Radiomanganese PET Detects Changes in Functional β-cell Mass in Mouse Models of Diabetes

Reinier Hernandez,¹ Stephen A. Graves,¹ Trillian Gregg,^{2,3} Halena R. VanDeusen,² Rachel J. Fenske,² Haley N. Wienkes,² Christopher G. England,¹ Hector F. Valdovinos,¹ Justin J. Jeffery,⁴ Todd. E Barnhart,¹ Gregory W. Severin,^{5,6} Robert J. Nickles,¹ Michelle E. Kimple,^{2,7} Matthew J. Merrins,^{2,7,8} and Weibo Cai^{1,4,9}

¹Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA,

²Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA, ³Program in Biophysics, University of Wisconsin-Madison, Madison, WI, USA, ⁴Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA, ⁵Center for Nuclear Technologies, Technical University of Denmark, 4000 Roskilde, Denmark, ⁶Department of Chemistry, Michigan State University, East Lansing, MI, USA, ⁷William S. Middleton Memorial Veterans Hospital, Madison, WI, USA, ⁸Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA, ⁹Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA, ⁹Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA, ⁹Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA, ⁹Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA, ⁹Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA, ⁹Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA, ⁹Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA, ⁹Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA, ⁹Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA, ⁹Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA, ⁹Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA, ⁹Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA, ⁹Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA, ⁹Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA, ⁹Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA, ⁹Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA, ⁹Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA, ⁹Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA, ⁹Depart

Corresponding authors: Matthew J. Merrins, merrins@wisc.edu, and Weibo Cai, wcai@uwhealth.org.

Short title: ${}^{52}Mn^{2+}$ -PET imaging of functional β -cell mass in vivo

Authorship note: R.H. and S.A.G. contributed equally to this work.

Conflict of interest: The authors declare that no conflict of interest exists.

Mice

All animal experiments were approved by the Institutional Animal Care and Use Committees of the University of Wisconsin-Madison and the William S. Middleton Memorial Veterans Hospital. Male ICR (Envigo) and C57BL/6J wildtype and *ob/ob* mice (The Jackson Laboratory) were employed in this work. All mice were approximately ten weeks of age at the time of the experiments. Mice had access to food and water *ad libitum*, except under fasting condition when access to food was restricted for 6-12 hours.

⁵²Mn²⁺ Production

⁵²Mn²⁺ was produced as previously described (1). Production yields of up to 5.92 MBq/μAh (355 MBq/h @ 60 μA) were achieved using a chromium pellet pressed into a silver disc substrate. ⁵²Mn²⁺ was eluted in <1mL of 0.01 M NaOAc buffer (pH ~6.5) from a ~150 mg AG 1×8 column which had been conditioned with ethanol. As previously described (2), thin layer chromatographs confirmed the Mn²⁺ oxidation state following elution. End of bombardment radionuclidic purity was measured to be >99.5% by efficiency-calibrated high-purity germanium (HPGe) gamma spectrometry measurements. The only radionuclidic impurity observed was <0.5% of ⁵⁴Mn (t_{1/2}= 312.1 d), which does not decay by positron emission.

Islet Isolation

Mouse pancreatic islets were isolated by collagenase digestion as previously reported in (3). Briefly, mice were sacrificed via CO_2 asphyxiation followed by cervical dislocation. The common bile duct was perfused with 4 mL of an ice-cold solution containing type XI collagenase (0.5 mg/mL; Sigma Aldrich) and bovine serum albumin (BSA; 0.2 mg/mL; Sigma Aldrich) in Hank's Balanced Salt Solution (HBSS; Invitrogen). After inflation, the pancreas was removed to a glass vial containing 5 mL of collagenase solution, and incubated in a shaking water bath at 37°C for approximately 20 min. The digests were centrifuged at 50g for 2 min and islet pellets were washed three times with 30 mL ice-cold HBSS/BSA. The pellet was re-suspended and the islets were handpicked into 35 mm petri dishes. Following isolation, islets were placed in RPMI1640 media supplemented with penicillin (100 U/mL; Invitrogen), streptomycin (100 µg/mL; Invitrogen), and 10% (wt/vol) FBS (Sigma) and incubated overnight at 37°C in a 5% CO₂ atmosphere.

