
Primary antibodies used:

Antibody	Species	Company	Dilution
Aldh1a3	Rabbit	Novus Biologicals	1:500
GFP	Chicken	Invitrogen	1:2000
Glucagon	Rabbit	Linco	1:1000
Insulin	Guinea pig	Invitrogen	1:1000
Insulin	Rabbit	Cell Signaling	1:100
Pancreatic polypeptide	Guinea pig	Linco	1:1000
Somatostatin	Rabbit	ICN Biomedicals	1:1000
S100a6	Sheep	R&D Systems	1:100

qRT-PCR primer sequences:

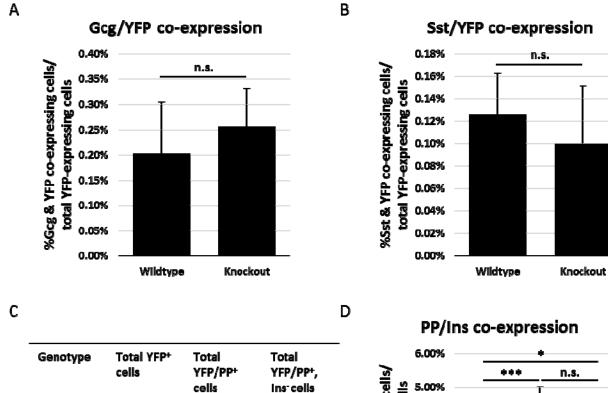
Gene	Forward Primer	Reverse Primer
Aldh1a3	5'-GGGTCACACTGGAGCTAGGA	5'-CTGGCCTCTTCTTGGCGAA
Ascl1	5'-GACTTTGGAAGCAGGATGGCA	5'-CACCCCTGTTTGCTGAGAAC
Hprt	5'-TACGAGGAGTCCTGTTGATGTTGC	5'-GGGACGCAGCAACTGACATTTCTA
S100a4	5'-AGCACTTCCTCTCTCTGGTC	5'-TCATCTGTCCTTTTCCCCAGG
S100a6	5'-CACATTCCATCCCCTCGACC	5'-GTGGAAGATGGCCACGAGAA

Supplementary Figure 1. *Abcc8*^{-/-} β-cells exhibit oscillations in intracellular Ca²⁺ at sub-stimulatory glucose. (A-B) Intracellular Ca²⁺ was monitored in *Abcc8*^{-/-} (A) and *Abcc8*^{+/+} (B) intact islets with Fura-2 AM at 2mM glucose for 20 minutes. Traces from three representative islets are shown for each genotype. *Abcc8*^{-/-} islets exhibit oscillations of variable frequency and elevated $[Ca^{2+}]_i$, while *Abcc8*^{+/+} islets show no oscillatory behavior and low $[Ca^{2+}]_i$. \

Supplementary Figure 2. *Abcc8^{-/-}* β-cells don't transdifferentiate to α- or δ-cells. (A, B) We performed β-cell lineage tracing using *Abcc8^{-/-}; RIP-Cre; R26^{LSL,YFP}* animals and assessed β-cell dedifferentiation at 12 weeks of age. Quantification of YFP/Glucagon double⁺ cells (A) or YFP/Somatostatin double⁺ cells (B) shows no difference in the prevalence of these cells in wild type and knockout mice, suggesting that *Abcc8^{-/-}* β-cells do not transdifferentiate to α- or δ-cells. N=3-4 animals, 10-15 islets counted per animal. (C) Summary of the total number of YFP and PP double-positive, but insulin-negative, cells observed in *Abcc8^{+/+}; RIP-Cre; R26^{LSL,YFP}* and *Abcc8^{-/-} RIP-Cre; R26^{LSL,YFP}* animals at 12 weeks of age. (D) Quantification of PP/Insulin double⁺ cells in frozen pancreatic sections shows a trend towards a decrease in polyhormonal cells in 8-9-week-old *Abcc8^{-/-}* mice after 3 weeks of verapamil administration (p=0.26). However, the difference is not statistically significant. (E) Quantification of the number of YFP-positive, hormone-negative cells observed in *Abcc8^{+/+}; RIP-Cre; R26^{LSL,YFP}* animals at 12 weeks of age. N=3 animals per group. *p<0.05, ***p<0.001, n.s. = Not Significant.

