1 cannot be aligned across trials prior to
the averaging in the meta-preprocessing, since alignment would de facto require that features
be identified before averaging, which is impractical due to noise levels in the individual raw
ERP.
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Web Appendix C: Additional Data Analysis Results: Electrode Level
Variation and Subject-specific Eigenscores

The leading first-stage electrode level eigenfunctions φ
(2)
1 (t|s) for the ASD and TD groups

(shown in Web Figure 4 (a) and (c), respectively) both have relatively flat contours, indicating
that the majority of the electrode level variation is also along the longitudinal/trial dimension.
While second-stage eigenfunctions indicate variability at intermediate trials (Web Figure 4
(b)) (solid, 21.7%) and boundary trials (Web Figure 4 (b)) (dashed, 8.5%) in the ASD group,
most of the variability in the TD group seems to be quite uniform across trials with slightly
larger variance at intermediate and later trials (Web Figure 4 (d)) (solid, 11.8%), followed by
variation in early trials (Web Figure 4 (d)) (dashed, 7.4%).

The subject-specific eigenscores are estimated to predict subject-specific trajectories and
to study subgroups within diagnostic groups of ASD and TD. The median (10th and 90th)
percentile relative squared error, as defined in Web Appendix D, for the predicted surfaces
Xij(t|s) are .394 (.171, .811) and .350 (.141, .650) for the ASD and TD groups, respectively.
These are reasonable values for the available data with a low SNR and a small sample size.

ASD is a highly heterogeneous disorder. In order to study subgroups with similar learning
patterns within the diagnostic groups, we plot the two leading subject level eigenscores from
the second-stage of MD-FPCA in Web Figures 9 (a) and (b) for the ASD and TD groups
(the subject level eigenscores from the first-stage decompositions are displayed in Web Figure
8). In addition, the smoothed subject-specific amplitude difference trajectories (averaged over
the four electrodes) across trials at the peak location (t = 0) partitioned by the median of the
leading scores ξ′i11 are given in Web Figures 9 (c) and (d) for ASD and TD groups, respectively.
The variation in the leading eigenscore in the ASD group represents the largest component
of the total variation in the ASD group that is observed in the intermediate and later trials.
While no major clusters seem to emerge in either diagnostic group, there seems to be a small
cluster around zero in the ASD group. Specifically the small cluster around zero observed in
Web Figure 9 (a), falling in the below median partition, are plotted in black in Web Figure
9 (c) with minimal variation along trials, signaling little or no implicit learning. The second
group plotted in gray shows a positive condition differentiation at intermediate trials, implying
implicit learning is taking place. In contrast, the variation in the leading eigenscore in the TD
group represents variation at early and intermediate trials, corresponding to two groups in TD
with positive (plotted in gray) and negative (plotted in black) condition differentiation. These
subgroups with distinct patterns of condition differentiation at the P3 peak location within
the two diagnostic groups are similar to insights gained in our previous works (Hasenstab et al.
(2016)) based on a clustering of subjects according to longitudinal trends over trials, ignoring
the functional dimension.
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Web Appendix D: Simulation

We study the finite sample properties of MD-FPCA through simulations. We generate data
from the model

Xij(t|s) = µ(t, s) + ηj(t, s) +
2∑

k=1

2∑
k′=1

ξ′ikk′ψ
(1)
kk′(s)φ

(1)
k (t|s) +

2∑
p=1

2∑
p′=1

ζ ′ijpp′ψ
(2)
pp′(s)φ

(2)
p (t|s) + εij(t|s),

containing components from both stages of the MD-FPCA decomposition for i = 1, . . . , n,
j = 1, . . . , 4. The grids for the longitudinal and functional time points, s and t, are chosen as 50
equidistant points in [0, 1]. The overall mean function is µ(t, s) = 10

√
1− (t− .5)2 − (s− .5)2

with a positive concave pattern similar to the mean function of the ASD group, and the
subunit-specific shifts ηj(t, s) are set to zero for j = 1, . . . , 4, for simplicity. The first- and

second-stage eigenfunctions at both the subject and subunit levels are defined as φ
(1)
1 (t|s) =√

2 cos{π(t − s)}, φ(1)
2 (t|s) =

√
2 cos{3π(t − s)}, φ(2)