Pharmacological Disruption of ⁵²Mn²⁺ Uptake in Isolated Islets

Batches of 50 islets were transferred into 0.45 μ m-filtered 1 mL centrifuge vials (Thermo Fisher Scientific), and incubated with 500 μ L of Krebs-Ringer buffer (KRB: 118 mM NaCl, 5.4 mM KCl, 2.4 mM CaCl₂, 1.2 mM MgSO₄, 1 mM KH₂PO₃, 20 mM HEPES; pH 7.4) containing 1 mM glucose for 30 min at 37°C. After removing the supernatant by centrifugation at 50g for 5 min, 250 μ L of KRB containing 16.7 mM glucose, diazoxide (50 μ M; Tocris Biosciences), or tolbutamide (250 μ M; Selleckchem) were added, and the vials were spiked with 370 kBq (10 μ Ci) of ⁵²Mn²⁺. After 15 min of incubation, the islets were washed three times with KRB. ⁵²Mn²⁺ radioactivity in the islet pellets was quantified using an automated gamma counter (Perkin Elmer).

Ex vivo ⁵²Mn²⁺ Biodistribution Analysis

Ex vivo biodistribution studies were performed in all groups of mice to validate the results of ${}^{52}\text{Mn}^{2+}$ -PET imaging and obtain a more complete profile of tissue ${}^{52}\text{Mn}^{2+}$ uptake. Following the last imaging time point, mice were euthanized by CO2 asphyxiation and 15 organs of interest were removed, wetweighed, and counted in an automated gamma-counter (Wizard 2480, Perkin Elmer). The tissue uptake of ${}^{52}\text{Mn}^{2+}$ was reported as SUV (mean ± S.D.).

Measurement of β-cell Mass

Similar as our previous report (4), mice were euthanized under anesthesia with CO₂ followed by cervical dislocation. The pancreas was immediately dissected, weighed, and fixed in 10% formalin on ice for 30 minutes. Pancreata were then washed in PBS and transferred through a series of solutions, beginning with 30% sucrose in PBS, 1:1 30% sucrose:OCT, and OCT before cryopreservation in OCT and storage at -80°C. 10-micron serial sections were cut on positively charged slides, with 9 sections per stop position (3/slide) and two stop positions per pancreas separated by at least 200 microns. For each pancreas, one slide per position was post-fixed, quenched of peroxidase activity with 3% H₂O₂, and immunohistochemically labeled using guinea pig anti-insulin primary antibody (Dako A056401-2), diluted 1:500 in antibody diluent, and co-stained with hematoxylin (Sigma, GHS280). Slides were imaged using an automated pan-and-stich microscope at $10 \times$ (Evos). β -cell fractional area was determined by quantifying the percent of insulin-positive pancreas area as a total of the full pancreas area for each section, followed by averaging of 2 distinct sections per mouse. Images were analyzed using ImageJ (64-bit) software (National Institutes of Health, Bethesda, MD) with shading correction. β -cell mass was calculated by multiplying β -cell fractional area by the pancreatic wet weight.

Islet Ca²⁺ Imaging

For measurements of cytosolic Ca²⁺, islets were pre-incubated in 2.5 μ M FuraRed (Molecular Probes) for 45 min at 37°C. Islets were then placed in an RC-41LP glass-bottomed chamber mounted in a QE-1 platform (Warner Instruments) on a Nikon Ti-Eclipse inverted microscope equipped with a 20×/0.75NA SuperFluor objective (Nikon Instruments). The chamber was perfused with standard external solution with glucose (in mM: 135 NaCl, 4.8 KCl, 5 CaCl₂, 1.2 MgCl₂, 20 HEPES; pH 7.35). The flow rate was 0.5 ml/min and temperature was maintained at 33°C using inline solution and chamber heaters (Warner Instruments). Excitation was provided by a SOLA SEII 365 (Lumencor) set to 10% output. Excitation (430/20 nm and 500/20 nm) and emission (630/70 nm) filters (ET type, Chroma Technology Corporation) were used in combination with an FF444/521/608-Di01 dichroic (Semrock). Fluorescence emission was collected with a Hamamatsu ORCA-Flash4.0 V2 Digital CMOS camera at 0.125 Hz. A

single region of interest was used to quantify the average response of each islet as the excitation ratio (R430/500) using Nikon Elements and MathWorks MATLAB software as in (3).

