# **Supporting Information**

# A genomics-led approach to deciphering the mechanism of thiotetronate antibiotic biosynthesis

Weixin Tao,‡<sup>a</sup> Marie E. Yurkovich,‡<sup>b</sup> Shishi Wen,‡<sup>a</sup> Karen E. Lebe,<sup>b</sup> Markiyan Samborskyy,<sup>b</sup> Yuanzhen Liu,<sup>a</sup> Anna Yang,<sup>a</sup> Yunkun Liu,<sup>a</sup> Yingchen Ju,<sup>a</sup> Zixin Deng,<sup>a</sup> Manuela Tosin,<sup>c</sup> Yuhui Sun<sup>a</sup> and Peter F. Leadlay<sup>b</sup>

<sup>a</sup> Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People's Republic of China

<sup>b</sup> Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom

<sup>c</sup> Department of Chemistry, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom

‡ These authors contributed equally to this work
Correspondence:
\*Professor Yuhui Sun: E-mail: yhsun@whu.edu.cn
\*Professor Peter F. Leadlay: E-mail: pfl10@cam.ac.uk

# Contents of Supporting Information

| Experimental Procedures4                                                                                               |
|------------------------------------------------------------------------------------------------------------------------|
| Supplementary Results8                                                                                                 |
| Table S1. <sup>1</sup> H and <sup>13</sup> C NMR data of compound 4 from Streptomyces                                  |
| thiolactonus NRRL 15439 (600 MHz) and Streptomyces sp. MG11 (400                                                       |
| MHz)8                                                                                                                  |
| Table S2. Comparison of the thiotetronate gene clusters from four                                                      |
| different producer strains9                                                                                            |
| Table S3. Bacterial strains used in this study10                                                                       |
| Table S4. Plasmids used in this study12                                                                                |
| Table S5. Oligonucleotide primers used in this study13Figure S1. Selected NMR spectra for compound 4 from Streptomyces |
| thiolactonus NRRL 1543916                                                                                              |
| Figure S2. Selected NMR spectra for compound 4 from Streptomyces sp.                                                   |
| MG1119                                                                                                                 |
| Figure S3. Chemical structures and key <sup>1</sup> H- <sup>1</sup> H COSY and HMBC                                    |
| correlations of compound 4 from Streptomyces thiolactonus NRRL 15439                                                   |
| and Streptomyces sp. MG1122                                                                                            |
| Figure S4. Sequence alignment of acyltransferase (AT) domains from                                                     |
| thiotetronate PKS enzymes23                                                                                            |
| Figure S5. Biosynthesis of the Tü 3010 tetraketide backbone by the                                                     |
| iterative PKS TueB24                                                                                                   |
| Figure S6. Sequence alignment of FabB/FabF enzymes from thiotetronate                                                  |
| gene clusters25                                                                                                        |
| Figure S7. Sequence alignment of FabH enzymes from thiotetronate gene                                                  |
| clusters26                                                                                                             |
| Figure S8. In-frame deletion of stuH in S. thiolactonus                                                                |
| Figure S9. In-frame deletion of <i>stuB</i> in <i>S. thiolactonus</i> 28                                               |

| Figure S10. In-frame deletion of <i>tImA</i> in <i>Lentzea</i> sp              |
|--------------------------------------------------------------------------------|
| Figure S11. LC-ESI-MS analysis of thiolactomycin (TLM) from                    |
| Lentzea sp                                                                     |
| Figure S12. Genetic analysis of genes of sulfur metabolism involved in Tü      |
| 3010 biosynthesis31                                                            |
| Figure S13. Replacement of stuJ,K,S genes by chloramphenicol                   |
| resistance gene (cat) in S. thiolactonus                                       |
| Figure S14. In-frame deletion of stuK in S. thiolactonus                       |
| Figure S15. In-frame deletion of stuS in S. thiolactonus                       |
| Figure S16. Phylogram of cytochrome P450 enzymes encoded in                    |
| thiotetronate biosynthetic gene clusters35                                     |
| Figure S17. Proposed mechanism for formation of the carboxamide                |
| function of Tü 301036                                                          |
| Figure S18. In-frame deletion of the cytochrome P450-encoding gene             |
| <i>stuD</i> 2 in pWHU270237                                                    |
| Figure S19. In-frame deletion of the cytochrome P450-encoding gene             |
| <i>stuD1</i> in pWHU270238                                                     |
| Figure S20. Fragmentation pathway for (A) thiotetromycin                       |
| Figure S21. In-frame deletion of <i>tlmD1</i> in <i>Lentzea</i> sp. ATCC313940 |
| References41                                                                   |

# **Materials and Methods**

**Bacterial Strains and Culture Conditions.** Bacterial strains and plasmids used in this study are summarised in Tables S2 and S3 respectively. *S. olivaceus* Tü 3010, *Lentzea* sp. ATCC 31319, *S. thiolactonus* NRRL 15439, *Streptomyces* sp. MG11 and related mutant strains were grown in TSBY or TSB medium<sup>1</sup> for isolation of chromosomal DNA, and on SFM medium<sup>1</sup> for sporulation and conjugation. For production of Tü 3010 in *S. olivaceus* Tü 3010 the strain was cultured in 2% oatmeal complex medium with a trace element solution,<sup>2</sup> for production of Tü 3010 in *S. thiolactonus* NRRL 15439 and *Streptomyces* sp. MG11 strains were cultured in ISP2.<sup>1</sup> For liquid cultures, the strains were grown at 30°C on a rotary shaker incubator at 200 rpm for 4 days, and for solid culture, the strains were grown at 30°C for 5-7 days. All *E. coli* strains were grown in liquid or solid Luria-Bertani (LB) medium at 37°C with appropriate antibiotic selection (apramycin 50 μg/mL).

**DNA Manipulation.** All chemicals and antibiotics were purchased from Sigma-Aldrich and all organic solvents were HPLC grade. Fast-digest restriction endonucleases were purchased from Thermo Fisher Scientific. Alkaline phosphatase, T4 DNA ligase, Gibson Assembly Master Mix, T4 DNA polymerase, Deoxynucleotide (dNTP) Solution Mix, and bovine serum albumin (BSA) were purchased from New England Biolabs. Oligonucleotides used in this work were custom synthesized by Eurofins Genomics, GenScript, or Tsingke and supplied in lyophilised form (listed in Table S4). Polymerase chain reactions were carried out using *Phusion* High-Fidelity PCR Master Mix from New England Biolabs (for cloning), BioMix Red from Bioline and Taq PCR Master Mix from YPH-Bio (for screening). Isolation of plasmid DNA from an overnight culture was performed using the E.Z.N.A. HP Plasmid Mini Kit I

(Omega Bio-Tek). High-molecular weight genomic DNA from *Streptomyces* and *Lentzea* strains was isolated using the salting out procedure.<sup>1</sup> Purification of DNA fragments from agarose gels was performed using GeneJet Gel Extraction Kit (Thermo Fisher Scientific) according to the manufacture's instruction.

