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ABSTRACT

This supplementary information contains background, methods and a few additional results pertaining to the main manuscript
’Eigenstate thermalization and the expansion of atomic clouds’.

Thermalization of classical systems - Fourier’s Law
In the main manuscript we consider a hot system A at temperature TA immersed in a cold bath at temperature TB. How will
thermal equilibrium be reached according to the classical theory of thermal diffusion? There it is assumed that a system is
locally in thermal equilibrium, such that one can define a temperature T (x) at each point in space. If there exists a temperature
gradient, energy will flow from hot to cold according to Fourier’s law,

jE(x) =−κ(T (x)) ∇T (x) (A.1)

where κ is the thermal conductivity of the material and jE(x) is the energy current. If we are in a regime where both the specific
heat cV and the thermal conductivity κ are approximately independent of temperature, Fourier’s Law becomes a diffusion
equation

∂tT = D∇
2T. (A.2)

where the diffusion constant is D = κ

cV
. This equation can be solved using the heat kernel.

Let us look explicitly at an initial state with a hot cloud at temperature TA for |x|< a/2, and and a bath at TB for |x|> a/2.
The resulting solution of the heat diffusion equation yields
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. (A.3)

In the left panel of Fig. 1 in the main manuscript, we show how the heat of our cloud spreads according to the above formula.
Note that the temperature difference at long times falls of in a power law fashion, ∆T (x = 0, t� 1)∼ a(TA−TB)

2
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πDt
. In higher

dimensions d, the above equations straightforwardly generalize to

∆T (x = 0, t� 1)∼ (TA−TB)

(
a

2
√

πDt

)d

∼ VA

td/2 . (A.4)

Therefore, if the energy or temperature of a system decays as a powerlaw t−d/2, we call this diffusion.

Comparison between classical and quantum description
Now consider another classical system: a gas of collision-less non-interacting particles. At time t = 0, we can characterize
this gas as having a distribution of particles in position and velocity, n(x,v,0). The particle density as a function of position
is n(x) =

∫
dv n(x,v,0), and with an energy per particle that depends only on velocity, ε(v), the energy density is given by

E(x) =
∫

dv ε(v)n(x,v,0).
Because the particles are collision-less and have no further interactions, the velocity is conserved. This means that the full

distribution at a later time t can be expressed in terms of the initial distribution as

n(x,v, t) = n(x− vt,v,0). (A.5)
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Figure A.1. Comparison between quantum and classical description of the expansion of a hot βA = 0.01 boson system into a
cold bath βB = 5, with LA = 10 and n = 0.5. The quantum description is slower and tends to diffusive behavior ∆E ∼ t−1/2,
whereas the classical description incorrectly predicts ballistic behavior.

To classically model a generic system of bosons, we can start with an initial distribution

n(x,v,0) =
1

2π

dk
dv

1
eβ (x)(ε(v)−µ(x))−1

(A.6)

with εk the boson dispersion and vk = dεk
dk . Note that the energy per particle is εk−µ . The initial temperature imbalance is

characterized by a spatially varying inverse temperature β (x) and chemical potential µ(x).
In the main manuscript we first considered a gas expanding into the vacuum. We model this in d = 1 by taking n(x,v,0) =

m
2π

1
eβ (mv2/2−µ)−1

when x ∈ A, and zero outside A. For bosons µ < 0, so let’s define α = e−β µ > 1. The particle density at x = 0
at late time t� 1 then equals

n(x = 0, t) = 2
∫ LA/2t

0
dv

m
2π

1
eβ (mv2/2−µ)−1

(A.7)

≈ m
π

∫ LA/2t

0
dv

1
(α−1)+βmv2/2

(A.8)

≈ mLA

2π(α−1)
t−1 +O(t−3). (A.9)

Similarly, the energy of bosons εk−µ is always positive and nonzero which implies that the late-time behavior of the energy is
E(x = 0, t) =

∫
dv(ε(v)−µ)n(−vt,0)∼ t−1. Therefore, whenever a system thermalizes with a powerlaw t−d , we will call this

ballistic behavior.
To obtain Fig. 1 of the main manuscript, we used a one-dimensional lattice dispersion εk = −2t cosk− µ . Using this

dispersion, in contrast to a free particle dispersion, the O(t−3) term is actually positive which causes the ’bump’ in the particle
density around t = 2/J, see on the right of Fig. 1.