Statistics

A minimum sample size of three (n=3) was used in all *in vitro* and *in vivo* experiments. The uptake of 52 Mn²⁺ in the different tissues was reported as SUV (mean ± S.D.) and the differences between groups were evaluated for significance using a two-tailed Student's t-test. Differences were considered statistically significant at *P* < 0.05.

Supplementary Figure S1 Three-dimensional rendering of the pancreas and kidneys PET signal in ICR mice injected a rapid IV 52 Mn²⁺ bolus. Three different view angles are presented showing the separation between pancreas and the left kidney. The animal subject shown here is the same displayed in Figure 1 of the main text.

 $\label{eq:constraint} \ensuremath{\mathbb{C}2017}\ American \ Diabetes \ Association. \ Published \ online \ at \ http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1285/-/DC1$

Supplementary Figure S2. Impact of isoflurane on pancreatic uptake of ${}^{52}Mn^{2+}$ in mice. ICR mice (3-6 per group) received either an intravenous bolus of ${}^{52}Mn^{2+}$, or an intraperitoneal injection of glucose (1 mg/kg) followed by an intravenous infusion of ${}^{52}Mn^{2+}$ from 5 to 15 minutes following glucose administration. A subset of these treatments was anesthetized with 2% isoflurane during injections, whereas the rest of the mice were not anesthetized. One hour following ${}^{52}Mn^{2+}$ administration, mice were euthanized and *ex vivo* biodistribution studies were performed via gamma counting. Pancreatic uptake of ${}^{52}Mn^{2+}$ was found to be significantly lower in both groups under isoflurane anesthesia, when compared to non-anesthetized controls, suggesting that isoflurane prevents voltage-dependent calcium channel (VDCC) mediated ${}^{52}Mn^{2+}$ influx.

Supplementary Figure S3 *Ex vivo* biodistribution of lean (C57BL/6J) and obese (ob/ob) mice, onehour post injection of 52 Mn²⁺. Significantly higher 52 Mn²⁺ uptake can be noted in obese mice compared to the lean controls (****P* < 0.0001; n=3).

Supplementary	Table	S1.	Quantitative	results	of	longitudinal	PET	imaging	studies	in	ICR	mice
administered a 52	Mn ²⁺ ir	ntrave	enous bolus (r	n = 4)								

			Organ/tissu	ue uptake				
Time	Heart/blood	Liver	Kidneys	Muscle	Pancreas	S Gland		
(days)								
0.042	2.11 ± 0.20	3.27 ± 0.34	5.13 ± 0.02	0.38 ± 0.03	5.13 ± 0.37	2.30 ± 0.26		
0.125	1.88 ± 0.19	3.37 ± 0.47	5.21 ± 0.32	0.38 ± 0.02	5.11 ± 0.50	2.53 ± 0.44		
0.5	1.21 ± 0.16	3.51 ± 0.29	4.90 ± 0.19	0.35 ± 0.05	4.89 ± 0.17	2.77 ± 0.19		
1	0.93 ± 0.11	3.15 ± 0.28	4.59 ± 0.27	0.33 ± 0.03	4.84 ± 0.18	2.69 ± 0.05		
3	0.80 ± 0.08	1.94 ± 0.17	3.32 ± 0.14	0.27 ± 0.05	4.40 ± 0.34	2.85 ± 0.09		
5	0.72 ± 0.05	1.49 ± 0.05	2.60 ± 0.03	0.26 ± 0.03	3.65 ± 0.37	3.18 ± 0.33		
7	0.69 ± 0.00	1.08 ± 0.10	1.96 ± 0.21	0.20 ± 0.02	2.98 ± 0.25	3.02 ± 0.13		
9	0.64 ± 0.02	0.83 ± 0.06	1.56 ± 0.20	0.18 ± 0.02	2.26 ± 0.23	2.70 ± 0.10		
11	0.58 ± 0.03	0.70 ± 0.02	1.28 ± 0.14	0.19 ± 0.01	1.80 ± 0.23	2.63 ± 0.15		
13	$0.54{\pm}~0.03$	0.62 ± 0.01	1.13 ± 0.06	0.19 ± 0.01	1.65 ± 0.31	2.50 ± 0.08		
Mean ±	Mean \pm SD values are reported as standardized uptake value (SUV)							

Supplementary Table S2. *Ex vivo* biodistribution of ${}^{52}Mn^{2+}$ at day 13 after intravenous administration in healthy ICR mice. n = 4.

