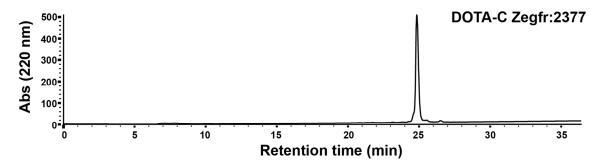
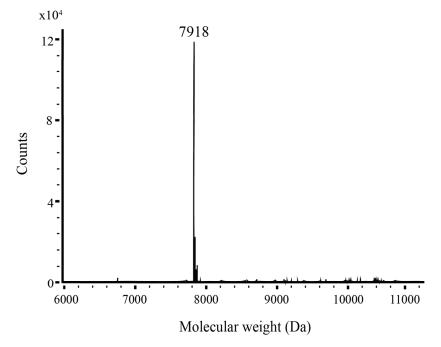
SUPPLEMENTARY INFORMATION

The use of radiocobalt as a label improves imaging of EGFR using DOTA-conjugated

Affibody molecule

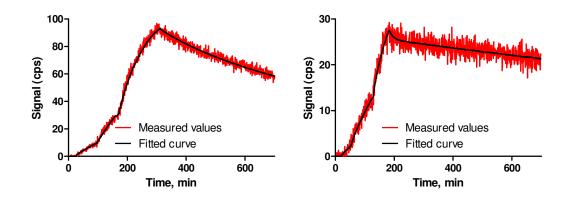

Javad Garousi¹, Ken G. Andersson², Johan H. Dam³, Birgitte B. Olsen³, Bogdan Mitran⁴, Anna Orlova⁴, Jos Buijs¹, Stefan Ståhl², John Löfblom², Helge Thisgaard³, Vladimir Tolmachev^{1*}.

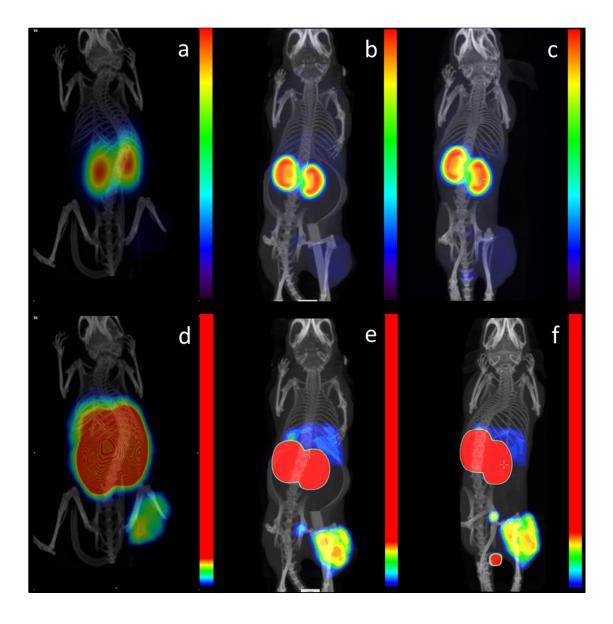
¹ Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden;


² Department of Protein Technology, KTH - Royal Institute of Technology, Stockholm, Sweden;

³ Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark;

⁴Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden


Supplementary Figure S1. Analytical RP-HPLC analysis of purified DOTA- $Z_{EGFR:2377}$. The absorbance was measured at 220 nm.


Supplementary Figure S2. Mass spectrum of purified DOTA-Z_{EGFR:2377}.

Supplementary Figure S3. Overlay of circular dichroism spectra from 195- 250 nm for DOTA- $Z_{EGFR:2377}$ before (solid line) and after (dashed line) heating from 20-90°C.

Supplementary Figure S4. Representative sensorgrams of the LigandTracer measurement to determine the kinetics and affinity of ¹¹¹In- DOTA- $Z_{EGFR:2377}$ (left) and ⁵⁷Co-DOTA- $Z_{EGFR:2377}$ (right) to EGFR on A431 cells.

Supplementary Figure S5. PET/CT imaging using ⁶⁸Ga-DOTA- $Z_{EGFR:2377}$ (a and d) and microSPECT/CT using ⁵⁷Co-DOTA- $Z_{EGFR:2377}$ at 3 h (b and e) and 24 h (c and f) after injection of mice bearing EGFR-expressing A431 xenografts. The relative colour scales were normalized to the highest activity in images a, b and c, and then adjusted to provide first red pixel in tumours in images d, e and f (8, 13 and 17% of the full scale, respectively).

Supplementary Table S1. Radiochemical yields and specific activities of imaging probes used in this study.

	Yield, decay corrected; %	Max. specific activity at the end of
		synthesis; MBq/µg (GBq/µmol)
⁵⁷ Co-DOTA-Z _{EGFR:2377}	> 99%	0.30 (2.34)
⁵⁵ Co-DOTA-Z _{EGFR:2377}	> 99%	0.98 (7.05)
⁶⁸ Ga-DOTA-Z _{EGFR:2377}	98.9±0.5%	2.05 (16.3)

Supplementary Table S2. Long-lived positron-emitting radionuclides. Data are taken from

Tolmachev, V. & Stone-Elander S. Radiolabelled proteins for positron emission tomography: Pros and cons of labelling methods. *Biochim. Biophys. Acta.* **1800**, 487-510 (2010).

Nuclide	Half-life,	Mode of decay	Principal photon emissions,
	hour		keV (abundance in %)
⁵⁵ Co	17.5	β^+ 76 %	511(152%), 477(20.2 %), 931(75 %),
		EC 24 %	1317(7.1%), 1408(16.9%)
⁶⁴ Cu	12.7	β+ 18	511(36%), 1346(0.5%)
		β^- 37%	
		EC 24 %	
⁷⁶ Br	16.2	β+ 54%	511(108%), 559(74%),
		EC 46%	657(15.9%),1216(8.8%), 1854(14.7%),
96			2391(4.7%), 2792(5.6%), 2950.5(7.4%)
⁸⁶ Y	14.7	β^+ 33 %	511(66%) , 443(16.9%), 628(32.6%),
		EC 67 %	646(9.2%), 703(15.4%), 778(22.4%),
			1077(82.5%), 1153(30.5%), 1854(17.2%),
		1920(20.8%)	
⁸⁹ Zr	78.4	β+ 23%	511(46%), 909(100%)
		EC 77%	
¹²⁴ I	100.2	$\beta^+ 23\%$	511(46%), 603(61%), 723(9.96%),
		EC 77%	1691(10.4%)