Genomic Library Construction and Library Screening for stu Gene Cluster. A genomic library of S. thiolactonus NRRL 15439 was constructed CopyControl<sup>™</sup> Fosmid Library Production using Kit (EPICENTRE Biotechnologies) according to the manufacturer's instructions. High-molecular weight genomic DNA of S. thiolactonus NRRL 15439 was sheared to ~40 kbp by passing through a syringe needle for 10-15 times. DNA fragments range from 35 kbp to 45 kbp were size-fractionated by low-melting agarose gel electrophoresis and recovered by ethanol precipitation after agarase (Thermo Fisher Scientific) digestion. End-repair of insert DNA was performed using End-repair Enzyme Mix supplied in Fosmid Library Production Kit. End-repaired DNA was then ligated with EcoRV linearized and FastAP dephosphorylated vector pJTU2554.<sup>3</sup> The ligation mixture was packaged using MaxPlax Lambda Packaging Extracts and plated with E. coli EPI300/pUZ8002. Screening of the S. thiolactonus genomic library for the stu cluster was performed by PCR using primer pairs stuE-up/stuE-dn, stuH-up/stuH-dn, stuA-up/stuA-dn, and stuC-up/stuC-dn.

#### Genetic manipulation of thiotetronate-producing strains.

For *Lentzea* sp. ATCC 31319, in-frame deletions of the *tImA* and *tImD1* genes were carried out. The recombinant plasmids pMY∆tImA and pMY∆tImD1 were constructed by amplifying regions upstream and downstream of *tImA* (1.5 kbp on each) and *tImD1* (2 kbp on each) using *Lentzea* sp. genomic DNA and the primer pairs: tImA-1F/tImA-1R, tImA-2F/tImA-2R, tImD1-1F/tImD1-1R, tImD1-2F/tImD1-2R. The vector pYH7<sup>4</sup> was digested with BgIII and HindIII,

treated with alkaline phosphatase, and purified by gel electrophoresis. Ligation of cut pYH7 and the amplified fragments was accomplished by the isothermal Gibson assembly method according to the manufacturer's protocol. The assembly mixture was incubated at 50°C for 60 min, and then was used to transform *E. coli* DH10B. Plasmids pMY $\Delta$ tlmA and pMY $\Delta$ tlmD1 were confirmed by sequencing and were each introduced by conjugation into *Lentzea* sp. ATCC 31319 through donor strain *E. coli* ET12567/pUZ8002. After incubation at 30°C for 16 hours, exconjugants were selected with 5 µg/mL apramycin and 25 µg/mL nalidixic acid. Antibiotic resistance was confirmed through transfer of exconjugants to a SFM plate containing 50 µg/mL apramycin and 25 µg/mL nalidixic acid. To form the double cross-over mutants, loss of pMY $\Delta$ tlmA and pMY $\Delta$ tlmD1 was obtained by several rounds of non-selective growth of the exconconjugants on SFM agar medium. The integrity of the *Lentzea* sp.  $\Delta$ tlmA and  $\Delta$ tlmD1 mutants were checked by PCR analysis using the primer pairs: tlmA-3F/tlmA-3R and tlmD1-3F/tlmD1-3R.

For S. *thiolactonus* NRRL 15439, gene replacement of *stuJ,K,S*, and four respective gene in-frame deletions of *stuK*, *stuS*, *stuH*, *stuB* were carried out. Taking replacement of *stuJ,K,S* as an example, the recombinant plasmid pWHU2617 was constructed by amplifying 2 kbp regions upstream and downstream of the *stuJ,K,S* gene, using *S. thiolactonus* genomic DNA and the primer pairs: stuJ,K,S-L1/stuJ,K,S-L2 and stuJ,K,S-R1/stuJ,K,S-R2. The pYH7<sup>4</sup> fragment was prepared by digesting with BgIII and NdeI, and subsequently treating with alkaline phosphatase. Amplified fragments (2 kbp) after digestion were cloned into BgIII and NdeI sites of pYH7 to give an intermediate recombinant. A 827 bp *cat* resistance gene cassette was amplified using primer pairs: cat-up/cat-dn. Plasmid pWHU2617 was created by inserting the *cat* cassette between the two 2 kbp amplified fragments. Restriction digestion and sequencing of inserts were performed to confirm the recombinant plasmid pWHU2617, which was then introduced into *S. thiolactonus* NRRL 15439 by conjugation. Screening for gene replacement

6

mutant of *stuJ,K,S* was performed as described for  $\Delta$ tlmA mutant screening. Recombinant strain *S. thiolactonus*  $\Delta$ stuJ,K,S::*cat* was confirmed by PCR using primer pairs: stuJ,K,S-CK1/stuJ,K,S-CK2 and Southern blot analysis. The in-frame deletion of each of *stuK, stuS, stuH, stuB* were carried out similarly. Recombinant plasmids, pWHU2639, pWHU2640, pWHU2674 and pWHU2673 were constructed by amplifying 2 kbp regions upstream and downstream of the target gene, using the primer pairs: stuK-L1/stuK-L2 and stuK-R1/stuK-R2 (*stuK*), stuS-L1/stuS-L2 and stuS-R1/stuB-R2 (*stuS*), stuH-L1/stuH-L2 and stuH-R1/stuH-R2 (*stuH*), stuB-L1/stuB-L2 and stuB-R1/stuB-R2 (*stuB*), respectively. The resulting recombinant plasmids were each introduced into *S. thiolactonus* and screened for the in-frame deletion mutants of interest, as described previously. All mutants were validated by PCR analysis, using the check primers listed in Table S4.

Trans-complementation carried was out by introducing the complementation plasmids pIB-tlmA, pWHU2698, pWHU2699, pWHU2700 and pWHU2701 into the corresponding gene-null mutant. The integrative vector pIB139 was used for inserting *tImA*, *stuJ*, *stuK*, *stuS*, *stuJ*+S under the control of the ermE\* promoter, respectively. Genes including tlmA (2 kbp), stuJ (1 kbp), stuK (666 bp) and stuS (1 kbp), were amplified using primer pairs: tlmA-Ndel/tlmA-Xbal, stuJ-up/stuJ-dn, stuK-up/stuK-dn, stuS-up/stuS-dn, respectively. The resulting products were digested with Ndel and Xbal, and then cloned into the corresponding site of pIB139, except for stuS which was digested with Ndel and EcoRI and inserted into the Ndel and EcoRI site of pIB139. After sequencing confirmation, each plasmid was introduced into the appropriate gene-null mutant and analyzed for the production of thiotetronate antibiotic.

