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Supplementary Figure 1: System geometry considered in the analytical calculation of the electron energy loss. 
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Supplementary Figure 2: Theoretical EEL spectrum for an anisotropic (a-d) and isotropic (e-h) homogeneous slabs. Left 
column shows the same as in Fig. 3c-f of the main text, namely 𝑃bulk(𝑞, 𝜔) (a), 𝑃guid(𝑞, 𝜔) (b), 𝑃begr(𝑞, 𝜔) (c) and their 

contributions to 𝛤(𝜔) (d) calculated for 30 nm thick h-BN slab and 60 keV electron energy. Right column shows the same 
calculations but for the isotropic slab with permittivity 𝜖|| = 𝜖⊥. The black dashed curves in f and g depict the dispersion of the 

(guided) SPP mode calculated according to Eq. (27). Inset in f shows an unsaturated blow up view of the surface contribution at 

low momenta 𝑞 showing the line 𝑞 = √3𝜔/𝑣 (purple) representing the maximum of momentum transfer from electron to the 
guided mode; dashed arrow marks the energy at which this line intersects with the SPP dispersion curve. h, EEL probabilities, 𝛤, 
obtained by integration (over momentum) of individual contributions shown in e, f, and g and their sum. The vertical purple 
arrow marks the same energy as in the inset of f. On all plots the vertical dashed lines mark the TO and LO phonon energies; 
vertical dot-dashed line shows the location of the surface phonon energy (corresponds to 𝜖⊥ = −1 here). 
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Supplementary Figure 3: EEL due to HP excitation. a, Im[𝑞−1𝑅p(𝑞,𝜔)] (false color) and the dispersion of the M0-HPhP mode 

found using Eq. (27) for 60 keV electron passing through 30 nm thick h-BN slab. The vertical dashed lines mark TO and LO 
energies. The inset shows the same plot but with color scale saturated to show the higher order guided modes. b, Function 
𝐹(𝑞,𝜔) that could be interpreted as the probability of HP excitation at momentum 𝑞 and energy 𝜔. c, Zoom in into the low 
momentum part of the plot in a. Purple line in b and c marks the maximum of 𝐹 in (𝑞, 𝜔) space. The vertical dashed line in b 
marks the energy at which the electron line crosses the M0-HPhP dispersion, and which determines the peak position in 
𝛤guid(𝜔). 
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Supplementary Figure 4: The reflection coefficient (imaginary part) from a thin slab at large momenta. Imaginary part of the 
quasistatic refection coefficient, 𝑟p, (to which 𝑅p reduced at 𝑞 → ∞) for a single interface with the anisotropic (a) and isotropic 

(b) media. The isotropic case was calculated by taking 𝜖|| = 𝜖⊥. Left and right vertical dashed lines mark TO and LO phonon 

energies, respectively; the blue dash-dotted line in b marks the SO energy. 
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Supplementary Figure 5: Retardation effects. Comparison of EEL spectra for the anisotropic (a) and isotropic (b) retarded/non-
retarded calculations obtained for an electron with energy 60 keV (𝑣 = 0.446 𝑐) that passes through a 30 nm thick slab. For the 

isotropic case, the response was characterized by 𝜖⊥ in all directions. The cutoff is 𝑞c = 0.082 a.u., which corresponds to the 
experimental value of 8 mrad for aperture collection angle.  
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Supplementary Figure 6: Influence of the substrate. Comparison of non-retarded EEL spectra with and without a thin isotropic 
substrate of 15 nm thickness and constant permittivity 𝜖sub = 4. The electron energy is 60 keV (𝑣 = 0.446 𝑐) and the h-BN layer 
thickness is 30 nm. The cutoff momentum is 𝑞c = 0.082 a.u.  
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Supplementary Note 1: Analytical calculations of EELS probability 

The energy lost by an elecxtron can be found as its work 𝑊 against the electromagnetic field 𝐄ind that it 
induces1–3. Assuming a straight line electron trajectory (non-recoil approximation) parallel to z-axis 
(Supplementary Figure 1), we write: 
 

𝑊 = −𝑒 ∫ d𝑧 �̂� ⋅ 𝐄ind(𝐫t(𝑡), 𝑡)
∞

−∞
.  (1) 

 
By utilizing the Fourier transform and cylindrical symmetry of the sample, it can be written as:  
 

