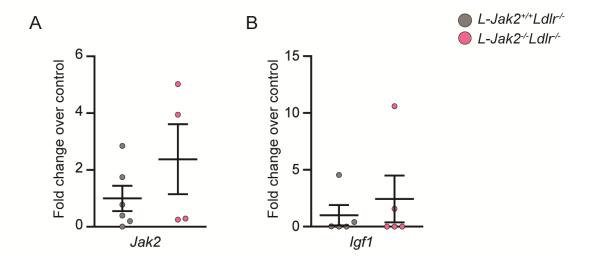
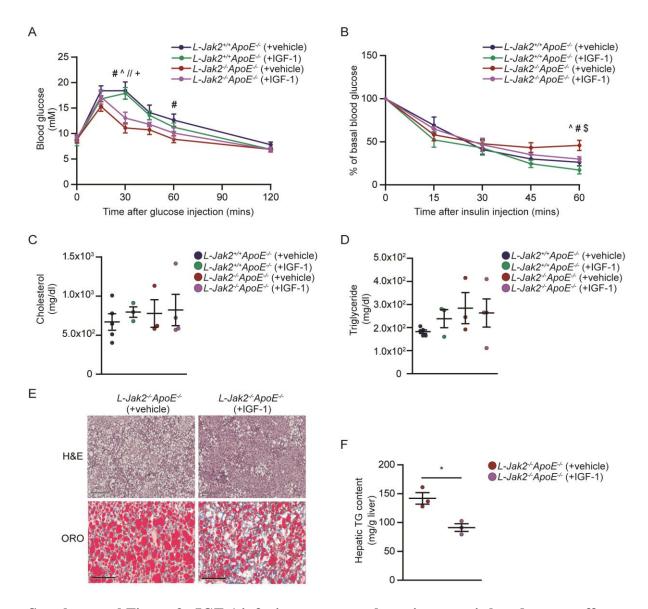

Supplemental Information

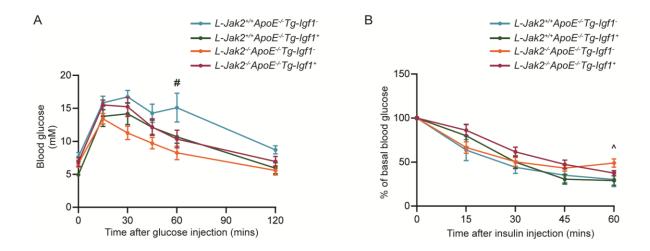

Hepatic JAK2 protects against atherosclerosis through circulating IGF-1

Tharini Sivasubramaniyam, Stephanie A. Schroer, Angela Li, Cynthia T. Luk, Sally Yu Shi, Rickvinder Besla, David W. Dodington, Adam H. Metherel, Alex P. Kitson, Jara J. Brunt, Joshua Lopes, Kay-Uwe Wagner, Richard P. Bazinet, Michelle P. Bendeck, Clinton S. Robbins, and Minna Woo



Supplemental Figure 1. L-Jak2- $^{-/-}$ mice develop more atherosclerosis on chow diet.

L-Jak2^{-/-} ApoE^{-/-} and *L-Jak2*^{+/+} ApoE^{-/-} littermate controls were fed a standard rodent chow diet for 22 weeks. (**A**) Representative photographs of *en face* Oil-red-O (ORO) staining and quantification of atherosclerotic plaque area in descending aortas of 22-week-old *L-Jak2*^{-/-} ApoE^{-/-} mice (n=3) and control *L-Jak2*^{+/+} ApoE^{-/-} mice (n=3). Scale bar: 1 cm. Each dot in the scatter plot indicates an individual animal. (**B**) Representative images of longitudinal sections from the aortic arch of 22-week-old *L-Jak2*^{-/-} ApoE^{-/-} mice and control *L-Jak2*^{+/+} ApoE^{-/-} mice stained with H&E. B: brachiocephalic artery; C: left common carotid; S: subclavian artery; L: lesser curvature. Scale bar: 200 μm. Data represent mean ± SEM. Differences between groups were analyzed for statistical significance by Student unpaired t-test. *P < 0.05.