7

Table S1. <sup>1</sup>H and <sup>13</sup>C NMR data of compound 4 from *Streptomyces thiolactonus* NRRL 15439 (600 MHz) and *Streptomyces* sp. MG11 (400 MHz).

|          | Tü 3010 ( from MG11)                           |                        | Tü 3010 ( from NRRL 15439)             |                        |  |
|----------|------------------------------------------------|------------------------|----------------------------------------|------------------------|--|
| position | δ <sub>H</sub> ( <i>mult</i> , <i>J</i> in Hz) | δ <sub>C</sub> (type)  | δ <sub>H</sub> ( <i>mult, J</i> in Hz) | $\delta_{C}$ (type)    |  |
| 1        | /                                              | 195.3, C               | /                                      | 195.2, C               |  |
| 2        | /                                              | 114.7, C               | /                                      | 115.0, C               |  |
| 3        | /                                              | 183.0, C               | /                                      | 181.7, C               |  |
| 4        | /                                              | 55.4, C                | /                                      | 55.2, C                |  |
| 5        | 5.73 (s)                                       | 129.0, CH              | 5.72 (s)                               | 128.8, CH              |  |
| 6        | /                                              | 138.9, C               | /                                      | 139.0, C               |  |
| 7        | 6.37 (dd, 17.2,10.5)                           | 140.8, CH              | 6.36 (dd, 17.3,10.6)                   | 140.8, CH              |  |
| 8        | 5.27 (d, 17.2);                                | 112.3, CH <sub>2</sub> | 5.26 (d, 17.3);                        | 112.4, CH <sub>2</sub> |  |
|          | 5.05 (d, 10.5 );                               |                        | 5.04 (d, 10.6 );                       |                        |  |
| 9        | 1.77 (s, 3H)                                   | 11.1, CH <sub>3</sub>  | 1.76 (s, 3H)                           | 11.1, CH₃              |  |
| 10       | 3.20 (d, 16.0);                                | 45.3, CH <sub>2</sub>  | 3.22 (d, 16.1);                        | 45.2, CH <sub>2</sub>  |  |
|          | 3.06 (d, 16.0);                                |                        | 3.06 (d, 16.1);                        |                        |  |
| 11       | /                                              | 174.1, C               | /                                      | 174.2, C               |  |
| 12       | 2.19 (dq, 15.0, 6.7,                           | 15.7, CH <sub>2</sub>  | 2.21 (m, 2H );                         | 15.7, CH <sub>2</sub>  |  |
|          | 2H );                                          |                        |                                        |                        |  |
| 13       | 1.02 (t, 6.7, 3H)                              | 11.3, CH₃              | 1.01 (t, 7.5, 3H)                      | 11.2, CH <sub>3</sub>  |  |

\* Recorded in CD<sub>3</sub>OD, 25°C,  $\delta$  in ppm

| S. thiol<br>NRRL | <i>lactonus</i><br>. 15439 | Streptor<br>M | <i>nyces</i> sp.<br>G11 | S <i>. oli</i><br>Tü | vaceus<br>3010 | <i>Lentzea</i> sp.<br>ATCC 31319 |          | Putative function                       |
|------------------|----------------------------|---------------|-------------------------|----------------------|----------------|----------------------------------|----------|-----------------------------------------|
| gene             | No. (aa)                   | gene          | No. (aa)                | gene                 | No. (aa)       | gene                             | No. (aa) | _                                       |
| stuJ             | 376                        | ssuJ          | 376                     | tueJ                 | 367            | tlmJ                             | 335      | tRNA-specific 2-thiouridylase           |
| stuK             | 221                        | ssuK          | 222                     | tueK                 | 227            | /                                |          | N-acetylmuramoyl-L-alanine amidase      |
| stuS             | 389                        | ssuS          | 391                     | tueS                 | 390            | tlmS                             | 379      | NifS-like cysteine desulfurase          |
| stuE             | 611                        | ssuE          | 611                     | tueE                 | 611            | /                                |          | Asparagine synthase                     |
| stuG             | 62                         | ssuG          | 62                      | tueG                 | 62             | /                                |          | Ferredoxin                              |
| stuD2            | 403                        | ssuD2         | 405                     | tueD2                | 406            | /                                |          | Cytochrome P450                         |
| stuF3            | 337                        | ssuF3         | 325                     | /                    |                | /                                |          | 3-oxoacyl-ACP synthase (FabH)           |
| stuT             | 259                        | ssuT          | 252                     | tueT                 | 252            | /                                |          | Thioesterase                            |
| stuH             | 444                        | ssuH          | 444                     | tueH                 | 447            | /                                |          | Carboxylating enoyl-CoA reductase (Ccr) |
| stul             | 583                        | ssul          | 586                     | tuel                 | 581            | /                                |          | 3-hydroxybutyryl-CoA dehydrogenase      |
| stuR             | 807                        | ssuR          | 850                     | tueR                 | 801            | /                                |          | LuxR family transcriptional regulator   |
| stuF1            | 401                        | ssuF1         | 401                     | tueF                 | 390            | tlmF                             | 407      | 3-oxoacyl-ACP synthase (FabF/FabB)      |
| stuD1            | 424                        | ssuD1         | 424                     | tueD1                | 424            | tlmD1                            | 384      | Cytochrome P450                         |
| stuA             | 698                        | ssuA          | 690                     | tueA                 | 689            | tlmA                             | 647      | Polyketide synthase (PKS)               |
| stuB             | 2286                       | ssuB          | 2265                    | tueB                 | 2274           | the D                            | 2072     | PKS/NRPS                                |
| stuC             | 634                        | ssuC          | 894                     | tueC                 | 632            | UITID                            | 2912     | Nonribosomal peptide synthetase (NRPS)  |
| stuF2            | 369                        | ssuF2         | 404                     | /                    |                | /                                |          | 3-oxoacyl-ACP synthase (FabF/FabB)      |

 Table S2. Comparison of the thiotetronate gene clusters from four different producing strains.

