Prediction of size-resolved number concentration of cloud

condensation nuclei and long-term measurements of their activation

characteristics

H. C. Che^{1,2}, X. Y. Zhang^{3,*}, L. Zhang^{1,2}, Y. Q. Wang¹, Y. M. Zhang¹, X. J. Shen¹, Q. L. Ma⁴, J. Y. Sun^{1,5}, J. T. Zhong¹

¹Key Laboratory of Atmospheric Chemistry of CMA, Institute of Atmospheric Composition,

Chinese Academy of Meteorological Sciences, Beijing 100081, China

²College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China

³Chinese Academy of Meteorological Sciences, Beijing 100081, China & Center for Excellence in

Regional Atmospheric Environment, IUN, CAS

⁴LinAn Regional Global Atmosphere Watch Station, LinAn 311307, China

⁵State Key Laboratory of Cryospheric Sciences, Cold and Arid Region Environmental and

Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China

Corresponding: X. Y. Zhang (xiaoye@camscma.cn)

Figure S1. Correlation between the effective hygroscopicity parameter of CCN-active particles (κ_a) observed at four different supersaturations and the organic mass fraction (f_{org}) determined by size-resolved AMS measurements. The data were fitted by orthogonal distance regression with both 10 % relative error for measured κ_a and f_{org} .

As showed in the figure S1, the low correlation coefficient obtained with the size-resolved AMS data ($R^2 = 0.52$) is a result of low signal-to-noise of these data. However, the fitting line generally showed the tendency of the relation of f_{org} with κ_a . The line fit equation for all data is $y = -0.41(\pm 0.013)x+0.61(\pm 0.008)$, with standard deviations in brackets. Extrapolation of the fit line to x=1 ($f_{org}=1$) yields an effective hygroscopicity parameter of $\kappa_{org} \approx 0.2 \pm 0.02$, and to x=0 ($f_{org}=0$) yields an effective hygroscopicity parameter of $\kappa_{inorg} \approx 0.61 \pm 0.008$.