SUPPORTING INFORMATION

Hole Hopping through Tryptophan in Cytochrome P450

Maraia E. Ener, [†] Harry B. Gray, * and Jay R. Winkler *

Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States

[†]Current address:

Department of Chemistry Yale University 225 Prospect St. P.O. Box 208107 New Haven CT 06520

Corresponding Authors

*Harry B. Gray. *Jay R. Winkler

Additional Experimental Details

Laser transient spectroscopy. Excitation pulse energies were in the range of 5-10 mJ/pulse. Samples were held in cuvettes with 1- cm optical path lengths and the absorbance at the 480-nm excitation wavelength was approximately 0.15.

The transient kinetics shown in manuscript Figures 3 and 4 are normalized to the prompt bleach at 440 nm. This bleach signal corresponds to formation of the *Ru²+ excited state. By normalizing to the initial excited state concentration, the signals for the different proteins reflect the relative yields of subsequent intermediates that form.

Sample spectra. Absorption spectra of $[Ru(bpy)_2(IAphen)]^{2+}$, CYP102A1, $Ru_{C97}(CYP102A1)W96$, and $pMeODMA^{\bullet+}$ have been reported previously. 1, 2

Figure S1. Spectra of ferric (blue) and ferrous (red) wild-type P450-BM3, and the ferrous - ferric difference spectrum (purple).

Electron Transfer Rate Calculations

Electron-transfer rate constants were estimated using the following semiclassical expression:³

$$\textit{k}_{\text{ET}} = \left(10^{13}\,\text{s}^{-1}\right) \times e^{-\beta(r-r_{o})} \times e^{-\frac{\left(\Delta G^{\circ} + \lambda\right)^{2}}{4\lambda\textit{k}_{B}T}}$$

The following parameters were used for all estimated rate constants in Table S1: β = 1.1 Å⁻¹; r_o = 3 Å; λ = 0.8 eV; k_B = 8.6165 × 10⁻⁵ eV K⁻¹; T = 295 K.

Table S1. Estimated electron transfer rate constants

Reaction	ΔG° , eV	r, Å	$k_{\rm ET}$, s ⁻¹	$\tau_{\rm ET} = k_{\rm ET}^{-1}$
$Ru_{C97}^{3+}-Fe^{3+}P \to Ru_{C97}^{2+}-Fe^{3+}P^{\bullet+}$	-0.2	20.8	3.8×10^2	2.7 ms
Ru_{C97}^{3+} -W96 $\rightarrow Ru_{C97}^{2+}$ -W96	-0.1	11.88	1.4×10^6	0.7 μs
$W96^{\bullet+}$ - $Fe^{3+}P \rightarrow W96$ - $Fe^{3+}P^{\bullet+}$	-0.1	7.15	2.5×10^{8}	4 ns
$Ru_{C97}^{+}-Fe^{3+}P \rightarrow Ru_{C97}^{2+}-Fe^{2+}P$	-0.9	19.5	1.2×10^5	8.6 μs
$Ru_{C97}^{+}-Fe^{3+}P \rightarrow Ru_{C97}^{2+}-Fe^{2+}P$	-0.9	23.8	1.0×10^3	1 ms

References

- [1] Ener, M. E., Lee, Y. T., Winkler, J. R., Gray, H. B., and Cheruzel, L. (2010) Photooxidation of cytochrome P450-BM3, *Proc. Natl. Acad. Sci. USA 107*, 18783-18786.
- [2] Sassoon, R. E., Gershuni, S., and Rabani, J. (1992) Photochemical generation and consequent stabilization of electron-transfer products on separate like-charged polyelectrolytes, *J. Phys. Chem.* 96, 4692-4698.
- [3] Winkler, J. R., and Gray, H. B. (2014) Electron Flow through Metalloproteins, *Chem. Rev. 114*, 3369-3380.