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S1/ Estimation of Aedes aegypti population dynamics 23	
 24	
 In order to estimate mosquito population dynamics, we analyzed through a 25	
logistic Generalized Linear Model (GLM) the presence/absence data of Aedes aegypti 26	
throughout the Martinique Island thanks to the extensive routine surveillance during 27	
the last twenty years (described elsewhere, see (1)). Table S1 shows the results of this 28	
GLM. 29	
 30	

Fixed effects 
Variable Coefficient p-value 
 (Intercept)  -4.81 <2e-16*** 
log(Number of breeding sites per household)     9.649e-1  <2e-16*** 
sqrt(Proportion of breeding sites within water 
tank)     

9.006e-2  <2e-16*** 

sqrt(Proportion of breeding sites within flower 
pots)     

2.368e-2  6.95e-8*** 

sqrt(Proportion of breeding sites within small 
recipient) 

3.593e-2  <2e-16*** 

sqrt(Proportion of breeding sites within other 
places)  

-1.205e-2  0.00638** 

sqrt(Proportion of breeding sites within small 
plates behind flower pots)        

-2.918e-2 <2e-16*** 

sqrt(Proportion of breeding sites within large 
recipient) 

5.419e-2  <2e-16*** 

sqrt(Proportion of breeding sites within tires) 
 

1.061e-1  <2e-16*** 

sqrt(Proportion of breeding sites within trashe
s) 

1.057e-1 <2e-16*** 

sqrt(Distance from locality downtown) 
 

2.612e-3 <2e-16*** 

Average (over the last ten years) of temperatur
e during the previous trimester 
 

8.677e-2 9.57e-6*** 

Rainfall of the current month minus monthly a
verage rainfall during last trimester 

4.96e-4 1.77e-11*** 

Average temperature during the last 48H minu
s average temperature during the last week 

3.363e-2 
 

1.76e-05*** 

Random effect 
Geographic location 0.1182 
Year 0.1271 
Month 0.0497 
Table S1: Generalized Linear Model explaining the presence/absence data of 31	
Aedes aegypiti. The output variable has been considered as binomial with a logit 32	
link function. Only significant variables are shown here. 7197 observations 33	
between 2001 and 2014 have been considered.  34	
 35	

Through using this GLM, we can therefore extrapolate the population 36	
dynamics throughout the island (figure S1), which reflects roughly a sinusoidal 37	
function. It is worth pointing out that, in addition to these factors that have been kept, 38	
our dataset included also the same set of environmental variables that the one fully 39	



described in (2). These remaining variables were the variables kept after a forward-40	
model selection. 41	
 42	

 43	
 44	
Figure S1: Presence probability through time predicted by the GLM and that is 45	
considered in the model fitting detailed in the main text. 46	
 47	
It	is	worth	pointing	out	that	the	relation	between	presence	of	larva	in	breeding	48	
sites	and	abundance	of	adult	mosquitoes	is	not	simple	and	probably	not	linear	as	49	
we	 assume.	 First,	 there	 is	 some	delay	between	 the	 larval	 and	 the	 adult	 stages.	50	
Nevertheless,	 this	delay	 is	about	a	week	 for	Aedes	aegypti,	while	we	consider	a	51	
month	time	scale	in	our	epidemiological	model.	Such	delay	is	therefore	not	able	52	
to	 perturb	 our	 results.	 Moreover,	 the	 probability	 of	 presence	 could	 be	 not	53	
directly	proportional	to	the	abundance.	However,	we	consider	this	dynamic	only	54	
to	 identify	the	trends	 in	mosquito	population	dynamics,	 i.e.,	 the	periods	of	high	55	
and	low	abundance,	while	its	quantitative	impact	on	pathogen	transmission	rate	56	
relies	 on	 epidemiological	 parameters	 that	 are	 estimated	 using	 the	57	
epidemiological	dynamics	(see	Section	S3	 in	Supplementary	materials	 for	a	 full	58	
description).	 We	 are	 therefore	 confident	 that	 our	 estimation	 of	 mosquito	59	
population	is	relevant	for	the	purpose	of	our	study.  60	



