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1 Introduction

We present the findings of a statistical analysis of the data described in the main paper.
These data consist of heart-to-head and total body lengths for four species of snakes. The
data and the biological theory suggested segmented regressions, and we find that a regression
fitting a piecewise linear function with one vertex (a V shape) is preferred for several species
of snake, while a simple line regression is chosen for the only climbing species.

We use non-parametric tests for model selection, as well as bootstrapped likelihood ratio
tests. We employ bootstrap methods for parameter inference as the sampling distributions
of segmented regression parameters can be highly skewed.

The following is an outline of what we cover. Section 2 describes the data. Section 3 discusses
a small list of proposed model specifications that we investigate, which are all regression
models. Section 4 discusses segmented regression and provides a brief, mostly self-contained
mathematical explication of the estimation process. Section 5 considers model specification
tests for the proposed models. Section 6 shows parameter estimates for the fits of the chosen
models. Section 7 shows hypothesis testing results for some parameter restrictions of interest
in the segmented regression models. Section 8 shows non-parametric kernel regression fits
to the data. In the Appendices, we show plots of the functions involved in the segmented
regression calculations of Section 6 as well as a summary of the software used in the study.

2 Data

We examine data for four species of snakes:
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Name Common Name Sample Size Notes
Agkistrodon conanti Florida cottonmouth 192 terrestrial, no climbing
Acrochordus granulatus Little file snake 62 marine
Hydrophis platurus Yellow-bellied sea snake 190 marine
Pantherophis obsoleta Yellow rat snake 43 terrestrial, climbs

It is important to note that the rat snake is the only species among these four which climbs.

The data consists of measurements (cm) of

• total body length

• head-to-heart length

We assume that length measurement error is negligible and we ignore it.

For Agkistrodon conanti, we also have trunk data consisting of analogous measurements, but
with the head removed, and the tail removed at the vent.

3 Model Specification

Based on biological theory and in the interests of parsimony, we shall examine the follow-
ing model specifications. All are regression models. We consider linear, quadratic, log-
transformed, and segmented regressions. Segmented regression models are similar to ordi-
nary least squares models, but with a piecewise-linear functional form. We describe them in
more detail below.

It is natural and intuitive to think of the relative heart position as a variable, so we shall
examine models where the dependent variable is the ratio of the head-heart length divided
by the body length. The independent regression variables shall be functions of the body
length.

For the remainder of this report, let us denote the head-heart length by the variable y and
the total body length by the variable x. We shall consider the following models

(1) yi = a+ bxi + εi

(2) log(yi) = a+ b log(xi) + εi

(3) yi = a+ bxi + cx2i + εi

(4) yi = bxi + cx2i + εi

(5)
yi
xi

= b+ cxi + εi

(6) segmented linear regression with one vertex, or breakpoint (described in Section 4)

In these equations, εi denotes residuals, and is not necessarily the same for different models.
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Note 1
In practice, we shall scale

y

x
by 100 (ie: use percentage). But we do not denote this in the

formulas below.

The line model (1) and the log-transformed line model (2) are the simplest and perhaps most
commonly used specifications in allometric studies. The quadratic models (3) and (4) are
motivated by the desire to consider the ratio regression (5), as discussed in Section 3.1.

In accord with the physiological discussion in the main paper, we expect a relative migration
of the heart during ontogeny that moves the heart relatively closer to the head in gravity-
challenged species. However, a more central position tends to minimize work of the heart,
and a reversal of heart migration from anterior to posterior direction might be expected in
non-climbing snakes as they get larger. A segmented regression (6) is a very simple model
to consider for such data.

3.1 Ratio Regression Models

There is no problem using ratios in regressions, as has been shown in very great detail in
[5] as well as numerous other articles. Assuming that the data xi are far from zero, we note
that a model such as

yi
xi

= b+ cxi + ηi (3.1)

is the same as the model

yi = bxi + cx2i + ηixi (3.2)

where η is an error term. The question of which form to use is only relevant in the sense of
which form will allow a better estimation. For example, one or the other forms could have
homoscedastic errors. A related question is whether the omission of an intercept term in
(3.2) is reasonable or not. If included, the corresponding equivalent models would be

yi = a+ bxi + cx2i + ηixi (3.3)

yi
xi

=
a

xi
+ b+ cxi + ηi (3.4)

3.1.1 Our Preferred Specification

We discard the specification (3.4) (and hence (3.3)) for the following reasons.
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• First, this model tends to the model (3.1) as x→∞. For our data, when we fit (3.4)
(not shown), we find that most of the data are in the region where the function is
highly linear (ie: a

x
is very small). The term a

x
only has an impact on the extreme

short end of the data.

• Second, it makes sense for the intercept a in (3.3) to be zero since y goes to zero as x
does.

3.1.2 Whether to Choose Ratio Variables

For all the snakes, the residuals from regressions of the form (3.2) have a clear pattern (not
shown) of increasing variance with increasing x. Dividing by x largely normalizes these
variances. Thus we choose the specification (3.1).

Note. For all the segmented regression models that we consider henceforth, we shall use y
x

as the dependent variable, and x as the independent variable.

Finally, the above considerations notwithstanding, we test all six model specifications listed
above in Section 5 for completeness.

4 Segmented Regression

We describe briefly the segmented regression used in our study. Segmented regression refers
to regression functions which are defined piecewise. Splines are an example. The least-
squares regression of such functions becomes complicated when the break-points, or knots,
of the functions are unknown parameters which must be estimated. Segmented regression
problems have been studied since at least the 1960s. For an introduction to the subject,
we mention [3], [9] and the references contained therein. We shall focus on our specific
segmented regression problem and give details of a closed-form algorithm for the estimation,
as in [9].