"/" indicates not present

| Strains                    | Characteristics                                                                                                                                                                                                                          | Reference                    |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Escherichia coli           |                                                                                                                                                                                                                                          |                              |
| DH10B                      | F <sup>-</sup> mcrA Δ(mrr <sup>-</sup> hsd RMS <sup>-</sup> mcrBC),<br>Φ80 <i>lacZ</i> ΔM15, Δ <i>lacX74 recA1</i> endA1<br>araD139 Δ (ara leu)7697 galU galK<br>rpsL nupG $\lambda$ <sup>-</sup> , Host for general DNA<br>manipulation | Invitrogen                   |
| EPI300                     | Host for constructing the genomic                                                                                                                                                                                                        | Epicentre<br>Biotechnologies |
| ET12567/pUZ8002            | (F <sup>-</sup> dam 13::Tn9 dcm 6 hsdM hsdR<br>recF143 zjj-202::Tn10 galK2 galT22<br>ara14 pacY1 xyl-5 leuB6 thi-1), Donor<br>strain for conjugation between <i>E. coli</i><br>and <i>Streptomyces</i> .                                 | 5                            |
| Lentzea sp.                |                                                                                                                                                                                                                                          | e                            |
| Lentzea sp. A FCC 31319    | I LM producing wild-type strain                                                                                                                                                                                                          |                              |
| ∆timA                      | timA gene in-frame deletion mutant                                                                                                                                                                                                       | This study                   |
| ∆tlmD1                     | tImD1 gene in-frame deletion mutant                                                                                                                                                                                                      | This study                   |
| ∆tlmA::pIB-tlmA            | timA gene in-frame deletion mutant complemented with timA gene                                                                                                                                                                           | I his study                  |
| Streptomyces               |                                                                                                                                                                                                                                          |                              |
| S. olivaceus Tü 3010       | Tü 3010 producing wild-type strain                                                                                                                                                                                                       | 2                            |
| S. thiolactonus NRRL 15439 | Tü 3010 producing wild-type strain                                                                                                                                                                                                       | 7                            |
| Streptomyces sp. MG11      | Tü 3010 producing wild-type strain                                                                                                                                                                                                       | This study                   |
| ∆stuJ,K,S                  | <i>stuJ,K,S</i> genes were replaced by <i>cat</i>                                                                                                                                                                                        | This study                   |
| ∆stuK                      | stuK gene in-frame deletion mutant                                                                                                                                                                                                       | This study                   |
| ∆stuS                      | stuS gene in-frame deletion mutant                                                                                                                                                                                                       | This study                   |
| ∆stuH                      | stuH gene in-frame deletion mutant                                                                                                                                                                                                       | This study                   |
| ∆stuB                      | stuB gene in-frame deletion mutant                                                                                                                                                                                                       | This study                   |
| ∆stuJ,K,S::pWHU2698        | stuJ,K,S genes replacement mutant complemented with stuJ gene                                                                                                                                                                            | This study                   |
| ∆stuJ,K,S::pWHU2699        | <i>stuJ,K</i> ,S genes replacement mutant complemented with <i>stuK</i> gene                                                                                                                                                             | This study                   |
| ∆stuJ,K,S::pWHU2700        | <i>stuJ,K</i> ,S genes replacement mutant complemented with <i>stuS</i> gene                                                                                                                                                             | This study                   |
| ∆stuJ,K,S::pWHU2701        | <i>stuJ,K,S</i> genes replacement mutant complemented with <i>stuJ</i> and <i>stuS</i>                                                                                                                                                   | This study                   |

# Table S3. Bacterial strains used in this study.

#### S. avermitilis

| S. avermitilis MA-4680 | Heterologous host for Tü 3010                                                                         | 8          |
|------------------------|-------------------------------------------------------------------------------------------------------|------------|
| MA-4680::pJTU2554      | S. avermitilis housing pJTU2554                                                                       | This study |
| MA-4680::8G11          | S. avermitilis housing cosmid 8G11                                                                    | This study |
| MA-4680::19H12         | S. avermitilis housing cosmid 19H12                                                                   | This study |
| MA-4680::pWHU2702      | <i>S. avermitilis</i> housing the pWHU2702, containing the core <i>stu</i> cluster                    | This study |
| MA-4680::pWHU2705      | <i>S. avermitilis</i> housing the core <i>stu</i> cluster with the <i>stuD2</i> gene deleted in-frame | This study |
| MA-4680::pWHU2712      | <i>S. avermitilis</i> housing the core <i>stu</i> cluster with the <i>stuD1</i> gene deleted in-frame | This study |

| Plasmid   | Characteristics                                                                                                   | Reference  |
|-----------|-------------------------------------------------------------------------------------------------------------------|------------|
| pJTU2554  | Vector for construction of genomic library                                                                        | 3          |
| pUC18     | Vector for general cloning                                                                                        | 9          |
| pYH7      | E. coli-Streptomyces shuttle vector, for in-frame gene                                                            | 4          |
|           | deletions                                                                                                         |            |
| pIB139    | $\Phi C31$ site integrative vector with PermE* promoter,                                                          | 10         |
|           | for in trans gene complementation                                                                                 |            |
| pMY∆tlmA  | Construct for in-frame deletion of <i>tlmA</i>                                                                    | This study |
| pMY∆tlmD1 | Construct for in-frame deletion of <i>tlmD1</i>                                                                   | This study |
| pIB-tImA  | Construct with <i>tImA</i> under control of PermE <sup>*</sup> , for $\Delta$ tImA complementation                | This study |
| 8G11      | <i>S. thiolactonus</i> NRRL 15439 library cosmid with <i>stu</i> cluster                                          | This study |
| 19H12     | <i>S. thiolactonus</i> NRRL 15439 library cosmid with <i>stu</i> cluster                                          | This study |
| pWHU2617  | Construct for in-frame deletion of stuJ,K,S                                                                       | This study |
| pWHU2639  | Construct for in-frame deletion of stuK                                                                           | This study |
| pWHU2640  | Construct for in-frame deletion of stuS                                                                           | This study |
| pWHU2698  | Construct with $stuJ$ under control of the PermE*, for $\Delta$ stuJ,K,S complementation                          | This study |
| pWHU2699  | Construct with <i>stuK</i> under control of the PermE*, for<br>∆stuJ,K,S complementation                          | This study |
| pWHU2700  | Construct with <i>stuS</i> under control of the PermE*, for<br>∆stuJ,K,S complementation                          | This study |
| pWHU2701  | Construct with <i>stuJ</i> and <i>stuS</i> under control of the PermE*, for ∆stuJ,K,S complementation             | This study |
| pWHU2673  | Construct for in-frame deletion of stuB                                                                           | This study |
| pWHU2674  | Construct for in-frame deletion of stuH                                                                           | This study |
| pWHU2702  | Construct housing the core <i>stu</i> cluster ( <i>stuE</i> to <i>stuF2</i> ) for Tü 3010 heterologous expression | This study |
| pWHU2705  | Construct housing the core <i>stu</i> cluster with <i>stuD2</i> in-frame deleted                                  | This study |
| pWHU2712  | Construct housing the core <i>stu</i> cluster with <i>stuD1</i> in-frame deleted                                  | This study |

Table S4. Plasmids used in this study.