Supplemental Figure 2. Expression of Jak2 and Igf1 mRNA expression in the aortic arch of L- $Jak2^{-/-}Ldlr^{-/-}$ mice. L- $Jak2^{-/-}Ldlr^{-/-}$ and L- $Jak2^{+/+}Ldlr^{-/-}$ littermate controls were fed an atherogenic diet containing 1.25% cholesterol for 12 weeks, starting at 6 weeks of age. (**A** and **B**) Quantitative real time PCR (qRT-PCR) analysis of Jak2 and Igf1 mRNA expression in aortic arches from L- $Jak2^{-/-}Ldlr^{-/-}$ mice (n=4-5) and control L- $Jak2^{+/+}Ldlr^{-/-}$ mice (n=5-6). Values are normalized to 18S mRNA levels and presented as fold change over control group. Each dot in the scatter plot indicates an individual animal. Data represent mean \pm SEM. Differences between groups were analyzed for statistical significance by Student unpaired t-test.

Supplemental Figure 3. IGF-1 infusion attenuates hepatic steatosis but does not affect glucose tolerance, insulin sensitivity and total serum cholesterol or triglyceride levels in *L-Jak2-/-ApoE-/-* mice. Vehicle (saline + 10 mmol/L HCl) or human Long R3 IGF-1 (1.0 mg/kg/day), a biologically active IGF-1 analog, was administered by subcutaneous osmotic pumps into 8-week-old *L-Jak2-/-ApoE-/-* mice and *L-Jak2+/-ApoE-/-* littermate controls for 12 weeks while on an atherogenic diet containing 0.2% cholesterol. (A) Glucose tolerance test in overnight fasted vehicle-infused *L-Jak2+/-ApoE-/-* (n=6), IGF-1-infused *L-Jak2+/-ApoE-/-* (n=4),

vehicle-infused L-Jak2^{-/-}ApoE^{-/-} (n=8) and IGF-1-infused L-Jak2^{-/-}ApoE^{-/-} (n=5) mice. Mice received glucose (1 g/kg) intraperitoneally and blood glucose was measured sequentially for 120 minutes. (B) Insulin tolerance test in 4 hour fasted vehicle-infused L-Jak2^{+/+}ApoE^{-/-} (n=6), IGF-1-infused L-Jak2 $^{+/+}$ Apo $E^{-/-}$ (n=4), vehicle-infused L-Jak2 $^{-/-}$ Apo $E^{-/-}$ (n=8) and IGF-1-infused L-Jak2^{-/-}ApoE^{-/-} (n=5) mice. Mice received insulin (0.75 units/kg) intraperitoneally and blood glucose was measured sequentially for 60 minutes. Data are expressed as a percentage of basal (fasting) glucose. (C and D) Total serum cholesterol and triglyceride from vehicle-infused L- $Jak2^{+/+}ApoE^{-/-}$ (n=5), IGF-1-infused L- $Jak2^{+/+}ApoE^{-/-}$ (n=3), vehicle-infused L- $Jak2^{-/-}ApoE^{-/-}$ (n=3) and IGF-1-infused L-Jak2^{-/-}ApoE^{-/-} (n=4) mice. (E) Representative images of H&E and Oil-red-O (ORO) staining of liver sections from vehicle-infused L-Jak2^{-/-}ApoE^{-/-} (n=7,4) and IGF-1-infused L- $Jak2^{-/-}ApoE^{-/-}$ (n=6,3) mice. Scale bars: 200 μ m (black), 300 μ m (grey). (**F**) Total hepatic triglyceride (TG) content in vehicle-infused L-Jak2^{-/-}ApoE^{-/-} (n=3) and IGF-1infused L-Jak2^{-/-}ApoE^{-/-} (n=3) mice. Results are normalized to tissue weight. Each dot in the scatter plot indicates an individual animal. Data represent mean \pm SEM. Differences between groups were analyzed for statistical significance by Student unpaired t-test or One-way ANOVA with Newman-Keuls post-hoc test. *P < 0.05; $^{\#}$ P < 0.05 between L- $Jak2^{+/+}ApoE^{-/-}$ + vehicle and L- $Jak2^{-/-}ApoE^{-/-}$ + vehicle; P < 0.05 between L- $Jak2^{+/+}ApoE^{-/-}$ + IGF-1 and L- $Jak2^{-/-}ApoE^{-/-}$ + IGF-1; P < 0.05 between L- $Jak2^{+/+}ApoE^{-/-}$ + IGF-1 and L- $Jak2^{-/-}ApoE^{-/-}$ + vehicle; $^{+}$ P < 0.05 between L- $Jak2^{+/+}ApoE^{-/-}$ + vehicle and L- $Jak2^{-/-}ApoE^{-/-}$ + IGF-1; $^{\$}P < 0.05$ between L- $Jak2^{-/-}$ $ApoE^{-/-}$ + vehicle and L- $Jak2^{-/-}ApoE^{-/-}$ + IGF-1.

