Carrier-Mediated and Energy-Dependent Uptake and

Efflux of Deoxynivalenol in Mammalian Cells

Authors: Xiaoming Li, Peiqiang Mu, Jikai Wen and Yiqun Deng

Supplementary Data

Supplemental Figure s1. Chemical structure of Deoxynivalenol (DON)

Supplemental Figure s2. Possible transport modes of the DON toxin in mammalian

cells.

Supplemental Figure s3. Parallel Artificial Membrane Permeability (PAMPA) model.

Supplemental Figure s4. Percentage of 1 μ g/ml T-2 toxin transported in the PAMPA model.

Supplemental Figure s5. Percentage of the DON content taken up by the whole cell compared with the total initial DON content in the medium. The initial DON concentration was 5

μg/ml.

Supplemental Figure s6. Effects of various transporter inhibitors on the uptake of 5 μ g/ml DON in MDCK cells within 10 min.

Supplemental Figure s7. Effect of multidrug and toxin extrusion proteins (MATE) inhibitor cimetidine on DON efflux from MDCK cells. MDCK cells were pre-incubated with 5 μ g/ml DON, and the medium was replaced with HBSS buffer or HBSS buffer containing 2 mM Cimetidine after a 10 min incubation with DON to allow uptake; the DON content in the whole cells was measured after 10 min of efflux.

Supplemental	Table s1.	Accuracy	and	Precision	of	DON	Concentrations	Measured	using
Each Method at 3 Sp	viking Leve	els (Mean)							

	Concentration	Mean	
	(ng/ml)	Recoveries	RSD (%)
		SD (%)	
HPLC-UV	10000	96.1	2.18
Methods	1000	90.1	3.55
	100	91.3	4.49
ELISA Methods	50	94.1	3.72
	5	92.1	4.56
	1	93.1	4.72