S2/ Classification of tweets and dynamics through time 61	

We have first identified all the Twitter accounts that have mentioned the word 62	
“Chikungunya” during the outbreak in Martinique (from December 2013 to June 63	
2014). Among these accounts, only the ones declared to be located in Martinique in 64	
their user profile have been considered. The number of such tweets was interpreted as 65	
measure of the awareness of the outbreak. 66	

In order to measure the protection need, two different persons analyzed the 67	
content of each message (tweets) three times to identify correctly the tweets 68	
expressing protection need. During the first reading, we identified all the keywords 69	
associated with protection (the keyword in French is indicated in italics): 70	
 71	
Répulsif (repellant), protéger (to protect), anti-moustique (anti-mosquito), traitement 72	
(treatment), raquette (electric racket used to kill mosquitoes), huiles essentielles 73	
(essential oils), prier (pray), homéopathie (homepathy), vêtement long (long clothes), 74	
démoustication (vector control), précautions (precaution), moustiquaire (mosquito 75	
net), climatisation (air conditionning), Dechiktaj (communication campaign to 76	
encourage people removing stagnant water) 77	
 78	

Following this, a second reading of those tweets containing any of the above 79	
keywords was done once again independently by the two readers to verify their 80	
classification as expressing protection need. Finally, a third reading by the two readers 81	
was done on the tweets that did not contain any of the keywords identified in order to 82	
confirm their classification as not expressing protection need. 83	
 84	

 85	
 86	

We note that protection need tweets are a subset of the awareness tweets, as 87	
described above. This follows also from the observation that protection need requires 88	
awareness of the disease in the first place. Figure S2 shows the dynamics of these two 89	
quantities through time. 90	



 91	

Figure S2: Dynamics of Twitter activity of disease awareness (entire bar) and 92	

protection need (black section of bar) during the course of the Chikungunya 93	

epidemic. 94	

	95	
	96	
	 	97	
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S3/ Estimation of best parameters 98	

 We estimate the likelihood function of our model through the following 99	

function (3): 100	

𝐿 𝑚 𝑥 ,𝜎! 𝑑 = !
!!!!! 𝑒𝑥𝑝 (!!!!!)!

!!!
  (1) 101	

where d represents data, m model realizations and 𝜎! the variance of the 102	

errors. We therefore assume that the errors are normally distributed, as it has been 103	

done in similar studies (3, 4). 104	

Then, for each possible set of parameters (combinations of mosquito 105	

abundance, epidemic awareness and expressed protection need), we start 50 times the 106	

Simplex algorithm to maximize the likelihood with seeds that were randomly 107	

uniformly distributed within the range of parameters detailed in table S2. Figures S3, 108	

S4 and S5 show the best estimation for all the combinations. It is worth pointing out 109	

that most of the seeds were converging to the same parameter values, and the others 110	

were converging to parameter values offering a worst fit. 111	

Parameters Range 

𝒙𝟎 (mean transmission 

rate) 

[0.0002 ; 0.05] 

𝒙𝟏 (contribution of 

mosquito abundance) 

[0 ; 10] 

𝒙𝟐  (contribution of 

epidemics awareness) 

[-10 ; 10] 

𝒙𝟑  (contribution of 

protection feeling) 

[-10 ; 10] 

𝝉 (delay in Twitter activity) [-1 0 1] 