Supplemental Figure 4. Expression of *Igf1* transgene did not affect glucose tolerance or **insulin sensitivity.** L- $Jak2^{-/-}ApoE^{-/-}$ and L- $Jak2^{+/+}ApoE^{-/-}$ controls expressing an Igfl transgene in the liver $(L-Jak2^{-/-}ApoE^{-/-}Tg-Igfl^+)$ or $L-Jak2^{+/+}ApoE^{-/-}Tg-Igfl^+$, respectively) and those not expressing the transgene (L- $Jak2^{-/-}ApoE^{-/-}Tg$ - $Igfl^-$ or L- $Jak2^{+/+}ApoE^{-/-}Tg$ - $Igfl^-$, respectively) were fed an atherogenic diet containing 0.2% cholesterol for 13-14 weeks, starting at 8 weeks of age. (A) Glucose tolerance test in overnight fasted L-Jak2^{+/+}ApoE^{-/-}Tg-Igfl⁻ (n=4), L- $Jak2^{+/+}ApoE^{-/-}Tg-Igfl^+$ (n=8), $L-Jak2^{-/-}ApoE^{-/-}Tg-Igfl^-$ (n=6) and $L-Jak2^{-/-}ApoE^{-/-}Tg-Igfl^+$ (n=10) mice. Mice received glucose (1 g/kg) intraperitoneally and blood glucose was measured sequentially for 120 minutes. (**B**) Insulin tolerance test in 4 hour fasted L-Jak2^{+/+}ApoE^{-/-}Tg-Igf1⁻ (n=4), L- $Jak2^{+/+}ApoE^{-/-}Tg$ - $Igfl^+$ (n=8), L- $Jak2^{-/-}ApoE^{-/-}Tg$ - $Igfl^-$ (n=6) and L- $Jak2^{-/-}ApoE^{-/-}Tg$ - $Igfl^-$ (n=6)*Igf1*⁺ (n=8) mice. Mice received insulin (0.75 units/kg) intraperitoneally and blood glucose was measured sequentially for 60 minutes. Data are expressed as a percentage of basal (fasting) glucose. Data represent mean \pm SEM. Differences between groups were analyzed for statistical significance by One-way ANOVA with Newman-Keuls post-hoc test. ^P < 0.05 between L- $Jak2^{+/+}ApoE^{-/-}Tg-Igfl^+$ and $L-Jak2^{-/-}ApoE^{-/-}Tg-Igfl^-$; $^{\#}P < 0.05$ between $L-Jak2^{+/+}ApoE^{-/-}Tg-Igfl^$ and L- $Jak2^{-/-}ApoE^{-/-}Tg$ - $Igf1^-$.