1 (t|s) =
√

2 sin{π(t − s)}, φ(2)
2 (t|s) =√

2 sin{3π(t − s)}, ψ(1)
11 (s) =

√
2 sin(2πs), ψ

(1)
12 (s) =

√
2 cos(2πs), ψ

(1)
21 (s) =

√
2 cos(4πs),

ψ
(1)
22 (s) =

√
2 sin(4πs), ψ

(2)
11 (s) =

√
2 sin(2πs), ψ

(2)
12 (s) =

√
2 cos(2πs), ψ

(2)
21 (s) =

√
2 cos(4πs),

and ψ
(2)
22 (s) =

√
2 sin(4πs). The second-stage eigenscores at the subject and subunit levels,

ξi11, ξi12, ξi21, ξi22, ζij11, ζij12, ζij21, and ζij22 are simulated from mean zero Gaussian dis-

tributions with variances λ
(1)
11 = 3, λ

(1)
12 = 2, λ

(1)
21 = 1.5, λ

(1)
22 = .75, λ

(2)
11 = 3, λ

(2)
12 = 2,

λ
(2)
21 = 1.5, λ

(2)
22 = .75, respectively, corresponding to the leading first-stage eigenscores ξi1(s),

ξi2(s), ζij1(s), and ζij2(s) with variance functions var{ξi1(s)} = λ
(1)
1 (s) =

∑2
k′=1 λ

(1)
1k′ψ

(1)
1k′(s),

var{ξi2(s)} = λ
(1)
2 (s) =

∑2
k′=1 λ

(1)
2k′ψ

(1)
2k′(s), var{ζij1(s)} = λ

(2)
1 (s) =

∑2
p′=1 λ

(2)
1p′ψ

(2)
1p′(s), and

var{ζij2(s)} = λ
(2)
2 (s) =

∑2
p′=1 λ

(2)
2p′ψ

(2)
2p′(s). The measurement error εij(t|s) is simulated inde-

pendently over longitudinal and functional time from a mean zero Gaussian distribution with
variance σ2(s) = {7 + cos(2πs)}/c, where c is used to vary the SNRs of the simulated data.

We run simulations under multiple scenarios with varying SNRs, sample sizes, and sparsity
levels in the longitudinal time domain. A range of measurement error variance was obtained by
varying the c values from 0.5 to 50, corresponding to SNRs of roughly 1 and 100, respectively.
Web Tables 1 and 2 report results from the boundary cases of c = 0.5 and 50. In addition,
results are reported for two sample sizes N = 30 (similar to the implicit learning data) and
N = 100, as well as two sparsity levels at the longitudinal dimension. As in our motivating
implicit learning example, while ERP data are recorded on a dense grid of functional time
points, there may be some missing values on the longitudinal time grid due to trials with
low data quality. Hence for the sparse design case, we consider 40% missing data at random
longitudinal time points per subject. As with our data analysis, the number of principal
components for both stages of the MD-FPCA decomposition are selected to explain at least
90% of the variation. The smoothing bandwidths are selected in a preliminary simulation
study using GCV and are fixed for the full simulation at (.2, .2) for first-stage overall and
subunit means for both sample sizes, at (.1, .1) for the total and subunit covariance surfaces
for N = 30, at (.02, .02) for the total and subunit covariance surfaces for N = 100, and
at (.05, .05) for the second-stage mean and covariance surfaces for both sample sizes. We
utilize relative squared error RSE(s, t) = {||f(t, s) − f̂(t, s)||2}/||f(t, s)||2 to assess estimates
of the one and two dimensional decomposition components in MD-FPCA where ||f(s)|| =
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∫
f(s)2ds and ||f(t, s)||2 =

∫ ∫
f(t, s)2dsdt, respectively. For assessment of estimated scalar

model components, we utilize mean squared error (MSE).
Web Figures 10-14 display estimated model components from 200 Monte Carlo runs for a

dense design with N = 100 and c = .5 (low SNR). The estimated first-stage subject and subunit
level eigenfunctions with the median RSE value (Web Figures 11-12 (b) and (d)) track the true
quantities (Web Figures 11-12 (a) and (c)) closely, similar to the overall mean estimates (Web
Figures 10 (a) and (b)). The estimated first-stage subject and subunit eigenscore variance

functions, λ
(1)
1 (s), λ

(1)
2 (s), λ

(2)
1 (s), and λ

(2)
2 (s) (Web Figures 11-12 (e)-(f)), second-stage eigen-

functions (Web Figures 13-14 (a)-(d)) and the estimated proportion of variability explained
at the subject-level in the first-stage of MD-FPCA, ρ(s), (Web Figure 13 (c)), are given from
runs with RSE values at the 10th, 50th and 90th percentiles, overlaying the true quantities.
The estimates for the second leading first-stage eigenscore variance functions, the second-stage
eigenfunctions, and ρ(s) track the periodicity, magnitude, and shape of the true functions. The
estimated leading first-stage eigenscore variance functions capture the periodicity and shape
but tend to overestimate the magnitude of the true functions.