Table S2: Range of seeds explored during the estimation procedure. 112	



 113	

114	
Figure S3: .Best model estimation (with a delay of one month between Twitter 115	

activity and the impact on transmission) for the different scenarios: (A) No 116	

fluctuations, (B) Only mosquito fluctuation, (C) only feeling for protection need 117	

fluctuation, (D) only epidemics awareness fluctuation, (E) combination of 118	

mosquito abundance and feeling for protection need fluctuations, (F) 119	

combination of mosquito abundance and epidemics awareness fluctuations, (G) 120	

combination of protection feeling and epidemics awareness fluctuations and (H) 121	

all parameters together.  122	



 123	
Figure S4: Best model estimations (with no delay between Twitter activity and 124	

the impact on transmission) for the different scenarios: (A) No fluctuations, (B) 125	

Only mosquito fluctuation, (C) only feeling for protection need fluctuation, (D) 126	

only epidemics awareness fluctuation, (E) combination of mosquito abundance 127	

and feeling for protection need fluctuations, (F) combination of mosquito 128	

abundance and epidemics awareness fluctuations, (G) combination of protection 129	

feeling and epidemics awareness fluctuations and (H) all parameters together. 130	

  131	



132	
Figure S5: Best model estimations (with an advance of one month between 133	

Twitter activity and the impact on transmission) for the different scenarios: (A) 134	

No fluctuations, (B) Only mosquito fluctuation, (C) only feeling for protection 135	

need fluctuation, (D) only epidemics awareness fluctuation, (E) combination of 136	

mosquito abundance and feeling for protection need fluctuations, (F) 137	

combination of mosquito abundance and epidemics awareness fluctuations, (G) 138	

combination of protection feeling and epidemics awareness fluctuations and (H) 139	

all parameters together. These are the best estimations with an advance of one 140	

month between Twitter activity and the impact on transmission. 141	

	142	
	 	143	



Akaike	Information	Criterion	(AIC)	values:	144	
	145	
 146	
Parameters 

included in 

transmission rate 

Twitter as an 

anticipated 

indicator (τ=-1) 

Twitter as a 

real-time 

indicator (τ=0) 

Twitter as a 

delayed 

indicator (τ=1) 

None 120.52 120.53 120.52 

Mosquito 

abundance (MA) 

70.79 70.77 70.76 

Expressed 

protection need 

(EPN) 

23.99 75.7 25.78 

Epidemics 

awareness (EA) 

82.18 94.02 59.71 

MA and EPN 11.52 16.30 14.90 

MA and EA 66.27 99.80 28.98 

EPN and EA 65.69 73.35 21.49 

MA, EPN and EA 18.96 74.12 12.91 

	147	
Table S3: AIC values for the different models tested.   148	



S4/ Exploration of the role of the road network on the signature of pathogen 149	
spatio-temporal dynamics 150	
 151	

In the main text, we show that propagation waves are different in the north and 152	
in the south of the island (i.e., correlations are significant with the epidemic’s peak in 153	
the north and with the whole time series in the south). As mentioned in the discussion, 154	
one main difference between the north and the south of the island is the road network 155	
topology, which is less dense in the north of the island because the presence of the 156	
volcano (Figure S6). 157	

 158	
 159	

 160	
Figure S6: Road map of the Martinique island (OpenCommons license, 161	

available at https://fr.wikipedia.org/wiki/Fichier:Carte_de_la_Martinique.jpg) 162	
 163	
Here, we want to test the hypothesis that the road network can explain the 164	

signature of the observed spatio-temporal dynamics of the outbreak. To do that, we 165	
use a simple metapopulation epidemiological model using the following set of 166	
ordinary differential equation: 167	

 168	
!!!
!"
= 𝜇𝑁! − (𝛽!"𝜙)𝑆!!

!!! 𝐼! − 𝜇𝑆! (2) 169	
!!!
!"
= (𝛽!"𝜙)𝑆!!