Organ/tissue	⁵² Mn ²⁺ uptake	⁵² Mn ²⁺ uptake
_	(SUV)*	(%ID/g)*
Blood	$\textbf{0.01} \pm \textbf{0.01}$	0.06 ± 0.02
Skin	0.16 ± 0.05	0.56 ± 0.18
Muscle	0.26 ± 0.04	0.93 ± 0.14
Bone	0.50 ± 0.09	1.78 ± 0.28
Heart	1.19 ± 0.08	4.25 ± 0.18
Lung	0.22 ± 0.06	0.80 ± 0.22
Liver	0.72 ± 0.04	2.57 ± 0.14
Kidney	1.85 ± 0.04	6.57 ± 0.23
Spleen	0.35 ± 0.10	1.23 ± 0.34
Pancreas	2.62 ± 0.44	9.30 ± 1.29
Stomach	0.76 ± 0.18	2.68 ± 0.61
Intestine	0.14 ± 0.02	0.49 ± 0.07
Salivary	2.84 ± 0.13	10.13 ± 0.38
Tail	0.14 ± 0.01	0.54 ± 0.05
Brain	0.52 ± 0.01	1.87 ± 0.07
*Mean ± SD		

Organs	Baseline (n=3)	Diazoxide (n=3)	Nifedipine (n=3)	Glibenclamide (n=4)	STZ-diabetic (n=3)	
Heart/blood	2.11 ± 0.20	2.58 ± 0.22	2.61 ± 0.30	2.50 ± 0.60	1.97 ± 0.50	
Liver	3.27 ± 0.34	3.11 ± 0.50	2.06 ± 0.56	3.20 ± 0.87	2.89 ± 1.70	
Kidneys	5.13 ± 0.02	4.66 ± 1.48	3.52 ± 0.43	5.70 ± 1.35	3.80 ± 0.78	
Muscle	0.38 ± 0.03	0.40 ± 0.07	0.44 ± 0.07	0.44 ± 0.04	0.23 ± 0.06	
Pancreas	5.13 ± 0.38	2.85 ± 0.92	2.36 ± 0.61	6.47 ± 1.36	2.04 ± 0.81	
Salivary Gland	2.30 ± 0.26	2.46 ± 0.97	2.15 ± 0.22	2.25 ± 0.14	1.51 ± 1.01	
Mean \pm SD values are reported as standardized uptake value (SUV)						

Supplementary Table S3. Quantitative results of PET imaging in ICR mice 1 h post administration of ⁵²Mn²⁺ under various conditions to stimulate or inhibit insulin release.

Organs	Baseline (n=3)	Diazoxide (n=3)	Nifedipine (n=3)	Glibenclamide (n=4)	STZ diabetic (n=3)
Heart	4.01 ± 0.26	4.96 ± 0.46	5.42 ± 0.81	5.29 ± 1.19	1.97 ± 0.50
Liver	3.63 ± 0.13	3.17 ± 0.83	1.84 ± 0.45	3.26 ± 0.70	2.89 ± 1.70
Kidneys	8.12 ± 0.88	6.42 ± 2.67	4.55 ± 0.84	8.10 ± 1.22	3.80 ± 0.78
Spleen	1.74 ± 0.22	1.75 ± 0.47	0.52 ± 0.13	1.68 ± 0.40	0.23 ± 0.06
Pancreas	6.31 ± 0.51	4.43 ± 1.08	3.20 ± 0.61	7.53 ± 1.29	2.04 ± 0.81
Intestine	1.96 ± 0.32	2.40 ± 0.99	1.94 ± 0.14	2.25 ± 0.64	1.51 ± 1.01
Salivary Gland	2.90 ± 0.67	2.97 ± 0.62	2.35 ± 0.16	2.68 ± 0.46	1.97 ± 0.50

Supplementary Table S4. One-hour post injection ex *vivo* biodistribution data in ICR mice administered ${}^{52}Mn^{2+}$ under various conditions to stimulate or inhibit insulin release.

Mean \pm SD values are reported as standardized uptake value (SUV)

Supplementary Table S5. In vivo PET	and ex vivo biodistribution	data in C57BL/6J and	obese (<i>ob/ob</i>)
mice one-hour after intravenous administ	tration of ${}^{52}Mn^{2+}$. n = 3.		