𝑊 = −
2𝑒

(2𝜋)3
Re [∫ d𝜔

∞

0 ∫ d𝑞
∞

0
 2𝜋𝑞 ∫ d𝑧 �̂� ⋅ 𝐄ind(𝑞, 𝑧, 𝜔) exp (

−i𝜔𝑧

𝑣
) 

∞

−∞
],  (2) 

 
where 𝑒 is the elementary charge, 𝑣 is the electron speed and 𝑞 is the momentum in the plane 
perpendicular to the electron trajectory 𝐫t(𝑡) = (𝑥𝑡 , 𝑦𝑡 , 𝑣𝑡) (without the loss of generality 𝑥𝑡 and 𝑦𝑡 
could be set to zero). The probability 𝛤(𝜔) for the electron to lose energy ℏ𝜔 can be related to 𝑊 as:  
 

𝑊 = −∫ d𝜔
∞

0
ℏ𝜔 𝛤(𝜔).  (3) 

 
Eq. (1) of the main text can be obtained by solving for 𝛤 in Eqs. (2) and (3) and defining the momentum 
dependent function 𝑃(𝑞, 𝜔):  
 

𝑃(𝑞, 𝜔) =
𝑒𝑞

2𝜋2ℏ𝜔
Re [∫ d𝑧 �̂� ⋅ 𝐄ind(𝑞, 𝑧, 𝜔) exp (

−i𝜔𝑧

𝑣
) 

∞

−∞
].  (4) 

 
Hence, to calculate the loss probability, we have to find the electric field induced by the electron in the 
sample.  
 
 
Supplementary Note 2: Nonretarded approximation 
 
In the non-retarded approximation, the electric field can be expressed through the scalar potential, 𝛷, 
as 𝐄 = −𝛁𝛷. Writing the Gauss’s law using this potential yields: 
 

𝛁 ⋅ [𝜖̂ 𝛁𝛷(𝐫, 𝑡)] =
𝜌f

𝜖0
.  (5) 

 
where 𝜖0 is the vacuum permittivity, 𝜌f = 𝑒𝛿[𝐫 − 𝐫t(𝑡)] is the free charge density corresponding to the 
moving electron and 𝜖̂ = diag(𝜖⊥, 𝜖⊥, 𝜖||) is the dielectric tensor. Such tensorial treatment of dielectric 

permittivity is essential for proper description of EEL in vdW materials due to their strong uniaxial 
anisotropy. 
 
By Fourier transforming Eq. (5) with respect to 𝑥 and 𝑦 and utilizing the cylindrical symmetry we obtain 
 

𝜖||
𝜕2𝛷(𝑞,𝑧,𝜔)

𝜕𝑧2 − 𝑞2𝜖⊥𝛷(𝑞, 𝑧, 𝜔) =
𝑒

𝑣 𝜖0
exp (

i𝜔𝑧

𝑣
).  (6) 
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In each of the regions marked in Supplementary Figure 1, the potential can be represented as a sum 
𝛷𝑘 = 𝛷F,𝑘 + 𝛷B,𝑘, where 𝛷F,𝑘 is the free-space part that corresponds to the solution of Eq. (6) in 
unbounded medium:  
 

𝛷F,𝑘 = −
𝑒𝑣 exp(i𝜔𝑧/𝑣)

𝜖0(𝜖||𝜔
2+𝜖⊥𝑞2𝑣2)

,  (7) 

 
and 𝛷B,𝑘 is the part that arises from the presence of boundaries. In each region, it can be written as: 

 

𝛷B,𝑘  = 𝐴𝑘 exp(𝑞√𝜖⊥/𝜖||𝑧) + 𝐵𝑘 exp(−𝑞√𝜖⊥/𝜖||𝑧)  (8) 

 
For isotropic regions (𝑘 = 1,3) we simply set 𝜖⊥ = 𝜖||. The coefficients 𝐴𝑘 and 𝐵𝑘 in Eq. (8) are found by 

solving the standard boundary value problem4. Requirement of finiteness of the potential at infinity 
immediately gives 𝐴1 = 𝐵3 = 0 and by imposing the continuity of the potential and its 𝑧 derivative at 
the interfaces we obtain the remaining coefficients.  
 