Let use begin by defining the function we wish to fit to the data. We call this function
informally the V-fit function.

f(x) =

{
v +m1(x− u) x ≤ u

v +m2(x− u) x > u
(4.1)

Here we have parametrized two half-lines with slopes m1, m2 which meet at a common vertex
(u, v). See Section 6 for some plots to fitted data.

Our statistical model shall be univariate and have the form

y = f(x) + ε

where ε has mean zero and variance σ2. We shall assume we have an i.i.d. sample {(yi, xi)}Ni=1.
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We’ll estimate parameters by means of regression. To this end, we define the residual sum
of squares as

G(u, v,m1,m2)
def
=

N∑
i=1

(yi − f(xi;u, v,m1,m2))
2 (4.2)

When solving for parameters which minimize G, it turns out that we may concentrate out
v,m1,m2. That is, conditional on a value for u, the remaining parameters are all determined.
This is easily seen by writing (4.1) as

f(x) = v +m1(x− u)1x≤u +m2(x− u)1x>u (4.3)

Then if we fix a value for u, we may solve for the remaining parameters by ordinary least
squares (ols). We may explicitly write this solution in closed form as

v =

N∑
i=1

yi −

∑
xi≤u

yi(xi − u)
∑
xi≤u

(xi − u)∑
xi≤u

(xi − u)2
−

∑
xi>u

yi(xi − u)
∑
xi>u

(xi − u)∑
xi>u

(xi − u)2

N −

∑
xi≤u

(xi − u)
∑
xi≤u

(xi − u)∑
xi≤u

(xi − u)2
−

∑
xi>u

(xi − u)
∑
xi>u

(xi − u)∑
xi>u

(xi − u)2

(4.4)

m1 =

∑
xi≤u

(yi − v)(xi − u)∑
xi≤u

(xi − u)2
(4.5)

m2 =

∑
xi>u

(yi − v)(xi − u)∑
xi>u

(xi − u)2
(4.6)

So given u, these formulas determine the remaining parameters v,m1,m2. Let us denote the
function of u which gives the sum of squares as

g(u)
def
=

N∑
i=1

(yi − f(xi;u))2 (4.7)

This function is continuous, but unfortunately not differentiable at the data points u = xi.
Furthermore, it can possess multiple local minima, even for moderate sample sizes (see plots
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in Appendix A). Nonetheless, it is possible to give a closed-form algorithm which solves for
the minimum of the sum of squares g(u). This was first described in [7], but see also [12]
and [9] for more description and generalizations of the method.

Let us order the data x1 < x2 < · · · < xN . It is easy to see that for x1 < u < x2 the minimizer
of the V-fit is given by taking the the right-hand-side line to be that determined by ols for
the data {(x2, y2), . . . , (xN , yN)}, and taking the left-hand-side line to be the straight line
from (x1, y1) to the right-hand-side line. A similar result holds for xN−1 < u < xN . So g(u)
is constant on the intervals [x1, x2] and [xN−1, xN ].

Next we consider the intervals xi < u < xi+1 for i = 2, 3, . . . , N − 2. On such an interval,
the function G is smooth. (Simple calculation shows that ∂G

∂u
is discontinous at u = xi). To

check for critical points of the function G on the interval xj < u < xj+1, we solve

∂G

∂u
=
∂G

∂v
=

∂G

∂m1

=
∂G

∂m2

= 0 (4.8)

∂G
∂u

= 0 implies

m1

∑
xi≤xj

[yi − v −m1(xi − u)] +m2

∑
xi≥xj+1

[yi − v −m2(xi − u)] = 0 (4.9)

∂G
∂v

= 0 implies

∑
xi≤xj

[yi − v −m1(xi − u)] +
∑

xi≥xj+1

[yi − v −m2(xi − u)] = 0 (4.10)

∂G
∂m1

= 0 implies

∑
xi≤xj

[yi − v −m1(xi − u)] (xi − u) = 0 (4.11)

∂G
∂m2

= 0 implies

∑
xi≥xj+1

[yi − v −m2(xi − u)] (xi − u) = 0 (4.12)

Now, (4.9) and (4.10) together imply

(
1− m2

m1

) ∑
xi≥xj+1

[yi − v −m2(xi − u)] = 0 (4.13)

There are two cases to consider. First assume m1 6= m2. Then
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∑
xi≥xj+1

[yi − v −m2(xi − u)] = 0

and (4.10) implies

∑
xi≤xj

[yi − v −m1(xi − u)] = 0

So the system (4.8) becomes


∑
xi≤xj

[yi − v −m1(xi − u)] = 0∑
xi≤xj

[yi − v −m1(xi − u)] (xi − u) = 0
(4.14)


∑

xi≥xj+1

[yi − v −m2(xi − u)] = 0∑
xi≥xj+1

[yi − v −m2(xi − u)] (xi − u) = 0
(4.15)

But (4.14) are just the equations which solve for ols for the data set {(x1, y1), . . . (xj, yj)} and
(4.15) are the equations which solve for ols for the data set {(xj+1, yj+1), . . . (xN , yN)}. We
can easily see this by parameterizing the lines using the point-slope formula with the point
being (u, v) and the slopes m1 and m2 respectively. Setting the derivatives with respect to
the parameters equal to zero gives these equations (the normal equations).

We compute the closed-form ols solutions for these two data sets. The slopes of the resulting
lines and the intersection of the two lines gives the critical points of G. If the u coordinate
of the intersection of the two ols lines lies in the interval (xj, xj+1), then we have found a
critical point for G on this interval. Otherwise there are no critical points for G on this
interval.