Finally, in the main manuscript we show that the correct quantum description of a hot bosonic system A in a cold bosonic
bath displays diffusive rather than ballistic behavior. In Fig. A.1 we compare the results of this quantum thermalization to
the classical ballistic picture following Eqn. (A.6) at βB = 5. The classical picture incorrectly yields a ballistic spread, while
the exact quantum computation displays diffusive behavior. The diffusive behavior for cold bosonic baths is therefore a true
quantum effect.

Entropy
Entropy plays an important role in quantum many-body physics. Fortunately, the total entropy of the system, which is of course
time-independent, is relatively easy to compute using the modular Hamiltonian,

S =−Tr ρ(t) logρ(t) = Tr M (t)ρ(t). (A.10)
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For a free system, this implies that the entropy can be expressed in term of the eigenvalues of the Greens function gα as1–3

S = ∑
α

[−gα loggα +η(1+ηgα) log(1+ηgα)] , (A.11)

where η =±1 is the sign for bosons/fermions.
To obtain the entanglement entropy of the subsystem A, we need the reduced density matrix ρA(t) = Tr Bρ(t). However, for

free systems the entanglement entropy can be computed simply by using Eqn. (A.11) where gα are now the eigenvalues of the
Greens function restricted to subsystem A.

Thermalization of relativistic fermions

There is an extensive literature on thermal quenches and thermalization of relativistic particles.4–7 In one dimension, the
Hamiltonian for relativistic fermions is

H =
∫

dx
(

ψ
†
R(x)iv∂xψR(x)−ψ

†
L(x)iv∂xψL(x)

)
(A.12)

where ψL,R(x) is the field for left- and right-moving particles, respectively, and v > 0 is the Fermi velocity. The energy of the
right-movers is εR

k = vk and of left-movers is εL
k =−vk. The right-moving nature of the ψR field becomes obvious when one

expresses the time evolution of the operator,

ψ
†
R(x, t) =

∫ dk
2π

ψ
†
R,keik(x−vt). (A.13)

The initial modular Hamiltonian for our hot cloud in A immersed in a bath reads

M0 = βBH +(βA−βB)
∫ LA

0
dxh(x) (A.14)

Consider only the right-moving particles hR(x, t) = ψ
†
R(x, t)iv∂xψR(x, t) in subsystem A. Under unitary time evolution this

segment shifts in its enterity to the right,∫ LA

0
dx hR(x, t) =

∫ LA+vt

vt
dx ψ

†
R(x)iv∂xψR(x) (A.15)

Similarly, the left-movers move to the left under time evolution. This means that after a time t = LA/v there are no remnants
of the hot cloud left in the subsystem A. The moment the system A has reached a full causal contact with the bath, it is
instantaneously thermalized. In Fig. 1 of the main manuscript, middle left, we display the heat profile of such a relativistic
system. Notice also that this procedure correctly reproduces the non-equilibrium steady state (NESS) M = β+H +β−P as
described in Ref.6.

Decay of modular matrix for nonrelativistic particles
In the main manuscript we showed using the continuum approximation εk ≈ Jk2−µ that the matrix elements of the modular
matrix decay ballistically, ∆m∼ t−d . In Fig. A.2 we indeed show that this is the case when computed numerically on large finite
size systems. The solid lines are the exact results, and the dashed line is the continuum limit. Note that there are oscillations
visible with angular frequency 4J, which is the result of corrections due to the lattice dispersion εk = −2J ∑

d
i=1 coski. The

precise shape and amplitude of these oscillations depend on the precise form of the dispersion.
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Figure A.2. The decay of the nearest-neighbor modular matrix element ∆m j, j+1(t) for j ∈ A, for d = 1,2 and 3. The thick
solid lines indicate the numerical results, solving Eqn. (11) of the main manuscript exactly on finite size systems. All approach
the general formula describing ballistic decay Eqn. (12), here shown as dashed lines.
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