| Primer      | oligonucleotide sequence(5'-3')        | Restriction site |
|-------------|----------------------------------------|------------------|
| tlmA-1F     | GTGCCTCCCCACTCCTGCAGATCTAAATAGGA       |                  |
|             | TTTCTGCTGTTCGACCGGAACGTCC              |                  |
| tlmA-1R     | GTCCACCAGTTCGAAGAAGCCCGAGTCGAA         |                  |
|             | GGCGTC                                 |                  |
| tlmA-2F     | TCGGGCTTCTTCGAACTGGTGGACCGCATCA        |                  |
|             | ACACC                                  |                  |
| tlmA-2R     | GTCGACCTGCAGGCATGCAAGCTTTGGTCTT        |                  |
|             | CGCCGACAGCGTCAGC                       |                  |
| tlmD1-1F    | GTGCCTCCCCACTCCTGCAGATCTAAGCAAA        |                  |
|             |                                        |                  |
|             |                                        |                  |
| tlmD1-2F    |                                        |                  |
|             | G                                      |                  |
| tlmD1-2R    | GTCGACCTGCAGGCATGCAAGCTTTGTTGAT        |                  |
|             | GCGGTCCACCAGTTCC                       |                  |
| stuJ,K,S-L1 | GTC <u>CATATG</u> GGCGGCGGAGAGGAAGAC   | Ndel             |
| stuJ,K,S-L2 | GAT <u>AGATCT</u> GACCAGGCGAGCGACGGC   | BgIII            |
| stuJ,K,S-R1 | GGT <u>AGATCT</u> GATTCTACGGCTCCCCTC   | BgIII            |
| stuJ,K,S-R2 | ATG <u>AAGCTT</u> CTGCCCGCCCCGCACCGC   | HindIII          |
| stuJ-L1     | CCC <u>AAGCTT</u> AGGGGCGAGTGCGAGAAGAC | HindIII          |
| stuJ-L2     | CCG <u>GAATTC</u> GCACCTACACGGCCCAGCTC | BamHI            |
| stuJ-R1     | CCG <u>GAATTC</u> AGAAGGGGATGCCGATGACG | BamHI            |
| stuJ-R2     | CGC <u>GGATCC</u> CGTCCTCCCTCCACGCATCC | EcoRI            |
| stuK-L1     | CCC <u>AAGCTT</u> CGGCACCCGCATCGCCTACG | HindIII          |
| stuK-L2     | CCG <u>GAATTC</u> TCCGTGTCCTTGGATGCTCG | EcoRI            |
| stuK-R1     | CCG <u>GAATTC</u> AGGACTTCACGGACGAGATG | EcoRI            |
| stuK-R2     | CGC <u>GGATCC</u> AATCGTTCACCGAAACCCTG | BamHI            |
| stuS-L1     | CCC <u>AAGCTT</u> ATCGTCGCCGAGCCCACCAC | HindIII          |
| stuS-L2     | CGC <u>CATATG</u> CCGGCCAACGCGCATTTCAC | Ndel             |
| stuS-R1     | CGC <u>CATATG</u> GCGGCGTGACCAGTAAAGGC | Ndel             |
| stuS-R2     | CGC <u>GGATCC</u> CGAACTCGCCGACGCCTGGG | BamHI            |
| stuB-L1     | CCC <u>AAGCTT</u> GCCGCGCGGGACTCCTGTAC | HindIII          |
| stuB-L2     | CCG <u>GAATTC</u> CCGCACCCCGCAAGTCATCC | EcoRI            |
| stuB-R1     | CCG <u>GAATTC</u> CTGACGATCATGATGGCCTC | EcoRI            |
| stuB-R2     | CGC <u>CATATG</u> AGCCTTCAAACCCTACCTCG | Ndel             |
| stuH-L1     | CCC <u>AAGCTT</u> TGTCCGTCGCCACGCTGCCC | HindIII          |
| stuH-L2     | CCG <u>GAATTC</u> CCGGGTGCCAGGCGTTGACG | EcoRI            |

 Table S5. Oligonucleotide primers used in this study.

| stuH-R1      | CCG <u>GAATTC</u> GCAACCTCCACCAGGGCAAG  | EcoRI   |
|--------------|-----------------------------------------|---------|
| stuH-R2      | CGC <u>CATATG</u> CGGGAGGGTCTCACCAATCG  | Ndel    |
| tlmA-3F      | AGTTCCTGCGCAACCTCGTCG                   |         |
| tlmA-3R      | AGAGATGTTCCGGTGTGTCG                    |         |
| tlmD1-3F     | ATGGTGTACGCCGCCATCAGGAAGG               |         |
| tlmD1-3R     | AGATCGCGCTCATCGGGTCACCTCG               |         |
| stuJ,K,S-CK1 | GTGCTGGTGGAGTTCTTC                      |         |
| stuJ,K,S-CK2 | GCGTCCTTCATCCTGGGC                      |         |
| stuJ-CK1     | GAAGGTCCGCAGCGTCAGGC                    |         |
| stuJ-CK2     | CCCTCCTTGCGCGGCTTCTC                    |         |
| stuK-CK1     | CGCCCGTGCGGAAGGACTGG                    |         |
| stuK-CK2     | CGCGCATTTCACGTTCCCCG                    |         |
| stuS-CK1     | GCCGAGGGAGAAGCGGAGGG                    |         |
| stuS-CK2     | GCTGCTGGGGCTCGGTCTCG                    |         |
| stuB-CK1     | CGAAACGGCGATGGAGGACG                    |         |
| stuB-CK2     | GACATCGCCGTCCCCTTCGC                    |         |
| stuH-CK1     | CACGCAAGTCCCTTCACCTC                    |         |
| stuH-CK2     | AGGGAAGAGAGGCAGCGAGG                    |         |
| tlmA-Ndel    | AA <u>CATATG</u> ATGAGCGCGATCGCCGTGATC  | Ndel    |
| tlmA-Xbal    | AA <u>TCTAGA</u> TCAGGCACAGCTCGCCTCCATC | Xbal    |
| cat-up       | GGA <u>AGATCT</u> AGGTTCCAACTTTCAC      | BgIII   |
| cat-dn       | GGA <u>AGATCT</u> CAAAATCATACCTGACC     | BgIII   |
| stuJ-up      | CGC <u>CATATG</u> ATGACTCACACCCCGCAG    | Ndel    |
| stuJ-dn      | CCC <u>AAGCTT</u> TCAGGCCACGCCGCCGT     | EcoRI   |
| stuK-up      | CGC <u>CATATG</u> ATGGGGGCGAGACGAGCA    | Ndel    |
| stuK-dn      | CCC <u>AAGCTT</u> TCAGGCCGGCGACGTACG    | EcoRI   |
| stuS-up      | CCG <u>GAATTC</u> CTACGTCAGCCCCGCCGC    | Ndel    |
| stuS-dn      | CGC <u>CATATG</u> ATGGCTTACCTCGACCAC    | EcoRI   |
| stuA-up      | CGC <u>CATATG</u> ATGACCGCACTGACACACCA  | Ndel    |
| stuA-dn      | CCC <u>AAGCTT</u> TCAGCCACGGAGTGCCTCCA  | HindIII |
| stuC-up      | CGC <u>CATATG</u> GTGAACTCTGTCGCTAACTC  | Ndel    |
| stuC-dn      | CCC <u>AAGCTT</u> TCACGCGGCCGCGCGGGACT  | HindIII |
| stuH-up      | CGC <u>CATATG</u> GTGAAGGAAATAGTCGATGC  | Ndel    |
| stuH-dn      | CCC <u>AAGCTT</u> TCACGGCCGGAAGCGGTTGA  | HindIII |
| stuE-up      | CGC <u>CATATG</u> ATGACCGAGACCATGGCCTG  | Ndel    |
| stuE-dn      | CCC <u>AAGCTT</u> TCAGTTGAGCTTCAGCGTCG  | HindIII |
| gRNA18-1/A   | AAAAGCACCGACTCGGTGCCACTTTTTCAAG         |         |
|              | TTGATAACGGACTAGCCTTATTTTAACTTGCT        |         |
| gRNA-18-1/S  | GATCACTAATACGACTCACTATAGGCCAACGC        |         |
|              | GCGGGGAGAGGGTTTTAGAGCTAGAAATAGC         |         |
|              | AAGTIAA                                 |         |