If m1 = m2, we are in the case of a line fit (ie: ols) to the entire data set. Then every point
value for u on the interval (xj, xj+1) gives a minimum for G, and consequently the function
g(u) is constant on the interval.

4.1 Algorithm For V-fit Minimizer

We thus have the following algorithm to find the argmin of G (4.2). We compare the values
of g at all the critical points.

1. For each interval xi < u < xi+1 for i = 2, 3, . . . , N − 2 solve ols for the left-hand data
set and the right hand data set. If the intersection of the two lines lies in the interval
(xi, xi+1), then record the resulting value for g (4.7).
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2. Record the values for g for u = x1, x2, . . . , xN .

3. Find the value of u which gives the minimum value for g among the recorded values in
the previous steps. This is the solution.

4.2 Restriction of Fixed Right-Hand-Side Slope

We also consider the model restriction obtained by fixing the right-hand-side slope m2 to
some constant value, m̃2. In this case, the formula (4.5) for m1 remains the same, and (4.4)
becomes

v =

N∑
i=1

yi −

∑
xi≤u

yi(xi − u)
∑
xi≤u

(xi − u)∑
xi≤u

(xi − u)2
− m̃2

∑
xi>u

(xi − u)

N −

∑
xi≤u

(xi − u)
∑
xi≤u

(xi − u)∑
xi≤u

(xi − u)2

Then with this change, the algorithm of Section 4.1 remains the same with the exception of
replacing Step 1 with the following:

1. For each interval xi < u < xi+1 for i = 2, 3, . . . , N − 1 solve ols for the left-hand data
set and solve ols-with-restricted-slope for the right hand data set. If the intersection of
the two lines lies in the interval (xi, xi+1), then record the resulting value for g (4.7).

The formula for ols with restricted slope is the following

v =
1

Nr

∑
r

[yi − m̃2xi] + m̃2u

where r denotes the set of (right-hand-side) data points and Nr is the cardinality of this set.

We note that in practice, we add the restriction that there must be at least four distinct
data points at the ends. This avoids pathological fits and overfitting that we would not wish
to consider valid. It does not affect any estimates, and only seems to have a material effect
on the confidence intervals for the variable u.

5 Model Specification Tests

We examine the models of Section 3 for goodness of fit. We do not implement an exhaustive
procedure to select only one model. Rather, we eliminate as many specifications as we can,
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and leave somewhat open the choice between the models that remain. Our intention here is
more towards data exploration than deciding on one “best” model. We have chosen to use
non-parametric techniques here, but note that we obtained essentially identical results with
k-fold cross validation (not shown).

Let y denote the heart-to-head length, and x the total body length. The first set of model
specification tests test parametric regression models using bootstrapped comparisons with
non-parametric smoothers. We employ two types of these tests. The first is the test
npcmstest from the R package np. The reference for this is [6].

The second test is similar in spirit, and was implemented in python. It is described in the
forthcoming book by Shalizi, [11], Section 10.1. An online version of the book is available at:
http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/. In the implementation of this test, we
used python StatsModels kernel regression, with least-squares cross-validation for bandwidth
selection.

We have found these two tests to give consistent results. As such, we omit results for the
latter test for the first set of regression models. We use the latter test specifically for testing
the V-fit model, since our segmented regression code is implemented in python, not R. In
what follows, we only report the R np tests for all standard regression models. We only
report the second test for the V-fit models.

We note that here we are testing six possible models. The results are essentially unchanged
if we apply the Bonferroni correction, which would divide the significance levels by six.

The third test is a bootstrapped likelihood ratio test. Specifically, we test the restriction
of the V-fit to the straight line ordinary least squares regression model. In this case, under
the null hypothesis, we can consider the restricted parameters to lie on a non-identifiable
region of the parameter space, so that standard asymptotic properties of the likelihood ratio
statistic do not apply, see [2] for more elaboration. However, as in [4] or [10], we claim that
we may use the bootstrapped likelihood ratio test in this case. In fact, we ran monte carlo
tests (not shown) assessing the power of this method using the model estimates as the true
models, and the results support the method. See also [8], and [12]. We also ran permutation
tests as in those papers, and the results were essentially the same.

The procedure we follow is to compute the log-likelihood ratio statistic −2(l0 − l1), where
l0 is the log-likelihood of the restricted model, and l1 is the log-likelihood of the V-fit, both
evaluated at the respective maximum likelihood estimates. We then simulate bootstrap
samples under the null of the restricted model by resampling residuals, as described in
Section 6, computing the log-likelihood ratio statistic for each sample. This bootstrapped
distribution is then used to compute a p-value corresponding the log-likelihood ratio statistic
for the original sample. For reference, this procedure is described in [10], as well as numerous
other articles.

The results are divided in the following way. First, we group by snake species. Then we
present results for standard regression models using the first test, followed by results for the
V-fit using the second test, followed by results of the likelihood ratio test.
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5.1 Summary

1. Agkistrodon conanti : All models rejected except the V-fit.

2. Agkistrodon conanti trunk : All models rejected except the V-fit.

3. Acrochordus granulatus : All models rejected except the V-fit.

4. Hydrophis platurus : Line model is borderline acceptance; we cannot reject quadratic
models; we cannot reject V-fit. We choose the V-fit to compare with the other snakes
and since the line is nearly rejected. However, the line as the restriction of the V-fit
is borderline not rejected by our bootstrapped likelihood ratio test. This corresponds
to a line model with the ratio y

x
as the dependent variable, ie: model (3.1). This ratio

line model is also not rejected by the specification test 5.5.3. We consider both the
V-fit and (3.1).

