Supplemental figure 1

Isolated cholangiocytes

Α

Supplemental figure 2

p53

HHSteCs + WT + NK-1R^{-/-} + BD WT + BDL

HHSteCs + cholangiocyte supernatant

Basal

Isolated HSCs stained by Desmin

В

*#

NK-1R-/-

4 Ki67 2.5 * 3 2 *# 1.5 2 1 1 0.5 0 0 HHSteCs + WT + NK-1R^{-/-} + BD WT + BDL Basal NK-1R^{-/-} HHSteCs + cholangiocyte supernatant

С

Supplementary Figure legends

Supplementary Figure 1 [A-C] There was reduced expression of IL-6, MMP2, MMP3 and MMP9 in cholangiocytes as well as IL-6 levels in cholangiocyte supernatant (n=6) but increased expression of IL-6 and MMP2 in HSCs (n=3) from BDL NK-1R^{-/-} mice compared to BDL WT mice. **[D]** There was enhanced expression of NK-1R and decrease expression of PAI-1 in LCM-isolated HSCs from late stage PSC patients compared to control samples (n = 3). **P*<0.05, ***P*<0.01 vs. normal WT mice or control HSCs. **P*<0.05, ***P*<0.01 vs. BDL WT mice.

Supplementary Figure 2 [A] No significant changes in SP levels were observed in the supernatant of IMCLs treated with L-733,060 compared to basal and in IMCLs transfected with NK-1R siRNA compared to IMCLs transfected with control siRNA. [B] The isolated HSCs from FVB/NJ normal WT mice was confirmed by staining with α -SMA. (Magnification, ×63). [C] There was decreased expression of Ki67 but increased expression of p53 and CCL2 in HHSteCs treated with cholangiocyte supernatant from BDL NK-1R^{-/-} mice compared to HHSteCs treated with cholangiocyte supernatant from BDL WT mice. **P*<0.05 vs. HHSteCs treated with cholangiocyte supernatant from BDL WT mice. **P*<0.05 vs. HHSteCs treated with cholangiocyte supernatant from BDL WT mice.

Groups	Patient	Diagnosis	Sample	Gender	Cirrhosis	Therapy	Origin
	1	Normal Liver	RNA	Male		Untreated	BioChain
Control	2	Normal Liver	RNA	Male		Untreated	BioChain
	3	Normal Liver	RNA	Male		Untreated	BioChain
	1	Late stage PSC	RNA from paraffin sections	Male	Yes	Untreated	Humanitas Research Hospital
PSC	2	Late stage PSC	RNA from paraffin sections	Male	No	Untreated	Humanitas Research Hospital
	3	Late stage PSC	RNA from paraffin sections	Male	No	Untreated	Humanitas Research Hospital
Control	1	Normal Liver	Serum	Male			Humanitas Research Hospital
	2	Normal Liver	Serum	Male			Humanitas Research Hospital
	3	Normal Liver	Serum	Male			Humanitas Research Hospital
	1	Early stage PSC	Serum	Male	No	Untreated	Humanitas Research Hospital
Early stage PSC	2	Early stage PSC	Serum	Male	No	Untreated	Humanitas Research Hospital
	3	Early stage PSC	Serum	Male	No	Untreated	Humanitas Research Hospital
Late stage PSC	1	Late stage PSC	Serum	Male	No	Untreated	Humanitas Research Hospital
	2	Late stage PSC	Serum	Male	No	Untreated	Humanitas Research Hospital
	3	Late stage PSC	Serum	Male	No	Untreated	Humanitas Research Hospital

Supplementary Table 1. Characteristics of Healthy Controls and PSC Patients

PSC = Primary Sclerosing Cholangitis. Unidentified human samples were obtained from Dr. P. Invernizzi (Humanitas Research Hospital, Rozzano, Italy).

Groups	Alanine Aminotransferase, units/L	Aspartate Aminotransferase, Units/L	Alkaline Phosphatase, Units/L	Total Bilirubin, mg/dL
FVB/NJ WT (n=14)	144.00±24.61	379.00±71.81	86.29±7.53	0.16±0.02
Mdr2 ^{-/-} (n=28)	454.43±31.36*	608.00±51.37*	305.00±21.63*	0.23±0.02*
Mdr2 ^{-/-} + L-733,060 (n=6)	142.33±14.19 [#]	307.50±47.51 [#]	199.00±22.30* [#]	0.13±0.03 [#]

Supplementary Table 2. Evaluation of serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and bilirubin

* P < 0.05 vs. FVB/NJ WT; # P < 0.05 vs. Mdr2^{-/-}.