𝐄ind is the difference between the field produced by the electron in the presence of the sample and that 

in vacuum, and can be found as 𝐄ind = −𝛁𝛷ind with the induced potential defined as: 
 

𝛷𝑘
ind = 𝛷𝑘 − 𝛷0,  (9) 

 
Here 𝛷0 is the solution of Eq. (6) for the electron in vacuum in the absence of sample, i.e. 𝛷0 = 𝛷F,𝑘 for 

𝑘 = 1,3 assuming vacuum in the corresponding regions. From Eq. (9) and (7), we immediately see that 
the induced potential outside has only the free-space component, whereas inside both the free-space 
and boundary parts remain. 
 

Using the induced electrostatic potential 𝛷ind, 𝑃(𝑞, 𝜔) in Eq. (4) can be written as: 
 

𝑃(𝑞, 𝜔) =
𝑒𝑞

2𝜋2ℏ𝑣
Im [∫ d𝑧 𝛷ind(𝑞, 𝑧, 𝜔) exp (

−i𝜔𝑧

𝑣
) 

∞

−∞
].  (10) 

 
Naturally, the integral splits into three contributions. The first part is coming from the integration along 
the parts of the trajectory outside the slab: 
 

𝑃guid(𝑞, 𝜔) =
𝑒𝑞

2𝜋2ℏ𝑣
Im [∫ d𝑧 𝛷1

ind(𝑞, 𝑧, 𝜔) exp (
−i𝜔𝑧

𝑣
) 

−𝑑/2

−∞
+ ∫ d𝑧 𝛷3

ind(𝑞, 𝑧, 𝜔) exp (
−i𝜔𝑧

𝑣
) 

∞

𝑑/2
] =

𝑒𝑞

2𝜋2ℏ
Im [𝐴3

exp[−𝑑/2(𝑞−i𝜔/𝑣)]

𝑞𝑣−iω
+ 𝐵1

exp[−𝑑/2(𝑞+i𝜔/𝑣)]

𝑞𝑣+iω
],  (11) 

 
and is related to the excitation of the guided modes in the slab, as shown later.  The other two 
contributions come from the integration over the part of the trajectory penetrating the slab and relate 
to the free-space and boundary contributions to the induced potential: 
 

𝑃in(𝑞, 𝜔) =
𝑒𝑞

2𝜋2ℏ𝑣
Im [∫ d𝑧 𝛷2

ind(𝑞, 𝑧, 𝜔) exp (
−i𝜔𝑧

𝑣
) 

𝑑/2

−𝑑/2
] = 𝑃bulk(𝑞, 𝜔) + 𝑃begr(𝑞, 𝜔).  (12) 

 
The free-space part gives rise to the bulk loss  
 

𝑃bulk(𝑞, 𝜔) =
𝑒𝑞

𝜋2ℏ
Im [

𝑒𝑑

 2𝜖0
(

1

𝜔2+𝑞2𝑣2 −
1

𝜖||𝜔
2+𝜖⊥𝑞2𝑣2)],  (13) 
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whereas the boundary part is responsible for the begrenzungseffekt 
 

𝑃begr(𝑞, 𝜔) =
𝑒𝑞

𝜋2ℏ
 Im [√𝜖|| (

𝐴2sin(
𝜔𝑑

2𝑣
+i𝑑𝑞√𝜖||/𝜖⊥/2)

𝜔√𝜖||+i𝑞𝑣√𝜖⊥
+

𝐵2sin(
𝜔𝑑

2𝑣
−i𝑞𝑑√𝜖||/𝜖⊥/2)

𝜔√𝜖||−i𝑞𝑣√𝜖⊥
)].  (14) 

 
The coefficients 𝐴2,3 and 𝐵1,2 read: 
 

𝐴2 = −
𝑡c exp(

𝑞𝑑

2 √𝜖⊥/𝜖||−
i𝜔𝑑

2𝑣
)

(1−𝑟p
2 exp(−2𝑑√𝜖⊥/𝜖||𝑞))𝑞

[(−𝑟p exp(−2𝑞𝑑√𝜖⊥/𝜖||) + exp (−𝑞𝑑√𝜖⊥/𝜖|| +
i𝜔𝑑

𝑣
))𝐺 +

(𝑟p exp(−2𝑞𝑑√𝜖⊥/𝜖||) + exp (−𝑞𝑑√𝜖⊥/𝜖|| +
i𝜔𝑑

𝑣
))𝐻𝑞],  (15) 

 