Web Tables 1 and 2 display the median, 10th and 90th percentiles of the RSE and MSE
for estimated MD-FPCA model components over the eight simulation designs. As expected,
the RSEs for the mean surface, µ(t, s), first-stage eigenfunctions, φ

(1)
1 (t|s), φ(1)

2 (t|s), φ(2)
1 (t|s),

and φ
(2)
2 (t|s), the first-stage eigenscore variance, λ

(1)
1 (s), λ

(1)
2 (s), λ

(2)
1 (s), and λ

(2)
2 (s), and the

proportion of variability displayed at the subject-level, ρ(s), decrease under a denser design,
with increasing sample size and SNR. The fitted surfaces for Xij(t|s) seem to be the most
sensitive to increasing SNR. The RSE for the low SNR design corresponds to only 10% of the
area under the true subject specific surface and improves substantially moving to the high SNR
design. The RSEs for second-stage eigenfunctions, ψ

(1)
kk′(s) and ψ

(2)
pp′(s), decrease with increasing

sample size under a denser design, but do not change with increasing SNR. This may be due
to the fact that these quantities are estimated in the second-stage of the algorithm, based
on estimated quantities in the first-stage and do not depend directly on data observed with
measurement error. In addition, note that N = 100, especially N = 30, are small sample sizes
for functional principal components decompositions and estimates especially for the second-
stage quantities get better with increasing sample size (see the drop in the 90th percentile for
the RSEs of the second-stage eigenfunctions with sample size). Finally, the median MSE for
ρ decreases under a denser design, with increasing sample size and SNR.

References

Chen, K. and Müller, H. G. (2012). Modeling repeated longitudinal observations. Journal of
the American Statistical Association 107, 1599–1609.

Di, C., Crainiceanu, C. M. and Jank, W. S. (2014). Multilevel sparse functional principal
component analysis. Stat 3, 126–143.

Hasenstab, K., Sugar, C., Telesca, D., Jeste, S., McEvoy, K., and Şentürk, D. (2015). Iden-
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Web Figure 1: (a) ERP waveform from a single subject, condition, electrode and trial in the
right frontal region of the scalp. (b) The average of the first 30 consecutive ERP waveforms
for the same subject, electrode and condition after preprocessing.
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Web Figure 2: Estimated electrode-specific mean surfaces for the ASD group.
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Web Figure 3: Estimated electrode-specific mean surfaces for the TD group.
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Web Figure 9: (a)-(b) The two leading subject level eigenscores from the second-stage de-
compositions for the ASD and TD groups, respectively. (c)-(d) The smoothed subject-specific
amplitude difference trajectories at P3 peak location t = 0, partitioned by the median of the
leading scores ξ′i11 for the ASD and TD groups, respectively.
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Web Figure 10: The true (a) and estimated (b) mean surfaces, µ(t, s), based on 200 Monte
Carlo runs from the dense design scenario at N = 100 and low SNR. The estimated function
corresponds to the Monte Carlo run with RSE value at the 50th percentile.
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Web Figure 11: The true and estimated model components based on 200 Monte Carlo runs
from the dense design scenario at N = 100 and low SNR. The true ((a), (c)) and estimated ((b),
(d)) first-stage subject level eigenfunctions are displayed in the first two rows. The estimated
functions correspond to the Monte Carlo run with RSE value at the 50th percentile. The true
and estimated first-stage subject level eigenscore variance functions are given in (e) and (f)
from runs with RSE values at the 10th, 50th and 90th percentiles.
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Web Figure 12: The true and estimated model components based on 200 Monte Carlo runs
from the dense design scenario at N = 100 and low SNR. The true ((a), (c)) and estimated ((b),
(d)) first-stage subunit level eigenfunctions are displayed in the first two rows. The estimated
functions correspond to the Monte Carlo run with RSE value at the 50th percentile. The true
and estimated first-stage subunit level eigenscore variance functions are given in (e) and (f)
from runs with RSE values at the 10th, 50th and 90th percentiles.
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Web Figure 13: The true and estimated model components based on 200 Monte Carlo runs
from the dense design scenario at N = 100 and low SNR. Estimated model components are
given from runs with RSE values at the 10th, 50th and 90th percentiles. Displayed are the ((a)-
(d)) second-stage subject level eigenfunctions and (e) the proportion of variability explained
at the subject level, ρ(s), in the first-stage decompositions.
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Web Figure 14: The true and estimated model components based on 200 Monte Carlo runs
from the dense design scenario at N = 100 and low SNR. Estimated model components are
given from runs with RSE values at the 10th, 50th and 90th percentiles. Displayed ((a)-(d))
are the second-stage subunit level eigenfunctions.
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