5. Pantherophis obsoleta: We cannot reject any model. In interest of parsimony, we choose
the line model. We also will look at results for the V-fit by way of comparison with
the other snakes. The line restriction of the V-fit is not rejected by the bootstrapped
likelihood ratio test. The ratio line model is also not rejected by the specification test
5.6.3.

5.2 Agkistrodon conanti

5.2.1 y ∼ a+ bx

IID Bootstrap (10000 replications)

Test Statistic Jn: 6.494182 P Value: < 2.22e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null of correct specification is rejected at the 0.1% level

5.2.2 log(y) ∼ a+ b log(x)

IID Bootstrap (10000 replications)

Test Statistic Jn: 5.079437 P Value: < 2.22e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null of correct specification is rejected at the 0.1% level

5.2.3 y ∼ bx+ cx2

IID Bootstrap (10000 replications)

Test Statistic Jn: 8.085069 P Value: < 2.22e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null of correct specification is rejected at the 0.1% level

11



5.2.4 y ∼ a+ bx+ cx2

IID Bootstrap (10000 replications)

Test Statistic Jn: 7.57716 P Value: < 2.22e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null of correct specification is rejected at the 0.1% level

5.2.5
y

x
∼ a+ bx

IID Bootstrap (10000 replications)

Test Statistic Jn: 5.942697 P Value: < 2.22e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null of correct specification is rejected at the 0.1% level

5.2.6 V-fit

Next we show results for the second specification test described above for the V-fit. Note
that the null hypothesis is that the parametric model is true.

bootstrap num replications: 10000

p value: 0.1485

5.2.7 V-fit Bootstrapped Likelihood Ratio Test for Line Restriction

Next we show results for the third specification test described above for the V-fit. Recall
that the null hypothesis is that the restricted line model is true.

bootstrap num replications: 1000000

bootstrapped p value: 1e-06

5.3 Agkistrodon conanti trunk

5.3.1 y ∼ a+ bx

IID Bootstrap (10000 replications)

Test Statistic Jn: 5.24261 P Value: < 2.22e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null of correct specification is rejected at the 0.1% level
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5.3.2 log(y) ∼ a+ b log(x)

IID Bootstrap (10000 replications)

Test Statistic Jn: 4.514148 P Value: 1e-04 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null of correct specification is rejected at the 0.1% level

5.3.3 y ∼ bx+ cx2

IID Bootstrap (10000 replications)

Test Statistic Jn: 5.538031 P Value: < 2.22e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null of correct specification is rejected at the 0.1% level

5.3.4 y ∼ a+ bx+ cx2

IID Bootstrap (10000 replications)

Test Statistic Jn: 5.800038 P Value: < 2.22e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null of correct specification is rejected at the 0.1% level

5.3.5
y

x
∼ a+ bx

IID Bootstrap (10000 replications)

Test Statistic Jn: 4.004986 P Value: 2e-04 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null of correct specification is rejected at the 0.1% level

5.3.6 V-fit

Next we show results for the second specification test described above for the V-fit. Note
that the null hypothesis is that the parametric model is true.

bootstrap num replications: 10000

p value: 0.0650
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5.3.7 V-fit Bootstrapped Likelihood Ratio Test for Line Restriction

Next we show results for the third specification test described above for the V-fit. Recall
that the null hypothesis is that the restricted line model is true.

bootstrap num replications: 1000000

bootstrapped p value: 0.0002

5.4 Acrochordus granulatus

5.4.1 y ∼ a+ bx

IID Bootstrap (10000 replications)

Test Statistic Jn: 2.706697 P Value: 0.0033 **

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null of correct specification is rejected at the 1% level

5.4.2 log(y) ∼ a+ b log(x)

IID Bootstrap (10000 replications)

Test Statistic Jn: 2.529444 P Value: 0.0055 **

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null of correct specification is rejected at the 1% level

5.4.3 y ∼ bx+ cx2

IID Bootstrap (10000 replications)

Test Statistic Jn: 2.655755 P Value: 0.0038 **

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null of correct specification is rejected at the 1% level

5.4.4 y ∼ a+ bx+ cx2

IID Bootstrap (10000 replications)

Test Statistic Jn: 2.063245 P Value: 0.009 **

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null of correct specification is rejected at the 1% level
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5.4.5
y

x
∼ a+ bx

IID Bootstrap (10000 replications)

Test Statistic Jn: 2.754004 P Value: 0.0026 **

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null of correct specification is rejected at the 1% level

5.4.6 V-fit

Next we show results for the second specification test described above for the V-fit. Note
that the null hypothesis is that the parametric model is true.

bootstrap num replications: 10000

p value: 0.1409

5.4.7 V-fit Bootstrapped Likelihood Ratio Test for Line Restriction

Next we show results for the third specification test described above for the V-fit. Recall
that the null hypothesis is that the restricted line model is true.

bootstrap num replications: 1000000

bootstrapped p value: 0.0001

5.5 Hydrophis platurus

5.5.1 y ∼ a+ bx

IID Bootstrap (10000 replications)

Test Statistic Jn: 1.069891 P Value: 0.0523 .

