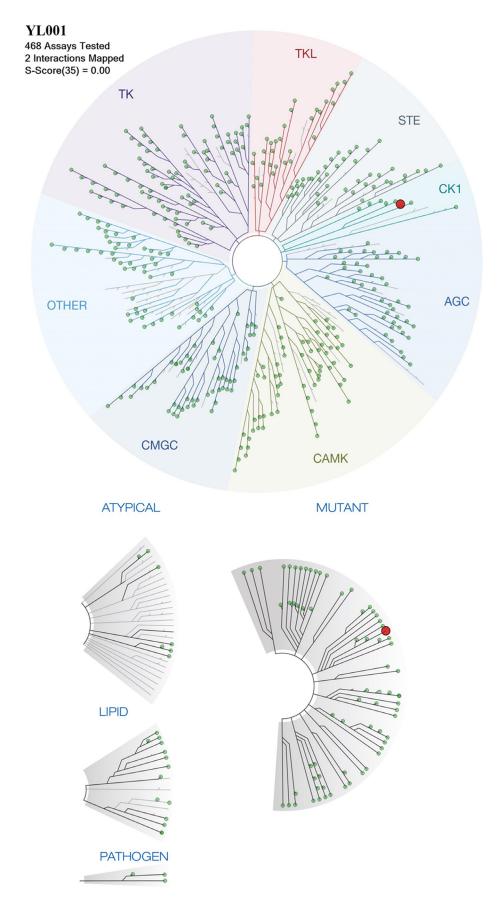

Eg5 inhibitor YL001 induces mitotic arrest and inhibits tumor proliferation


Supplementary Materials

\mathbf{A}					
	No.	ID Number	Structure	Binding Level (RU)	EC50 (μM)
The state of the s	6829	10005325	S-OHN H ₂ N-OH		NT
	2627	100056372	N O HO	74.5	NT
F () () () () () () () () () (7245	100056634	ОН	43.5	NT
STOCH 17 18 19 20	7170	100056766	HO OH N	NH ₂ 164.6	13.32
OH HOSE OH HOS	8178	100061411	SHOW SHOW SHOW SHOW SHOW SHOW SHOW SHOW	98.1	14.49
B C 2 2 2 3 5H 2	8397	100061289	N HN CI	243.4	14.59
7,704 6.670 Ispinesib	STLC		COOH H NH ₂	97.7	1.46

Supplementary Figure 1: Develop Eg5 inhibitors via receptor-ligand interaction-based virtual screening round one. (A) 2D chemical structures of the 28 molecules forming the training set used to obtain the HypoGen pharmacophore hypothesis. (B) Top-scoring HypoGen pharmacophore Hypo 1. Features are color-coded as follows: aromatic ring (orange); hydrogen-bond acceptor (green); hydrophobic (blue); hydrogen-bond donor (violet). (C) All compounds in the database tested interacted with the allosteric pocket which is occupied by Ispinesib in the picture (GOLD). PDB ID: 4AP0. (D) Low weight molecule screening of the six manually selected compounds: Binding level (Response Unit, RU) was evaluated with SPR Biacore T200 and EC₅₀ was assessed with the Alamar Blue assay in cervical cancer cell line HeLa. STLC was used as a control.

Supplementary Figure 2: ROCS and EON query validation ROC curves. (A) Five aligned queries generated by vROCS. From left to right: query 1 to query 5. (B) ROCS validation: ROC curve of five aligned queries. Scoring function: Tanimoto Combo. (C) ROCS validation: ROC curve of five aligned queries. Scoring function: Shape Tanimoto. (D) ROCS validation: ROC curve of five aligned queries. Scoring function: Color Tanimoto. In B-D, query 1 (light blue line), query 2 (red line), query 3 (grey line), query 4 (yellow line), query 5 (deep blue line). (E) EON validation: ROC curve of five single molecule queries. Scoring function: ET_Combo. 2XAE_2XA (ligand 2XA from crystal structure PDB ID: 2XAE, same pattern below, light blue line), 3KEN_ZZD (red line), 4A50_DQ6 (grey line), 4A51_DQ8 (yellow line), 4BBG_V02 (deep blue line), NO_EON (Shape Tanimoto score of hit list compounds, not rescored by EON, green line) (F) AUC and enrichment factors of query 5 using the scoring metric Shape Tanimoto.

Supplementary Figure 3: Kinase Profiling data visualized as interaction tree maps. Kinase Profiling was used to evaluate activity of YL001 against a panel of 468 distinct human protein kinases, including typical, atypical, mutant ones. When YL001 inhibition to a kinase is over 35%, the kinase will be marked with red circle, where larger circle indicates higher-affinity binding.

Supplementary Table 1: SPR screening and antiproliferation screening of 23 manual selected compounds

Pick No.	Assay No.	Specs Compound ID	Binding Level (RU)	Inhibition (50 μM)	
1	3	AG-401/37257005	18.8	95.06%	
2	18	AG-205/13765047	3.4	-18.48%	
3	12	AN-919/14547075	69.6	27.56%	
4	16	AG-690/36921098	61.1	21.81%	
5	11	AN-919/14547113	1.9	21.56%	
6	15	AJ-292/15089069	100.1	58.97%	
7	13	AN-919/14547078	56.6	30.07%	
8	9	AN-465/13570058	7.4	98.24%	
9	6	AG-227/37394007	8.7	97.78%	
10	20	AK-778/11811129	59.8	9.38%	
11	22	AH-487/42271989	31.9	41.63%	
12	8	AN-919/14545008	57.7	26.79%	
13	10	AG-205/14740101	27.7	0.87%	
14	14	AF-399/14739190	36.9	22.02%	
15	21	AF-399/41981012	3.8	14.85%	
16	23	AP-906/42853823	60.7	19.16%	
17	17	AE-842/33003047	14.6	-30.66%	
18	2	AG-205/33162003	32.8	60.89%	
19	7	AG-205/13460017	44.5	30.78%	
20	5	AM-807/14957480	16.3	30.76%	
21	4	AK-777/10805059	20.7	31.51%	
22	19	AO-081/41364431	56.4	29.79%	
23	1	AQ-714/41675002	2.3	32.65%	
-	-	STLC	101.4	-	

Proliferation inhibition was calculated with Alamar Blue. Binding level was evaluated with SPR. STLC was used as a control. Pick No. refers to the compound's EON ranking; the higher the ET_Combo, the lower the Pick No.

Supplementary Table 2: $EC_{50}s$ (μM) of the YL001 in a breast cancer cell and a normal cell line

Cell lines	Туре	Source	EC ₅₀ of YL001 (μM)
MCF-7	Epithelial	Breast cancer	14.90 ± 2.57
MCF10A	Epithelial	Breast normal cell	>100
Therapeutic window			>6.7

The therapeutic window is a ratio of the minimum effective concentration (EC $_{50}$ on MCF-7) to the minimum toxic concentration (EC $_{50}$ on MCF10A).