𝐵2 =
𝑡c exp(

𝑞𝑑

2 √𝜖⊥/𝜖||−
i𝜔𝑑

2𝑣
)[exp(−𝑞𝑑√𝜖⊥/𝜖||)(𝐺−𝐻𝑞)−𝑟p exp(−2𝑞𝑑√𝜖⊥/𝜖||)exp(

i𝜔𝑑

𝑣
)(𝐺+𝐻𝑞)]

(1−𝑟p
2 exp(−2𝑞𝑑√𝜖⊥/𝜖||))𝑞

,  (16) 

 

𝐴3 =
𝑡c exp(

𝑞𝑑

2
−

i𝜔𝑑

2𝑣
)

(1−𝑟p
2  exp(−2𝑞𝑑√𝜖⊥/𝜖||))𝑞

[√𝜖||𝜖⊥ (1 − 𝑟p exp(−2𝑞𝑑√𝜖⊥/𝜖||)−2 𝑡c exp (−𝑞𝑑√𝜖⊥/𝜖|| +
i𝜔𝑑

𝑣
))𝐻𝑞 +

(1 + 𝑟p exp(−2𝑞𝑑√𝜖⊥/𝜖||) − 2 𝑡c√𝜖||𝜖⊥ exp (−𝑑𝑞√𝜖⊥/𝜖|| +
i𝜔𝑑

𝑣
))𝐺],  (17) 

 

𝐵1 =
𝑡c exp(

𝑞𝑑

2
+

i𝜔𝑑

2𝑣
)

(1−𝑟p
2  exp(−2𝑞𝑑√

𝜖⊥
𝜖||

))𝑞

[√𝜖||𝜖⊥ (1 − 𝑟p exp(−2𝑞𝑑√𝜖⊥/𝜖|| ) − 2 𝑡c exp (−𝑞𝑑√𝜖⊥/𝜖|| −
i𝜔𝑑

𝑣
))𝐻𝑞 −

(1 + 𝑟p exp(−2𝑞𝑑√𝜖⊥/𝜖||) − 2𝑡c√𝜖||𝜖⊥exp(−𝑞𝑑√𝜖⊥/𝜖|| −
i𝜔𝑑

𝑣
))𝐺],  (18) 

 

𝐻 =
𝑒𝑣

𝜖0
(

1

𝜔2+𝑞2𝑣2 −
1

𝜖||𝜔
2+𝜖⊥𝑞2𝑣2) ,       𝐺 =

i𝑒𝜔

𝜖0
(

1

𝜔2+𝑞2𝑣2 −
𝜖||

𝜖||𝜔
2+𝜖⊥𝑞2𝑣2)  (19) 

 

𝑟p =
√𝜖||𝜖⊥−1

√𝜖||𝜖⊥+1
,    𝑡c =

1

√𝜖||𝜖⊥+1
.  (20) 

 
To find the electron energy loss, we numerically integrate 𝑃bulk, 𝑃guid and 𝑃begr according to Eq. (1) of 

the main text.  
By setting 𝜖|| = 𝜖⊥ = 𝜖 one recovers EEL in isotropic material.  

 
In Supplementary Figure 2 we show the comparison between 𝑃bulk (Supplementary Figure 2a and e), 
𝑃guid (Supplementary Figure 2b and f), and the 𝑃begr (Supplementary Figure 2c and g) for anisotropic 

and isotropic cases. The corresponding energy loss spectra after integration of 𝑃(𝑞, 𝜔) are shown in 
Supplementary Figure 2d and h, respectively. Note that in the isotropic case, 𝛤guid(𝜔) is attributed to 

the excitation of the surface phonon polariton (SPP) (as can be seen from the excellent match of SPP 
dispersion and the maximum of 𝑃guid in Supplementary Figure 2f, for example). Nevertheless, the 

appearance of the main peak (marked by the dashed purple arrow in Supplementary Figure 2h) is very 
similar to that in anisotropic materials. Particularly, the peak position is also determined by the 
intersection of the electron line (purple line in Supplementary Figure 2f, inset) and the dispersion of the 
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(dominant) guided mode – SPP in this case (black dashed curve in Supplementary Figure 2f,g). Such 
universality of the peak formation mechanism (related to the guided wave excitation), as well as the 
appearance of the surface phonon peak at SO energy, will is explained in the next section.  
 