			Ex vivo		
	Р	'ET Data		biod	listribution
Organs	C57BL/6J	<i>Ob/Ob</i>	Organs	C57BL/6J	Ob/Ob
	(n=3)	(n=3)		(n=3)	(n=3)
Heart/blood	1.93 ± 0.10	3.32 ± 0.13	Heart	3.68 ± 0.15	5.93 ± 0.69
Liver	3.40 ± 0.73	3.68 ± 0.25	Liver	3.33 ± 0.29	3.63 ± 0.10
Kidneys	5.08 ± 0.37	9.43 ± 0.44	Kidneys	5.58 ± 0.16	13.94 ± 1.91
Muscle	0.38 ± 0.06	0.26 ± 0.09	Spleen	1.74 ± 0.46	2.65 ± 0.27
Pancreas	4.89 ± 0.68	7.27 ± 1.03	Pancreas	5.19 ± 0.52	9.79 ± 0.83
Salivary Gland	2.40 ± 0.20	3.11 ± 1.05	Intestine	1.72 ± 0.33	4.17 ± 0.21
			Salivary Gland	3.18 ± 0.49	4.57 ± 0.95

Mean \pm SD values are reported as standardized uptake value (SUV)

Supplementary	Table	S6.	Quantitative	results	of	longitudinal	PET	imaging	studies	in	ICR	mice
administered a 52	² Mn ²⁺ in	trave	enous bolus (r	n = 4)								

			Organ/tissu	ue uptake		
Time	Heart/blood	Liver	Kidneys	Muscle	Pancreas	S Gland
(days)						
0.042	7.50 ± 0.61	11.63 ± 1.12	18.30 ± 0.53	1.37 ± 0.12	18.30 ± 1.71	8.20 ± 0.92
0.125	6.70 ± 0.62	12.00 ± 1.41	18.57 ± 1.42	1.37 ± 0.06	18.23 ± 2.21	9.00 ± 1.35
0.5	4.30 ± 0.61	12.50 ± 0.69	17.47 ± 0.21	1.27 ± 0.15	17.43 ± 0.87	9.87 ± 0.49
1	3.33 ± 0.42	11.20 ± 0.72	16.33 ± 0.72	1.17 ± 0.12	17.23 ± 0.40	9.60 ± 0.30
3	2.83 ± 0.21	6.90 ± 0.46	11.83 ± 0.45	0.96 ± 0.15	15.70 ± 1.59	10.17 ± 0.38
5	2.57 ± 0.15	5.30 ± 0.10	9.27 ± 0.25	0.93 ± 0.06	13.03 ± 1.56	11.20 ± 0.85
7	2.47 ± 0.06	3.83 ± 0.29	7.00 ± 0.87	0.73 ± 0.07	10.63 ± 1.17	10.77 ± 0.71
9	2.30 ± 0.10	2.93 ± 0.15	5.57 ± 0.84	0.64 ± 0.05	8.07 ± 0.90	9.63 ± 0.32
11	2.07 ± 0.15	2.50 ± 0.10	4.57 ± 0.61	0.66 ± 0.02	6.43 ± 0.95	9.37 ± 0.55
13	1.93 ± 0.06	2.20 ± 0.10	4.03 ± 0.31	0.66 ± 0.05	5.90 ± 1.20	8.90 ± 0.26
Mean ±	SD values are	reported as perc	ent injected dos	se per gram (%	bID/g)	

Organs	Baseline (n=3)	Diazoxide (n=3)	Nifedipine (n=3)	Glibenclamide (n=4)	STZ-diabetic (n=3)
Heart/blood	7.50±0.61	8.27±1.75	10.93±0.76	8.25±1.68	7.63±1.94
Liver	11.63±1.12	9.77±0.42	8.53±1.63	10.55±2.39	11.83±8.63
Kidneys	18.30±0.53	14.53±3.27	14.73±0.99	18.73±2.65	14.80±3.82
Muscle	1.37±0.12	1.29±0.37	1.83±0.15	1.45±0.10	0.86±0.14
Pancreas	18.30±1.71	9.03±2.74	9.87±2.42	21.28±2.43	$7.70{\pm}2.49$
Salivary Gland	8.20±0.92	7.97±3.69	9.03±1.10	7.48±0.29	5.53±3.20
Mean \pm SD values are reported as standardized uptake value (%ID/g)					

Supplementary Table S7. Quantitative results of PET imaging in ICR mice 1 h post administration of 52 Mn²⁺ under various conditions to stimulate or inhibit insulin release.