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null of correct specification is rejected at the 10% level

5.5.2 log(y) ∼ a+ b log(x)

IID Bootstrap (10000 replications)

Test Statistic Jn: 1.183549 P Value: 0.0433 *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null of correct specification is rejected at the 5% level
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5.5.3 y ∼ bx+ cx2

IID Bootstrap (10000 replications)

Test Statistic Jn: -0.0159585 P Value: 0.2522

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fail to reject the null of correct specification at the 10% level

5.5.4 y ∼ a+ bx+ cx2

IID Bootstrap (10000 replications)

Test Statistic Jn: -0.2153411 P Value: 0.2575

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fail to reject the null of correct specification at the 10% level

5.5.5
y

x
∼ a+ bx

IID Bootstrap (10000 replications)

Test Statistic Jn: 0.4091021 P Value: 0.1164

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fail to reject the null of correct specification at the 10% level

5.5.6 V-fit

Next we show results for the second specification test described above for the V-fit. Note
that the null hypothesis is that the parametric model is true.

bootstrap num replications: 10000

p value: 0.7701

5.5.7 V-fit Bootstrapped Likelihood Ratio Test for Line Restriction

Next we show results for the third specification test described above for the V-fit. Recall
that the null hypothesis is that the restricted line model is true.

bootstrap num replications: 1000000

bootstrapped p value: 0.0481
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5.6 Pantherophis obsoleta

5.6.1 y ∼ a+ bx

IID Bootstrap (10000 replications)

Test Statistic Jn: -1.111558 P Value: 0.7903

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fail to reject the null of correct specification at the 10% level

5.6.2 log(y) ∼ a+ b log(x)

IID Bootstrap (10000 replications)

Test Statistic Jn: -1.21196 P Value: 0.8593

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fail to reject the null of correct specification at the 10% level

5.6.3 y ∼ bx+ cx2

IID Bootstrap (10000 replications)

Test Statistic Jn: -1.016752 P Value: 0.7198

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fail to reject the null of correct specification at the 10% level

5.6.4 y ∼ a+ bx+ cx2

IID Bootstrap (10000 replications)

Test Statistic Jn: -1.187718 P Value: 0.7618

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fail to reject the null of correct specification at the 10% level

5.6.5
y

x
∼ a+ bx

IID Bootstrap (10000 replications)

Test Statistic Jn: -0.8425649 P Value: 0.4931

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fail to reject the null of correct specification at the 10% level
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5.6.6 V-fit

Next we show results for the second specification test described above for the V-fit. Note
that the null hypothesis is that the parametric model is true.

bootstrap num replications: 10000

p value: 0.8215

5.6.7 V-fit Bootstrapped Likelihood Ratio Test for Line Restriction

Next we show results for the third specification test described above for the V-fit. Recall
that the null hypothesis is that the restricted line model is true.

bootstrap num replications: 1000000

bootstrapped p value: 0.3893

6 Estimation Results

We present our findings by species. For all species, we show the V-fits. For Hydrophis
platurus we show in addition the ratio line fit (3.1). For Pantherophis obsoleta we show in
addition the line fit and the ratio line fit (3.1).

To estimate the V-fit, we use segmented regression as described in Section 4. Since we have
an exact algorithm for estimating the segmented regression, we may employ bootstrapping
of sampling parameters with no issues such as might be had when using a numerical opti-
mization routine. We note in passing the R package segmented which estimates segmented
regressions. It uses a numerical optimization routine, so we prefer our exact numerical
algorithm, which we implemented in python. However, we cross checked our results and
the segmented package gives nearly identical parameter estimates. We show graphs of the
sum-of-squares functions we minimize in Appendix A.

Regarding the V-fit of the ratio regression data, small to medium sample sizes can have
parameter sampling distributions which are quite far from (asymptotic) normal, so we present
bootstrap statistics for the parameters.

For the bootstrap replications, we simulate in two standard ways. We first sample with
replacement from the fitted initial V-fit residuals to generate error terms. We keep the data
for the body lengths (the x values) constant. Then we generate a bootstrap sample using the
estimated V-fit function together with the simulated error terms. We’ll refer to this below
as resampling residuals.

The second form of bootstrapping regards the original dataset as random draws from some
joint distribution of {(X, Y )}. The bootstrapping resampling takes draws with replacement
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from the original data pairs {(xi, yi)}. We’ll refer to this bootstrap scheme as resampling
cases, following terminology in [1], Chapter 6, to which we refer the reader for more infor-
mation.

We present plots of the bootstrap sampling distributions for the right-hand-side slope pa-
rameter under the resampling residuals scheme. In all cases, it is highly skewed.

We note that the residuals for the selected models in this section evidence less heteroscedas-
ticity than the models rejected in Section 5, although we have not shown this.

We also note that in the standard OLS regressions below, we checked the bootstrapped
standard errors (not shown), and they were all quite close to those reported for the OLS.

6.1 Summary

We summarize the findings as follows.

• Agkistrodon conanti : V-fit right-hand-side slope is positive. The bootstrap confidence
intervals for resampling residuals and cases are similar.

• Agkistrodon conanti trunk : Results are broadly similar to those for Agkistrodon conanti.
However, the bootstrap confidence intervals for resampling residuals are different from
those for cases, being much wider. This is the only dataset with this behavior.

• Acrochordus granulatus : Similar results as for Agkistrodon conanti. However, the data
here is quite sparse for shorter snakes, so we take the results with a greater degree of
caution.

• Hydrophis platurus : The V-fit pattern is inverted relative to Agkistrodon conanti and
Acrochordus granulatus. However, two separate model specification tests do not re-
ject the ratio line model (3.1). Graphically, the V-fit is close to the non-parametric
regression. But the line fit for the ratio data would be more in line with the biological
theory.

• Pantherophis obsoleta: The line fits well to the original data (no ratios), and agrees with
the non-parametric fit. The regression R2 is high and the bootstrapped standard errors
are very close to the asymptotic standard errors. This is our preferred specification.