| gRNA-stuD1-1/S | GATCACTAATACGACTCACTATAGGGCCGGAA         |
|----------------|------------------------------------------|
|                | CGCAGCGGTCGTTTTAG                        |
| gRNA-stuD1-2/S | GATCACTAATACGACTCACTATAGCGCAAGTT         |
|                | CGGCGGCAGGTGTTTTAG                       |
| gRNA-stuD2-1/S | GATCACTAATACGACTCACTATA <b>GAGAAAGGA</b> |
|                | CAGCCCGGCGGGTTTTAG                       |
| gRNA-stuD2-2/S | GATCACTAATACGACTCACTATAGCCATGAAC         |
|                | TCCCGGTCACCGTTTTAG                       |

Note: Restriction sites introduced into primers are underlined; guide sequences in gRNA primers are shown in bold type.

Fig. S1. Selected NMR spectra for compound 4 from *Streptomyces thiolactonus* NRRL 15439.

#### a) <sup>1</sup>H-NMR spectrum of compound 4



# b) <sup>13</sup>C-NMR spectrum of Compound 4



### c) <sup>1</sup>H-<sup>1</sup>H COSY spectrum of compound 4



d) HSQC spectrum of compound 4



e) HMBC spectrum of compound 4



Fig. S2. Selected NMR spectra for compound 4 from Streptomyces sp. MG11.



a) <sup>1</sup>H-NMR spectrum of compound 4

# b) <sup>13</sup>C-NMR spectrum of compound 4



c) <sup>1</sup>H-<sup>1</sup>H COSY spectrum of compound 4



d) HMQC spectrum of compound 4



e) HMBC spectrum of compound 4



**Fig. S3.** Chemical structures and key  ${}^{1}H{}^{-1}H$  COSY ( — ) and HMBC correlations (H  $\rightarrow$  C) of compound 4 from *Streptomyces thiolactonus* NRRL 15439 and *Streptomyces* sp. MG11.



|         |            | 620                 |        | 720     |                      |         |      |
|---------|------------|---------------------|--------|---------|----------------------|---------|------|
|         |            |                     |        | Ι.      |                      |         |      |
| StuB_AT | LAGVRPAAVI | <mark>GHSQGE</mark> | VAAACL | …RRVPAK | C <mark>ASH</mark> S | SPVMAEI | LEGS |
| TueB_AT | LAGVRPAAVV | GHSQGE              | VAAACL | …RRVPAK | C <mark>ASH</mark> S | SPVVAEI | EGP  |
| SsuB_AT | SVGVEPAAVV | GHSQGE              | VAAACL | RRVPAK  | C <mark>ASH</mark> S | SPVMAEI | EHP  |
| TlmB_AT | DAGVEPAAVI | <mark>GHSQGE</mark> | VAAAHV | …RRVPVR | Y <mark>ASH</mark> S | SPAVEPI | RAE  |

**Fig. S4.** Sequence alignment of acyltransferase (AT) domains from thiotetronate PKS enzymes. Specific residues within the active site motifs of an AT domain confer extender unit selectivity for each module. As expected, the AT domain of TImB in the *tIm* cluster has the specificity motif YASH, which predicts incorporation of methylmalonyl-CoA units in all three cycles of polyketide chain extension. For the *stu, ssu,* and *tue* clusters, the specificity motif is the non-conventional CASH. This could allow the AT domains of StuB, SsuB, and TueB to accept both propionate and butyrate as extension units.



**Fig. S5.** Biosynthesis of the Tü 3010 tetraketide backbone by the iterative PKS TueB. As in the biosynthesis of the TLM tetraketide (Fig. 2B), the acyltransferase for the loading module is proposed to be contributed by malonyl-CoA: ACP acyltransferase of fatty acid biosynthesis (MCAT). TueB catalyses all three cycles of chain elongation, recruiting methylmalonyl-CoA in the first cycle, and ethylmalonyl-CoA in cycles two and three. As in TlmB, the KR and DH are only active in the first and second cycles, as indicated by the part of the polyketide backbone shown in green. The same domain arrangement and extender unit specificity is seen in the *stu* and *ssu* clusters, except that *ssuC* also encodes for a thioesterase (TE) domain at the C-terminal end of the PCP domain. Sulfur incorporation and thiotetronate ring formation are proposed to follow the same mechanism as shown for TLM in Fig. 5.