Organs	Baseline (n=3)	Diazoxide (n=3)	Nifedipine (n=3)	Glibenclamide (n=4)	STZ diabetic (n=3)
Heart	13.10±1.90	15.85 ± 3.02	22.72±3.12	17.46±3.10	15.13±3.33
Liver	8.01±0.33	9.87±1.62	7.63±1.24	10.79 ± 2.22	15.11±11.18
Kidneys	30.77±4.67	$19.92{\pm}6.50$	19.04±3.15	26.85±3.34	22.85±6.62
Spleen	5.85 ± 0.69	5.42 ± 0.94	2.18 ± 0.42	5.52 ± 0.85	3.39±1.36
Pancreas	21.62±2.49	14.03±3.27	13.33±1.64	24.85±2.05	10.14±3.92
Intestine	9.23±0.74	7.44±2.56	8.17±0.69	7.55±2.58	8.33±4.19
Salivary Gland	10.03±1.78	8.81±3.80	9.86±0.83	8.85±0.63	7.11±4.45

Supplementary Table S8. One-hour post injection ex *vivo* biodistribution data in ICR mice administered ${}^{52}Mn^{2+}$ under various conditions to stimulate or inhibit insulin release.

Mean \pm SD values are reported as percent injected dose per gram (%ID/g)

Supplementary Table S9. In vivo PET and ex vivo biodistribution d	lata in C57BL/6J and obese (ob/ob)
mice one-hour after intravenous administration of ${}^{52}Mn^{2+}$. n = 3.	

	In vivo PET Data			<i>Ex vivo</i> biodistribution	
Organs	C57BL/6J (n=3)	Ob/Ob (n=3)	Organs	C57BL/6J (n=3)	Ob/Ob (n=3)
Heart/blood	8.57±0.60	7.33±0.50	Heart	16.36±0.74	13.10±1.90
Liver	15.07±2.97	8.10±0.36	Liver	14.75 ± 1.01	8.01±0.33
Kidneys	22.53±1.31	20.80±1.61	Kidneys	24.79±1.13	30.77±4.67
Muscle	1.70±0.30	0.58±0.20	Spleen	7.72±1.95	5.85±0.69
Pancreas	21.70±2.86	16.07±2.67	Pancreas	23.03±1.94	21.62±2.49
Salivary Gland	10.63±0.91	6.80±2.08	Intestine	7.62±1.42	9.23±0.74
			Salivary Gland	14.12±2.35	10.01 ± 1.78
Mean \pm SD values are reported as standardized uptake value (%ID/g)					

REFERENCES

1. Graves SA, Hernandez R, Fonslet J, England CG, Valdovinos HF, Ellison PA, Barnhart TE, Elema DR, Theuer CP, Cai W: Novel Preparation Methods of 52Mn for ImmunoPET Imaging. Bioconjug Chem 2015;26:2118-2124

2. Lewis CM, Graves SA, Hernandez R, Valdovinos HF, Barnhart TE, Cai W, Meyerand ME, Nickles RJ, Suzuki M: 52Mn production for PET/MRI tracking of human stem cells expressing divalent metal transporter 1 (DMT1). Theranostics 2015;5:227

3. Gregg T, Poudel C, Schmidt BA, Dhillon RS, Sdao SM, Truchan NA, Baar EL, Fernandez LA, Denu JM, Eliceiri KW, Rogers JD, Kimple ME, Lamming DW, Merrins MJ: Pancreatic beta-Cells From Mice Offset Age-Associated Mitochondrial Deficiency With Reduced KATP Channel Activity. Diabetes 2016;65:2700-2710

4. Brill AL, Wisinski JA, Cadena MT, Thompson MF, Fenske RJ, Brar HK, Schaid MD, Pasker RL, Kimple ME: Synergy Between Galphaz Deficiency and GLP-1 Analog Treatment in Preserving Functional beta-Cell Mass in Experimental Diabetes. Mol Endocrinol 2016;30:543-556