As regards the V-fit, the right-hand-side slope is nearly zero, which does not agree with
the non-parametric regression which is nearly a straight line with the ratio variable as
dependent variable. The line restriction of the V-fit is not rejected. Based on this
evidence, we prefer the line model with the ratio variable (3.1) when using the ratio
data.

6.2 Agkistrodon conanti

V-Fit
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Bootstrap BCA Confidence Intervals

num bootstrap resamples: 1,000,000

Resample Residuals Resample Cases

confidence level: 90%

estimate lower upper

u 107.000 98.761 125.910
v 31.393 30.893 31.826
m1 -0.049 -0.055 -0.042
m2 0.023 0.001 0.054
σ 1.045 0.974 1.153

estimate lower upper

u 107.000 106.500 131.500
v 31.393 31.080 31.697
m1 -0.049 -0.054 -0.043
m2 0.023 0.007 0.040
σ 1.045 0.970 1.149

confidence level: 95%

estimate lower upper

u 107.000 97.300 129.955
v 31.393 30.753 31.915
m1 -0.049 -0.057 -0.041
m2 0.023 -0.003 0.068
σ 1.045 0.958 1.172

estimate lower upper

u 107.000 106.100 131.500
v 31.393 30.978 31.757
m1 -0.049 -0.055 -0.042
m2 0.023 0.005 0.047
σ 1.045 0.955 1.168

confidence level: 99%

estimate lower upper

u 107.000 93.508 146.663
v 31.393 30.502 32.159
m1 -0.049 -0.061 -0.039
m2 0.023 -0.012 0.095
σ 1.045 0.929 1.210

estimate lower upper

u 107.000 104.000 133.840
v 31.393 30.608 31.868
m1 -0.049 -0.057 -0.040
m2 0.023 -0.001 0.076
σ 1.045 0.925 1.207
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6.3 Agkistrodon conanti trunk

V-Fit
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Bootstrap BCA Confidence Intervals

num bootstrap resamples: 1,000,000

Resample Residuals Resample Cases

confidence level: 90%

estimate lower upper

u 85.590 62.790 100.069
v 33.811 33.134 34.629
m1 -0.056 -0.068 -0.045
m2 0.030 -0.012 0.094
σ 1.477 1.368 1.643

estimate lower upper

u 85.590 82.700 90.210
v 33.811 33.382 34.224
m1 -0.056 -0.065 -0.047
m2 0.030 0.007 0.058
σ 1.477 1.363 1.636

confidence level: 95%

estimate lower upper

u 85.590 42.186 103.130
v 33.811 32.952 35.094
m1 -0.056 -0.071 -0.043
m2 0.030 -0.022 0.125
σ 1.477 1.345 1.673

estimate lower upper

u 85.590 82.700 96.919
v 33.811 33.263 34.301
m1 -0.056 -0.067 -0.045
m2 0.030 0.003 0.068
σ 1.477 1.340 1.666

confidence level: 99%

estimate lower upper

u 85.590 24.230 111.104
v 33.811 32.613 36.557
m1 -0.056 -0.089 -0.039
m2 0.030 -0.038 0.294
σ 1.477 1.302 1.735

estimate lower upper

u 85.590 77.650 104.550
v 33.811 32.901 34.459
m1 -0.056 -0.071 -0.041
m2 0.030 -0.005 0.113
σ 1.477 1.296 1.726
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6.4 Acrochordus granulatus

V-Fit

31



Bootstrap BCA Confidence Intervals

num bootstrap resamples: 1,000,000

Resample Residuals Resample Cases

confidence level: 90%

estimate lower upper

u 64.000 58.100 67.500
v 44.329 44.019 44.733
m1 -0.087 -0.125 -0.051
m2 0.202 0.090 0.369
σ 1.212 1.061 1.566

estimate lower upper

u 64.000 62.600 69.768
v 44.329 44.008 44.756
m1 -0.087 -0.133 -0.066
m2 0.202 0.098 0.321
σ 1.212 1.051 1.544

confidence level: 95%

estimate lower upper

u 64.000 50.620 68.723
v 44.329 43.954 44.809
m1 -0.087 -0.135 -0.044
m2 0.202 0.070 0.470
σ 1.212 1.030 1.633

estimate lower upper

u 64.000 61.316 70.077
v 44.329 43.939 44.839
m1 -0.087 -0.151 -0.060
m2 0.202 0.073 0.416
σ 1.212 1.021 1.611

confidence level: 99%

estimate lower upper

u 64.000 44.500 69.961
v 44.329 43.827 44.966
m1 -0.087 -0.162 -0.031
m2 0.202 0.037 0.720
σ 1.212 0.976 1.765

estimate lower upper

u 64.000 47.000 70.421
v 44.329 43.801 45.038
m1 -0.087 -0.193 -0.043
m2 0.202 0.005 0.746
σ 1.212 0.970 1.761
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6.5 Hydrophis platurus