|                    | 160                         | 300                                   |                           | 340                         |
|--------------------|-----------------------------|---------------------------------------|---------------------------|-----------------------------|
| SsuF1              | HAPVSA <mark>C</mark> ASGAI | EVDHVHA <mark>H</mark> ATSTP(         | QSMTG <mark>H</mark> MLGA | SGAM <mark>G</mark> AAAAIL  |
| StuF1              | HTPVSA <mark>C</mark> ASGAI | EVAHIHA <mark>H</mark> ATSTP(         | QSMTG <mark>H</mark> MLGA | .SGAM <mark>G</mark> AAAAVL |
| TlmF               | HTPVSA <mark>C</mark> ASGAI | EIGHVHA <mark>H</mark> ATSTP(         | 2SMTG <mark>H</mark> LLGA | SGAL <mark>G</mark> AIAAIL  |
| TueF               | RTVVSA <mark>C</mark> ASGAI | EIGVVHA <mark>H</mark> ATSTES         | SSMTG <mark>H</mark> MMGA | .SGTM <mark>G</mark> AMAALF |
| SsuF2              | RTPVSA <mark>C</mark> ASGAI | EIGVVHA <mark>H</mark> ATSTES         | SSMTG <mark>H</mark> MMGA | .SGTV <mark>G</mark> AMAAVL |
| StuF2              | RTPVSA <mark>C</mark> ASGAI | EIGIVHA <mark>H</mark> ATSTES         | SSMTG <mark>H</mark> MMGA | AGTV <mark>G</mark> AMVSIL  |
| Tu3010 FabB        | HTPVSA <mark>C</mark> ASGAI | EVVHLNA <mark>H</mark> ATSTPÇ         | 2SMTG <mark>H</mark> LLGG | AGGI <mark>E</mark> TVATVL  |
| 15439 FabB         | HTPVSA <mark>C</mark> ASGAI | EIVHVNA <mark>H</mark> ATSTP <i>I</i> | ASMTG <mark>H</mark> LLGG | AGGV <mark>E</mark> TVATCL  |
| 31319 FabB         | LATETA <mark>C</mark> ASGA  | TVDHVNA <mark>H</mark> GTSTPI         | KGVLG <mark>H</mark> TLGA | AGAI <mark>E</mark> AALTVL  |
| <i>E.coli</i> FabF | ISIATA <mark>C</mark> TSGVI | HIGYVNA <mark>H</mark> GTSTP <i>I</i> | ASMTG <mark>H</mark> LLGA | AGAV <mark>E</mark> SIYSIL  |
| <i>E.coli</i> FabB | YSISSA <mark>C</mark> ATSAI | HIDYLNS <mark>H</mark> GTSTPV         | VAMTG <mark>H</mark> SLGA | AGVQ <mark>E</mark> AIYSLL  |
| —                  | *                           | *                                     | *                         |                             |

**Fig. S6.** Sequence alignment of FabB/FabF enzymes from the thiotetronate genetic clusters. The conserved Cys-His-His catalytic triad is highlighted in yellow and marked with asterisks. The Glu342 residue of *E. coli* FabB and FabF, which participates in the active site hydrogen bond network,<sup>11</sup> is replaced in homologues from the thiotetronate clusters by a glycine residue. Samples Tu3010\_FabB, 15439\_FabB, and 31319\_FabB represent FabB homologues from fatty acid synthase (FAS) loci in the strains *S. olivaceus* Tü 3010, *S. thiolactonus* NRRL 15439, and *S. Lentzea* sp. ATCC 31319, respectively. Intriguingly, this E→G mutation is not present in the thiotetronate FAS related FabB homologues.

|                     | 110                       | 240                      |                                                | 270                                |
|---------------------|---------------------------|--------------------------|------------------------------------------------|------------------------------------|
|                     |                           |                          |                                                |                                    |
| SsuF3               | FDVNAV <mark>C</mark> AGI | FRHFIP <mark>H</mark> QA | NG <mark>A</mark> MLGEVL <mark>E</mark> NLGLPF | L-ARAHLPVGRHG <mark>N</mark> TGAAS |
| StuF3               | FDVNAV <mark>C</mark> AGI | FRHFIP <mark>H</mark> QA | NG <mark>A</mark> MLRDIW <mark>G</mark> HMGLPF | -AHLHMPVARHG <mark>N</mark> TGAAS  |
| Tu3010_FabH         | FDISAG <mark>C</mark> AG  | FDVFIP <mark>H</mark> QA | NM <mark>R</mark> IIDSMV <mark>K</mark> TLKLPE | SVTVARDVETTG <mark>N</mark> TSAAS  |
| 15439_FabH          | FDIAAV <mark>C</mark> TGI | FDKVVL <mark>H</mark> QA | NA <mark>R</mark> ILAAVA <mark>E</mark> RIDVPI | J−ERFPANIERVG <mark>N</mark> TVAAS |
| 31319 FabH          | FDVSAV <mark>C</mark> TGI | FDRVVA <mark>H</mark> QA | NA <mark>R</mark> ILSLVG <mark>Q</mark> RLSISI | )-EKVLGNISRVG <mark>N</mark> TGAAS |
| <i>E.coli</i> _FabH | FDVAAA <mark>C</mark> AGI | FDWLVP <mark>H</mark> QA | NL <mark>R</mark> IISATA <mark>K</mark> KLGMSM | I-DNVVVTLDRHG <mark>N</mark> TSAAS |
|                     | *                         | *                        |                                                | *                                  |

**Fig. S7.** Sequence alignment of FabH enzymes from thiotetronate gene clusters. The conserved Cys-His-Asn catalytic triad in *E. coli* 3-oxoacyl-ACP synthase III (FabH) is highlighted in yellow and marked with asterisks. Residues marked in blue are amino acids that have been confirmed as critical to the *E. coli* FabH-ACP interaction.<sup>12</sup> Samples Tu3010\_FabH, 15439\_FabH, and 31319\_FabH represent FabH homologues from fatty acid synthase (FAS) loci in the strains *S. olivaceus* Tü 3010, *S. thiolactonus* NRRL 15439, and *S. Lentzea* sp. ATCC 31319, respectively.



**Fig. S8.** In-frame deletion of *stuH* in *S. thiolactonus* NRRL 15439. (A) Schematic representation of the in-frame deletion of *stuH*. (B) PCR confirmation of  $\Delta$ stuH. The arrows indicate the expected size of the fragments from the wild-type and mutant chromosomal DNA, respectively.



**Fig. S9.** In-frame deletion of *stuB* in *S. thiolactonus* NRRL 15439. (A) Schematic representation of in-frame deletion of *stuB*. (B) PCR confirmation of  $\Delta$ stuB. The arrows indicate the expected size of the fragments from the wild-type and mutant chromosomal DNA, respectively.



**Fig. S10.** In-frame deletion of *tlmA* in *Lentzea* sp. ATCC 31319. (A) Schematic representation of the in-frame deletion of *tlmA*. (B) PCR confirmation of  $\Delta$ tlmA. The arrows indicate the expected size of the fragments from the wild-type and mutant chromosomal DNA, respectively.