 
Supplementary Note 3: EEL due to guided wave excitation 
 
To explicitly relate 𝑃guid(𝑞, 𝜔) to the guided modes in the sample and find the peak position in the 

relevant energy loss spectrum 𝛤guid(𝜔) , we assume that the sample is thin, thus 𝜔𝑑/𝑣 ≈ 0. It is an 

excellent approximation at mid-IR frequencies, since the transmission STEM applies to samples with 
thickness ≲ 100 nm and utilizes electron with speed 𝑣~𝑐/2. In addition, we neglect 𝜔2/𝑣2 compared 

to √𝜖⊥/𝜖|| 𝑞
2, which essentially extends the validity of the quasistatic approximation to momenta near 

the light cone (𝑞~𝜔/𝑐) due to large values attained by |𝜖⊥| in the low-frequency part of the 
Reststrahlen band (see Fig. 2 of the main text). Upon substitution of coefficients 𝐴3 and 𝐵1 [Eqs. (17-18)] 
into Eq. (11) and application of these approximations we obtain: 
 

𝑃guid(𝑞, 𝜔) ≈
𝑒

𝜋2ℏ𝑣

𝑞2𝑣2 

(𝑞2𝑣2+𝜔2)2
Im

[
 
 
 
 
 
 
√𝜖||𝜖⊥

(

 
 

1−𝑟pe

−2√
𝜖⊥
𝜖||

𝑞𝑑

−2𝑡ce

−√
𝜖⊥
𝜖||

𝑞𝑑

)

 
 

 

(1+√𝜖||𝜖⊥)

(

 
 

1−𝑟p
2e

−2√
𝜖⊥
𝜖||

𝑞𝑑

)

 
 

]
 
 
 
 
 
 

.  (21) 

 

By further noticing that for large |𝜖⊥|, we have 𝑟p ≈ √𝜖||𝜖⊥/(1 + √𝜖||𝜖⊥) ~1 and 𝑡c~0, which yields: 

 

𝑃guid(𝑞, 𝜔) ≈
𝑒

𝜋2ℏ𝑣

𝑞2𝑣2 

(𝑞2𝑣2+𝜔2)2
Im

[
 
 
 
 
 
 
𝑟p

(

 
 

1−e

−2√
𝜖⊥
𝜖||

𝑞𝑑

)

 
 

 

1−𝑟p
2e

−2√
𝜖⊥
𝜖||

𝑞𝑑

]
 
 
 
 
 
 

  (22) 

 

where we can immediately recognize the (quasistatic) reflection coefficient from an anisotropic slab5, 
𝑅p: 

 

𝑅p(𝑞, 𝜔) =

𝑟p

(

 
 

1−𝑒

−2√
𝜖⊥
𝜖||

𝑞𝑑

)

 
 

(

 
 

1−𝑟p
2𝑒

−2√
𝜖⊥
𝜖||

𝑞𝑑

)

 
 

.  (23) 
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The guided modes are defined as the divergences (poles) of 𝑅p(𝑞, 𝜔), which for real frequencies occur 

at complex-valued momenta 𝑞 that turn the denominator of 𝑅p into zero. The connection between 

these momenta and the frequency (mode energy), 𝑞 = 𝑞M(𝜔), represents the dispersion of the guided 
mode (M is the mode index). For real momenta 𝑞 = Re(𝑞M), 𝑅p does not diverge, but rather acquires a 

large imaginary part. Therefore according to Eq. (22), the dominant contribution to 𝑃guid comes from 

the points in (𝑞, 𝜔) space that lie near the dispersion of the guided modes. This establishes the formal 
connection between these modes and 𝑃guid (and thus 𝛤guid). 

 
One can employ the pole approximation6 to formally evaluate the integral in Eq. (1) of the main text and 
find 𝛤guid(𝜔): 

 

𝛤guid(𝜔) = ∫ 𝑑𝑞𝑃guid(𝑞, 𝜔) = 2𝜋i∑ Res[𝑃guid(𝑞, 𝜔)]
𝑞=𝑞𝑀(𝜔)M .  (24) 

 

For thin samples and relatively low momenta, we have 𝑞𝑑 ≪ 1. Therefore, the leading term in Taylor 

expansion (in 𝜉 = 𝑞𝑑) of the numerator in 𝑅p [Eq. (23)] is 2𝑞𝑑√
𝜖⊥

𝜖||
𝑟p ∝ 𝑞. It is thus useful to pull the 

factor 𝑞 out of 𝑅p and define the function 𝐹(𝑞, 𝜔) as: 