V-Fit
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Bootstrap BCA Confidence Intervals

num bootstrap resamples: 1,000,000

Resample Residuals Resample Cases

confidence level: 90%

estimate lower upper

u 44.324 32.100 61.000
v 25.474 24.182 25.829
m1 0.022 -0.042 0.124
m2 -0.060 -0.085 -0.034
σ 1.039 0.972 1.141

estimate lower upper

u 44.324 32.700 70.000
v 25.474 24.268 25.929
m1 0.022 -0.035 0.157
m2 -0.060 -0.079 -0.013
σ 1.039 0.973 1.142

confidence level: 95%

estimate lower upper

u 44.324 30.000 69.000
v 25.474 24.001 25.897
m1 0.022 -0.050 0.185
m2 -0.060 -0.101 0.080
σ 1.039 0.958 1.159

estimate lower upper

u 44.324 32.000 71.907
v 25.474 24.146 26.004
m1 0.022 -0.040 0.252
m2 -0.060 -0.115 0.011
σ 1.039 0.958 1.159

confidence level: 99%

estimate lower upper

u 44.324 29.500 73.000
v 25.474 23.764 26.024
m1 0.022 -0.464 0.454
m2 -0.060 -0.297 0.368
σ 1.039 0.930 1.194

estimate lower upper

u 44.324 32.000 72.810
v 25.474 23.975 26.148
m1 0.022 -0.048 0.562
m2 -0.060 -0.442 0.093
σ 1.039 0.930 1.195
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OLS Ratio Line Fit (3.1)

OLS Regression Results

==============================================================================

Dep. Variable: y R-squared: 0.159

Model: OLS Adj. R-squared: 0.154

Method: Least Squares F-statistic: 35.49

Date: Sun, 15 Mar 2015 Prob (F-statistic): 1.24e-08

Time: 18:13:15 Log-Likelihood: -280.52

No. Observations: 190 AIC: 565.0

Df Residuals: 188 BIC: 571.5

Df Model: 1

Covariance Type: nonrobust

==============================================================================

coef std err t P>|t| [95.0% Conf. Int.]

------------------------------------------------------------------------------

const 26.9233 0.373 72.258 0.000 26.188 27.658

x1 -0.0400 0.007 -5.958 0.000 -0.053 -0.027

==============================================================================

Omnibus: 0.008 Durbin-Watson: 2.012

Prob(Omnibus): 0.996 Jarque-Bera (JB): 0.041

Skew: -0.013 Prob(JB): 0.980

Kurtosis: 2.933 Cond. No. 268.
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6.6 Pantherophis obsoleta

V-Fit
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Bootstrap BCA Confidence Intervals

num bootstrap resamples: 1,000,000

Resample Residuals Resample Cases

confidence level: 90%

estimate lower upper

u 152.000 122.500 166.943
v 16.856 16.273 17.819
m1 -0.024 -0.031 0.039
m2 0.001 -0.023 0.054
σ 0.634 0.581 0.758

estimate lower upper

u 152.000 152.000 167.000
v 16.856 16.295 17.264
m1 -0.024 -0.029 0.017
m2 0.001 -0.018 0.041
σ 0.634 0.576 0.753

confidence level: 95%

estimate lower upper

u 152.000 105.000 166.992
v 16.856 16.167 18.160
m1 -0.024 -0.034 0.052
m2 0.001 -0.026 0.067
σ 0.634 0.565 0.775

estimate lower upper

u 152.000 152.000 167.000
v 16.856 16.203 17.611
m1 -0.024 -0.030 0.025
m2 0.001 -0.022 0.051
σ 0.634 0.560 0.771

confidence level: 99%

estimate lower upper

u 152.000 77.800 167.000
v 16.856 15.916 18.573
m1 -0.024 -0.048 0.076
m2 0.001 -0.032 0.093
σ 0.634 0.534 0.810

estimate lower upper

u 152.000 147.000 167.000
v 16.856 16.035 18.087
m1 -0.024 -0.040 0.234
m2 0.001 -0.031 0.095
σ 0.634 0.528 0.805
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OLS Line Fit

OLS Regression Results

==============================================================================

Dep. Variable: y R-squared: 0.966

Model: OLS Adj. R-squared: 0.966

Method: Least Squares F-statistic: 1181.

Date: Thu, 12 Mar 2015 Prob (F-statistic): 7.56e-32

Time: 21:10:15 Log-Likelihood: -55.517

No. Observations: 43 AIC: 115.0

Df Residuals: 41 BIC: 118.6

Df Model: 1

Covariance Type: nonrobust

==============================================================================

coef std err t P>|t| [95.0% Conf. Int.]

------------------------------------------------------------------------------

const 2.4552 0.597 4.112 0.000 1.249 3.661

x1 0.1543 0.004 34.363 0.000 0.145 0.163

==============================================================================

Omnibus: 0.723 Durbin-Watson: 2.304

Prob(Omnibus): 0.696 Jarque-Bera (JB): 0.734

Skew: -0.037 Prob(JB): 0.693

Kurtosis: 2.364 Cond. No. 578.

==============================================================================
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OLS Ratio Line Fit (3.1)

OLS Regression Results

==============================================================================

Dep. Variable: y R-squared: 0.500

Model: OLS Adj. R-squared: 0.488

Method: Least Squares F-statistic: 41.02

Date: Sun, 15 Mar 2015 Prob (F-statistic): 1.15e-07

Time: 18:09:04 Log-Likelihood: -42.579

No. Observations: 43 AIC: 89.16

Df Residuals: 41 BIC: 92.68

Df Model: 1

Covariance Type: nonrobust

==============================================================================

coef std err t P>|t| [95.0% Conf. Int.]

------------------------------------------------------------------------------

const 20.2316 0.442 45.782 0.000 19.339 21.124

x1 -0.0213 0.003 -6.405 0.000 -0.028 -0.015

==============================================================================

Omnibus: 1.725 Durbin-Watson: 2.297

Prob(Omnibus): 0.422 Jarque-Bera (JB): 1.148

Skew: -0.054 Prob(JB): 0.563

Kurtosis: 2.207 Cond. No. 578.