Gene	Species	Detected transcript	Source
ACTA2(α-SMA)	Mouse	NM_007392	QIAGEN
CCL2	Mouse	NM_011333	QIAGEN
Cdkn1a (p21)	Mouse	NM_001111099	QIAGEN
Cdkn2a (p16)	Mouse	NM_001040654	QIAGEN
Col1a1	Mouse	NM_007742	QIAGEN
Fn-1	Mouse	NM_010233	QIAGEN
GAPDH	Mouse	NM_008084	QIAGEN
IL-6	Mouse	NM_031168	QIAGEN
MMP2	Mouse	NM_008610	QIAGEN
MMP3	Mouse	NM_010809	QIAGEN
MMP9	Mouse	NM_013599	QIAGEN
TAC1	Mouse	NM_009311	QIAGEN
TACR1 (NK-1R)	Mouse	NM_009313	QIAGEN
TGF-β1	Mouse	NM_011577	QIAGEN
ACTA2(α-SMA)	Human	NM_001141945	QIAGEN
CCL2	Human	NM_002982	QIAGEN
Cdkn1a (p21)	Human	NM_000389	QIAGEN
Cdkn2a (p16)	Human	NM_000077	QIAGEN
Collal	Human	NM_000088	QIAGEN
GAPDH	Human	NM_001256799	QIAGEN
Ki67	Human	NM_001145966	QIAGEN
p53	Human	NM_000546	QIAGEN
Serpine 1(PAI-1)	Human	NM_000602	QIAGEN
Smad2	Human	NM_001003652	QIAGEN
TAC1	Human	NM_003182	QIAGEN
TACR1 (NK-1R)	Human	NM_001058	QIAGEN
TGF-β1	Human	NM_000660	QIAGEN

Supplementary Table 3. List of commercially available real-time PCR primers used

Supplementary Materials and methods

Materials

Reagents were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO) unless otherwise indicated. The rabbit polyclonal antibody against NK-1R was purchased from Thermo Fisher Scientific (Rockford, IL). The following were purchased from Abcam (Burlingame, CA): (i) rabbit polyclonal antibodies against monocyte chemoattractant protein-1 (MCP-1/CCL2), **a**-SMA and fibronectin-1 (Fn-1); and (ii) rabbit monoclonal antibodies against desmin (a marker of HSCs) ⁽¹⁾ and cytokeratin-19 (CK-19). Mouse antibodies against p16 and p21 were purchased from Santa Cruz Biotechnology (Dallas, TX). ELISA kits to measure transforming growth factor-b1 (TGF-b1) levels were purchased from Affymetrix Inc. (Santa Clara, CA). Mouse IL-6 ELISA kit was purchased from BD Bioscience (San Jose, CA). Synthetic SP and EIA kits (for detecting SP levels) were purchased from Tocris Bioscience (Minneapolis, MN). The RNeasy Mini Kit for RNA purification and all selected primers were purchased from Qiagen (Valencia, CA). The iScript cDNA Synthesis Kit (170-8891) and iTaq Universal SYBR Green Supermix (172-5124) were purchased from Bio-Rad (Hercules, CA). All of primers for real-time PCR were purchased from Qiagen (Valencia, CA) and specific information about the primers is listed in Supplementary Table 3.

Supplementary references

1. Puche JE, Lee YA, Jiao J, Aloman C, Fiel MI, Munoz U, Kraus T, et al. A novel murine model to deplete hepatic stellate cells uncovers their role in amplifying liver damage in mice. Hepatology 2013;57:339-350.

2. **Meng F, DeMorrow S,** Venter J, Frampton G, Han Y, Francis H, Standeford H, et al. Overexpression of membrane metalloendopeptidase inhibits substance P stimulation of cholangiocarcinoma growth. Am J Physiol Gastrointest Liver Physiol 2014;306:G759-768.