**Fig. S11.** LC-ESI-MS analysis of thiolactomycin (TLM) from *Lentzea* sp. ATCC 31319, selective ion monitoring of m/z 211.2. (A) TLM from wild-type [M+H]<sup>+</sup> (m/z 211.2) elutes at 27.7 min; (B) *Lentzea* sp.  $\Delta$ tlmA strain, the asterisk means not detected; and (C) the complementation strain *Lentzea* sp.  $\Delta$ tlmA::pIB-tlmA. The other peak present, eluting at 19.4 minutes (m/z 211.3), has been confirmed to be an artifact, unrelated to thiolactomycin.



**Fig. S12.** Genetic analysis of sulfur metabolism genes involved in Tü 3010 biosynthesis. Genes were subjected to either in-frame deletion or gene replacement, and selected mutants were complemented *in trans* using wild-type genes *in vivo*. Genes mutated are shown in dotted lines. *stuS*, NifS-like cysteine desulfurase; *stuJ*, tRNA-specific 2-thiouridylase; *stuK*, *N*-acetylmuramoyl-L-alanine amidase (not involved in Tü 3010 biosynthesis). Production of Tü 3010 is expressed as a percentage of wild-type levels. ND, not detected.



**Fig. S13.** Replacement of *stuJ,K,S* genes by chloramphenicol resistance gene (*cat*) in *S. thiolactonus* NRRL 15439. (A) Schematic representation of the replacement of *stuJ,K,S* by *cat.* (B) Southern blot confirmation of  $\Delta$ stuJ,K,S::*cat.* The arrows indicate the expected size of the fragments from the wild-type and mutant chromosomal DNA, respectively.



**Fig. S14.** In-frame deletion of *stuK* in *S. thiolactonus* NRRL 15439. (A) Schematic representation of in-frame deletion of *stuK*. (B) Southern blot confirmation of  $\Delta$ stuK. The arrows indicate the expected size of the fragments from the wild-type and mutant chromosomal DNA, respectively.



**Fig. S15.** In-frame deletion of *stuS* in *S. thiolactonus* NRRL 15439. (A) Schematic representation of in-frame deletion of *stuS*. (B) Southern blot confirmation of  $\Delta$ stuS. The arrows indicate the expected size of the fragments from the wild-type and mutant chromosomal DNA, respectively.



**Fig. S16.** Phylogram of cytochrome P450 enzymes encoded in thiotetronate biosynthetic gene clusters. Amino acid sequences were aligned with ClustalW2 and the resulting phylogenetic tree was generated using the Neighbor-Joining method without manual adjustment. The phylogenetic tree was rendered using FigTree v1.<sup>13</sup>



**Fig. S17.** Proposed mechanism for formation of the carboxamide function of Tü 3010. TLM does not undergo analogous oxidation and the *tlm* cluster accordingly lacks genes encoding close homologues of the enzymes required.



**Fig. S18.** In-frame deletion of *stuD2* in pWHU2702. (A) Schematic representation of in-frame deletion of *stuD2* in pWHU2702. (B) PCR confirmation of MA-4680::pWHU2705. The arrows indicate the expected size of the fragments from MA-4680::pWHU2702 and MA-4680::pWHU2705 chromosomal DNA, respectively.



**Fig. S19.** In-frame deletion of *stuD1* in pWHU2702. (A) Schematic representation of in-frame deletion of *stuD1* in pWHU2702. (B) PCR confirmation of MA-4680::pWHU2712. The arrows indicate the expected size of the fragments from MA-4680::pWHU2702 and MA-4680::pWHU2712 chromosomal DNA, respectively.



**Fig. S20.** Fragmentation pathway for (A) thiotetromycin (2) and (B) thiolactomycin (1) based on MS-MS and MS<sup>3</sup> analysis. A) The high resolution ESI-MS spectra of major  $\Delta$ stuD2 metabolites (2). B) The low resolution ESI-MS spectra of thiolactomycin and major fragments. For both thiotetromycin (2) and thiolactomycin (1) loss of CO is also a major MS-MS fragment.



**Fig. S21.** In-frame deletion of *tlmD1* in *Lentzea* sp. ATCC3139. (A) Schematic representation of the in-frame deletion of *tlmD1*. (B) PCR confirmation of  $\Delta$ tlmD1. The arrows indicate the expected size of the fragments from the wild-type and mutant chromosomal DNA, respectively.

# References

- T. Kieser, M. J. Bibb, M. J. Buttner, K. F. Chater and D. A. Hopwood, 2000, Practical *Streptomyces* Genetics: A Laboratory Manual (The John Innes Foundation, Norwich, U.K.).
- 2. C. Rapp, G. Jung, C. Isselhorst-Scharb and H. Zähner, *Liebigs Ann. Chem.*, 1988, **1988**, 1043.
- L. Li, Z. Lu, X. Xu, J. Wu, Y. Zhang, X. He, T. M. Zabriskie and Z. Deng, ChemBioChem, 2008, 9, 1286.
- Y. Sun, X. He, J. Liang, X. Zhou and Z. Deng, *Appl. Microbiol. Biotechnol.*, 2009, 82, 303.
- D. J. MacNeil, K. M. Gewain, C. L. Ruby, G. Dezeny, P. H. Gibbons and T. MacNeil, *Gene*, 1992, **111**, 61.
- H. Oishi, T. Noto, H. Sasaki, K. Suzuki, T. Hayashi, H. Okazaki, K. Ando and M. Sawada, *J. Antibiot.*, 1982, **35**, 391.
- L. A. Dolak, T. M. Castle, S. E. Truesdell and O. K. Sebek, *J. Antibiot.*, 1986, **39**, 26.
- R. W. Burg, B. M. Miller, E. E. Baker, J. Birnbaum, S. A. Currie, R. Hartman, Y. L Kong, R. L. Monaghan, G. Olson, I. Putter, J. B. Tunac, H. Wallick, E. O. Stapley, R. Oiwa and S. Omura, *Antimicrob. Agents Chemother.*, 1979, 15, 361.
- J. Sambrook, E. F. Fritsch and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab. Press, Plainview, NY), 2nd Ed.
- C. J. Wilkinson, Z. A. Hughes-Thomas, C. J. Martin, I. Böhm, T. Mironenko,
   M. Deacon, M. Wheatcroft, G. Wirtz, J. Staunton and P. F. Leadlay, *J. Mol. Microbiol. Biotechnol.*, 2002, 4, 417.
- S. White, J. Zheng, Y. Zhang and C. O. Rock, *Annu. Rev. Biochem.*, 2005, 74, 791.

- 12. Y. M. Zhang, M. S. Rao, R. J. Heath, A. C. Price, A. J. Olson, C. O. Rock and S. W. White, *J. Biol. Chem.*, 2001, **276**, 8231.
- 13. A. Rambaut, 2009, FigTree version 1.3.1 [computer program] <u>http://tree.bio.ed.ac.uk</u>.