==============================================================================
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7 Hypothesis Testing Parameter Restrictions

Several of the V-fits show a right-hand slope which is positive. If such a slope really were
positive, it would mean that the relative head-heart position stops decreasing and begins to
increase in longer snakes. In this section we explore whether these positive right-hand slopes
may be considered statistically significant.

As a first check, we can see whether the bootstrap confidence intervals of Section 6 omit
zero.

We also look at likelihood ratio tests. The standard (log)-likelihood ratio test may be
applied asymptotically for segmented regressions when the true regression satisfies certain
conditions which are specified in [2]. This is the case here where we test the restriction that
the right-hand slope is zero. However, we still prefer to use the bootstrap out of concern for
inapplicability of asymptotic results for even moderate sample sizes in segmented regressions.

We are actually interested in testing the restriction that the right-hand slope is less than
or equal to zero. We do not have all the tools for this, so we just examine the restriction
that the slope is zero, and note that the loglikelihood function for the restricted segmented
model with fixed right-hand slope as a function of the right-hand slope decreases for values
less than zero (not shown).
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The procedure we follow is the same as described in Section 5. We also report the standard
asymptotic likelihood ratio test p-value for comparison.

7.1 Agkistrodon conanti

7.1.1 V-fit Bootstrapped Likelihood Ratio Test for Right Slope Restriction

Our tests in this section are based upon the segmented regression fit in Section 6.2. There
we find that the segmented regression, or V-fit, results in a negative left-hand slope and a
positive right-hand slope. It is thus of interest to test whether the positive right-hand slope
is statistically significant.

First, we note that the bootstrap confidence intervals of Section 6.2 essentially omit zero. If
these confidence intervals are reasonably accurate, then we would expect to miss on each side
by 2.5% for the 95% confidence intervals. So we have something close to 97.5% confidence
of a non-zero right-hand side slope.

We next show results for the likelihood ratio test. Recall that the null hypothesis is that the
restricted V-fit with right-hand-slope equal to zero is true.

bootstrap num replications: 1000000

bootstrapped p value: 0.0354

asymptotic p value: 0.0239

In sum, we can reject a negative right-hand side slope with fairly high confidence.

7.2 Agkistrodon conanti trunk

7.2.1 V-fit Bootstrapped Likelihood Ratio Test for Right Slope Restriction

Our tests in this section are based upon the segmented regression fit in Section 6.3. There
we find that the segmented regression, or V-fit, results in a negative left-hand slope and a
positive right-hand slope. It is thus of interest to test whether the positive right-hand slope
is statistically significant.

First, we note that the resample residuals bootstrap confidence intervals of Section 6.3 do
not omit zero. However, the resample cases do omit zero, so this is a mixed bag.

We next show results for the likelihood ratio test. Recall that the null hypothesis is that the
restricted V-fit with right-hand-slope equal to zero is true.

bootstrap num replications: 1000000

bootstrapped p value: 0.1219

asymptotic p value: 0.0709

In sum, we cannot reject a negative right-hand side slope.
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7.3 Acrochordus granulatus

7.3.1 V-fit Bootstrapped Likelihood Ratio Test for Right Slope Restriction

Our tests in this section are based upon the segmented regression fit in Section 6.4. There
we find that the segmented regression, or V-fit, results in a negative left-hand slope and a
positive right-hand slope. It is thus of interest to test whether the positive right-hand slope
is statistically significant.

First, we note that the bootstrap confidence intervals of Section 6.4 essentially omit zero,
even at the 99% level.

We next show results for the likelihood ratio test. Recall that the null hypothesis is that the
restricted V-fit with right-hand-slope equal to zero is true.

bootstrap num replications: 1000000

bootstrapped p value: 0.0009

asymptotic p value: 0.0002

In sum, we can reject a negative right-hand side slope with high confidence.

8 Non-Parametric Fits – Descriptive

In this section we consider some non-parametric fits to the data. These are not models we
have chosen to use, but we present the results as complementary evidence to the parametric
model choices we have made.

We plot kernel regression fits. For the calculations, we used python StatsModels, with the
AIC method of Hurvich et al for bandwidth selection. We also ran these with least-squares
cross-validation. In all cases except Acrochordus granulatus these fits came out essentially
the same. For Acrochordus granulatus , the least-squares cross-validation overfit the data at
short body lengths where the data is sparse.

8.1 Summary

• The ratio data plot for Agkistrodon conanti accords with the V-fit.

• The ratio data plot for Acrochordus granulatus accords with the V-fit.

• The ratio data plot for Hydrophis platurus is quite close to the V-fit.

• The ratio data plot for Pantherophis obsoleta looks very close to a decreasing line. The
fit for the original data with head-heart length as the dependent variable looks very
much like a line.
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8.2 Agkistrodon conanti

We plot the ratio regression (3.1).

8.3 Agkistrodon conanti trunk

We plot the ratio regression (3.1).
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8.4 Acrochordus granulatus

We plot the ratio regression (3.1).

62



8.5 Hydrophis platurus

We plot the ratio regression (3.1).
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8.6 Pantherophis obsoleta

We plot the ratio regression (3.1).
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We plot the regression in the original variables.
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Appendices

A V-fit Residual Sum-Squares Plots

We plot the function (4.7) for the data sets.

66



67



68



69



B Software Details

All computation in this report was performed on a Linux Ubuntu 64-bit operating system,
using the following software.

Software Version
Python 2.7.11
statsmodels (python) 0.6.1
scipy (python) 0.15.1
R 2.14.1
np (R) 0.60-2

Regressions and ANCOVA analysis presented in the main paper were performed on Windows
using Statview SAS 5.0.1.
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