!!! 𝐼! − (𝜖 + 𝜇)𝐸! (3) 170	
!!!
!"
= 𝜖𝐸! − 𝜇 + 𝜎 𝐼 (4) 171	
!!!
!"
= 𝜎𝐼! − 𝜇𝐼 (5) 172	



 173	
where index i indicates the population considered, and n is the number of 174	

populations involved. 𝛽!"  represents the transmission rate from population i to 175	
population j. All other parameters are the same as in the main text. 176	

 177	
To represent the road network in the north of the island, which is not 178	

extremely connected, we assumed a one step matrix as following: 179	
 180	
 1 2 3 4 5 6 7 
1 𝛽!! 𝛽!" 0 0 0 0 0 
2 𝛽!" 𝛽!! 𝛽!" 0 0 0 0 
3 0 𝛽!" 𝛽!! 𝛽!" 0 0 0 
4 0 0 𝛽!" 𝛽!! 𝛽!" 0 0 
5 0 0 0 𝛽!" 𝛽!! 𝛽!" 0 
6 0 0 0 0 𝛽!" 𝛽!! 𝛽!" 
7 0 0 0  0 0 𝛽!" 𝛽!! 

 181	
We assumed a transmission rate that is decreasing through the reciprocal 182	

distance for the south of the island:  183	
 184	
 1 2 3 4 5 6 7 
1 𝛽!! 𝛽!" 𝛽!" 𝛽!" 𝛽!" 𝛽!" 𝛽!" 
2 𝛽!" 𝛽!! 𝛽!" 𝛽!" 𝛽!" 𝛽!" 𝛽!" 
3 𝛽!" 𝛽!" 𝛽!! 𝛽!" 𝛽!" 𝛽!" 𝛽!" 
4 𝛽!" 𝛽!" 𝛽!" 𝛽!! 𝛽!" 𝛽!" 𝛽!" 
5 𝛽!" 𝛽!" 𝛽!" 𝛽!" 𝛽!! 𝛽!" 𝛽!" 
6 𝛽!" 𝛽!" 𝛽!" 𝛽!" 𝛽!" 𝛽!! 𝛽!" 
7 𝛽!" 𝛽!" 𝛽!" 𝛽!" 𝛽!" 𝛽!" 𝛽!! 

 185	
Here 𝛽!"  represents the inter-population transmission rate and 𝛽!!  the intra-186	

population transmission rate. Initially, we assume that all 𝛽!" are identical among 187	
them as well as all 𝛽!!among them. Then, we also include a random term (𝜙, which 188	
follows a uniform distribution between 0 and 1) in transmission patterns between 189	
localities in order to introduce stochastic noise. We have considered seven localities 190	
arbitrarily, but the results shown below will remain the same as far as the same 191	
assumptions are considered regarding matrix values. Finally, we assume that the 192	
population sizes of the different localities decrease linearly with geographic distance 193	
from the largest city.  194	

 195	
We then wanted to test if the first situation (representing the road network in 196	

the north of the Island) and the second one (representing the road network in the south 197	
of the Island) can produce the pattern we observe in the data. In the first situation 198	
(unidimensional road network, corresponding to the North of the island), the timing of 199	
the epidemic peak has a much stronger correlation with geographic distance than the 200	
distance between series (Figure S7, A,C,E). However, the Euclidean distance between 201	
times series has a much stronger correlation with geographic distance than the timing 202	
of the epidemic peak for the second situation (representing the South of island, figure 203	



S7, B,D,F). It is worth mentioning that the gradient in population size is required to 204	
observe this pattern. 205	

 206	
 207	

 208	
Figure S7: Expected epidemiological patterns with geographic distance if 209	
populations are only connected with its neighbors (A,C,E) or with all other 210	
populations with a negative relationship with distance (B,D,F). X-axis represent 211	
time on panels A and B and geographic distance (number of steps between two 212	
localities) on panels C-F. Parameters: N(i)=(0.66-(i-1)*0.05)*10^4, βii=0.03, 213	
βij=0.003, n=10, σ=7.days.ind-1, ε=4.days.ind-1, µ=80.years.ind-1. 214	
  215	
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