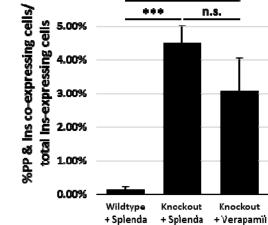
Wildtype

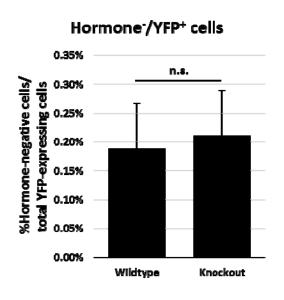
Knockout


Ε

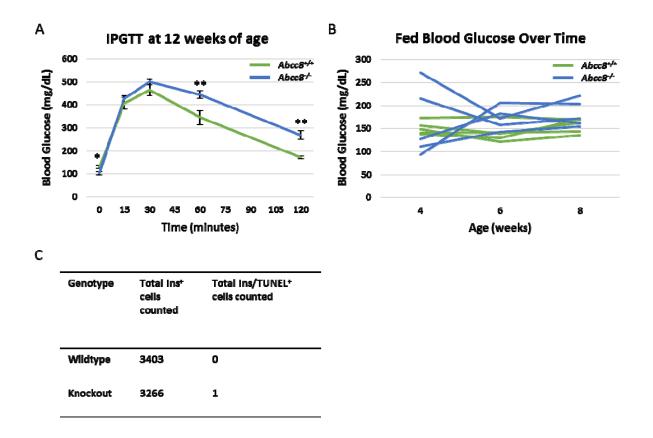
2585

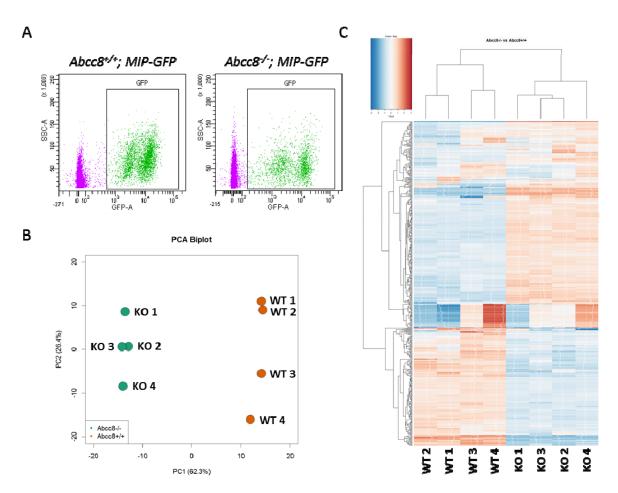
1645


8


40

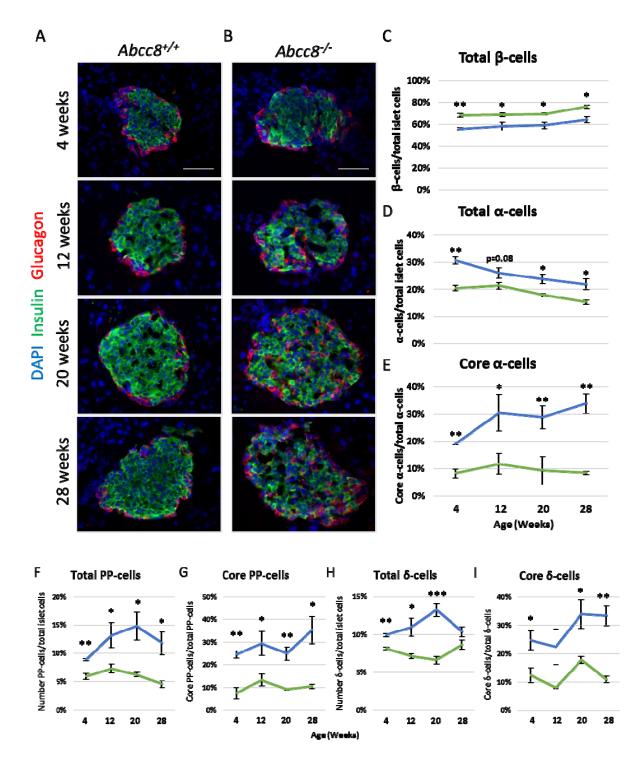
0


4

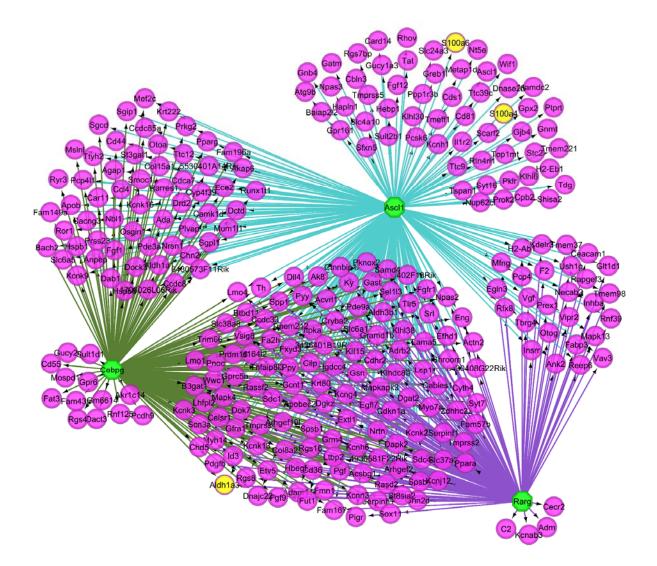


©2017 American Diabetes Association. Published online at http://diabetes.diabetes.journals.org/lookup/suppl/doi:10.2337/db16-1355/-/DC1

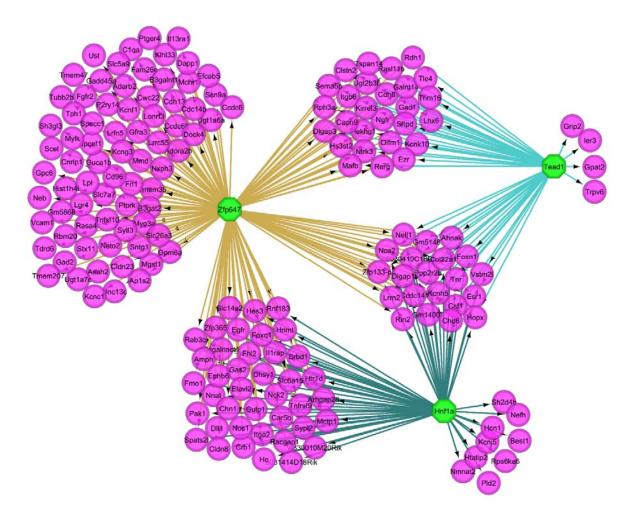
Supplementary Figure 3. Blood glucose control in $Abcc8^{-/-}$ mice. (A) Results of intraperitoneal glucose tolerance tests on male $Abcc8^{+/+}$ and $Abcc8^{-/-}$ mice at 12 weeks of age. n=4-10 animals per genotype. Error bars represent standard error. *p<0.05, **p<0.01. (B) Fed blood glucose concentration in a cohort of $Abcc8^{+/+}$ and $Abcc8^{-/-}$ mice between from 4 to 8 weeks of age showing no statistically significant difference between the groups. n=5 animals per genotype. (C) TUNEL was used to assess β -cell death at 12 weeks of age. In $Abcc8^{+/+}$ islets, no insulin and TUNEL co-expressing cells were observed. In $Abcc8^{-/-}$ islets, one insulin and TUNEL co-expressing cell was observed.



Supplementary Figure 4. Principal Component Analysis and Gene Clustering Analysis. (A) FACS profiles of sorted populations from $Abcc8^{+/+}$; *MIP-GFP* and $Abcc8^{-/-}$; *MIP-GFP* mice indicating that β -cells from both genotypes can be purified similarly. (B) Principal component analysis shows that the eight samples used for RNA-sequencing cluster by genotype, with some variation in the second principal component. (C) Heat map depicting gene clustering analysis using the top 500 differentially-expressed genes. "WT" = $Abcc8^{+/+}$. "KO" = $Abcc8^{-/-}$.


©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1355/-/DC1

Supplementary Figure 5. *Abcc8^{-/-}* islets have disrupted islet morphology. (A) *Abcc8^{+/+}* islets maintain a clear mantle of α -cells while (B) *Abcc8^{-/-}* islets progressively lose the boundary between mantle and core between 4 and 28 weeks of age. (C-I) Cell counting at 4, 12, 20, and 28 weeks of age shows that *Abcc8^{-/-}* islets have fewer β -cells (C), a greater percentage of α -cells (D), PP-cells (F), and δ -cells (H), and an increasing percentage of core α -cells (E), core PP-cells (G) and core δ -cells (I). Core cells were defined as being located greater than 2 cell diameters interior from the islet boundary. Green lines represent *Abcc8^{+/+}* islets. Blue lines represent *Abcc8^{-/-}* islets. n=3-4 animals per genotype, 10-15 islets counted per animal. Error bars represent standard error. *p<0.05, **p<0.01, ***p<0.001. Scale bar = 50µm.


©2017 American Diabetes Association. Published online at http://diabetes.diabetes.journals.org/lookup/suppl/doi:10.2337/db16-1355/-/DC1

Supplementary Figure 6. iRegulon-predicted network of regulators of the top 500 upregulated genes in $Abcc8^{-/-}\beta$ -cells. Map depicting the top 3 predicted regulators (green octagons) and their predicted target genes (magenta circles). A majority of the genes are predicted to be co-regulated by two or more regulators. Genes of interest (*S100a6*, *S100a4*, and *Aldh1a3*) are highlighted yellow.

 $@2017\ American\ Diabetes\ Association.\ Published\ online\ at\ http://diabetes.diabetes.journals.org/lookup/suppl/doi:10.2337/db16-1355/-/DC1$

Supplementary Figure 7. iRegulon-predicted network of regulators of the top 500 downregulated genes in *Abcc8^{-/-}* β -cells. Map depicting the top 3 predicted regulators (green octagons) and their predicted target genes (magenta circles).

Supplemental Table 1. Differential expression analysis. Results of differential expression analysis using 4 *Abcc8^{-/-}; MIP-GFP* and 4 *Abcc8^{+/+}; MIP-GFP* samples. Genes are identified by MGI Symbol, Ensembl ID, and Entrez gene ID, and are categorized by MGI biotype. Log₂[Fold Change (KO vs. WT)], p-value (Wald test), and padj (p-value adjusted for Benjamini and Hochberg's False Discovery Rate), and the raw counts for each of the 8 samples are included for each gene.

Supplemental Table 2. Predicted regulators and targets of the top 500 most upregulated genes in $Abcc8^{-/-}\beta$ -cells. Complete list of iRegulon-predicted target genes for each of the top 3 regulators (ASCL1, RARG, and CEBPG).

Supplemental Table 3. Predicted regulators and targets of the top 500 most downregulated genes in *Abcc8*^{-/-} β -cells. Complete list of iRegulon-predicted target genes for each of the top 3 regulators (TEAD1, HNF1A, and ZFP647).

Link to Online Supplemental Tables

https://www.dropbox.com/sh/xxe96rmld086gyf/AADUd7WfCsQFTaI5EZvu1hSYa?dl=0