 

𝐹(𝑞, 𝜔) =
𝑒

𝜋2ℏ𝑣

𝑞3𝑣2 

(𝑞2𝑣2+𝜔2)2
,  (25) 

 

yielding 𝑃guid(𝑞, 𝜔) as written in Eq. (3) of the main text. With such definition, Res[𝑃guid(𝑞𝑀(𝜔),𝜔)] 

becomes directly proportional to 𝐹(𝑞𝑀(𝜔),𝜔) (for each fixed frequency 𝜔). The spectral shape of 
𝛤guid(ω) is thus largely determined by 𝐹. Particularly, the spectral peak position, 𝜔g, in 𝛤guid 

corresponds to the maximum of 𝐹(𝑞𝑀(𝜔),𝜔). Since max𝐹(𝑞, 𝜔) occurs when 𝑞 = 𝑞max(𝜔) = √3𝜔/𝑣, 
𝜔g can be can be obtained from the equation: 

 
√3𝜔g

𝑣
= 𝑞M(𝜔g).  (26) 

 

The solution to this equation can be found geometrically as the intersection of the line defined by 
𝑞 = 𝑞max with the mode dispersion 𝑞M(𝜔), as described in the main text. 
 
For hyperbolic materials, such as h-BN in the Reststrahlen bands, the guided modes are hyperbolic 
polaritons (HPs). Within quasistatic approximation their dispersion in the h-BN slab can be written as5: 
 

𝑞M(𝜔) = i
√𝜖||

𝑑√𝜖⊥
(2 arctan

i√𝜖⊥

𝜖⊥√𝜖||
+ 𝜋M)  (27) 

 

where M is the mode index. For illustration we perform a calculation for 30 nm thick h-BN slab. In 

Supplementary Figure 3a we see that the dominant contribution to Im[𝑞−1𝑅p(𝑞, 𝜔)] comes from the 

M0-HPhP mode. Higher order modes (shown in the inset using saturated color scale), while presents, 
provide insignificant contribution at low momenta (where 𝐹 exhibits its maximum, see Supplementary 
Figure 3b) and can be neglected. The major peak in 𝛤guid(𝜔) is thus determined by the intersection of 

the “electron” line with the M0-HPhP mode dispersion as depicted in Supplementary Figure 3c. 
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Note that in thin films, 𝛤guid is determined by the polariton dispersion at relatively low momenta 

(𝑞~𝜔/𝑣 near the light cone), since the contribution from large momenta is suppressed by 1/𝑞  decay of 
𝐹(𝑞, 𝜔). This however, is only true when 𝑅p(𝑞, 𝜔) does not exhibit strong resonances in the quasistatic 

limit 𝑞 → ∞. In this limit, 𝑅p reduces to the quasistatic reflection coefficient from a semiinfinite slab 𝑟p 

defined in Eq. (20). For h-BN and all other vdW materials in hyperbolic regime (𝜖||𝜖⊥ < 0, meaning the 

real parts), the real part of the denominator in 𝑟p never approaches zero as a function of frequency, 

resulting in the absence of resonant behavior (see Supplementary Figure 4a). This is in sharp contrast to 
isotropic media, where Re[𝜖(𝜔) − 1] can reach zero, resulting in the strong resonance in 𝑟p. This 

resonance is called the surface resonance and the frequency at which it occurs marks the SO energy (see 
Supplementary Figure 4b). This resonance could provide a large contribution to the integral in Eq. (1) of 
the main text, resulting in an additional peak in 𝛤(𝜔) at SO energy (see Supplementary Figure 2h). 
 
Note, that the lack of quasistatic resonance in the reflection coefficient of hyperbolic materials also 
explains the absence of the SO resonance peak in their nearfield spectra (as obtained by scattering-type 
scanning nearfield optical microscopy for example)5,7, in contrast to nearfield spectra of isotropic 
materials where SO resonance provides the dominant contribution8,9. 
 
 
Supplementary Note 4: Bulk loss peak and the begrenzungseffekt 
 
The bulk loss peak at LO energy in 𝛤bulk(𝜔) (blue in Supplementary Figure 2d,h) originates from the 
asymptotic behavior of 𝑃bulk at large momenta: 
 

𝑃bulk(𝑞 ≫ 𝜔/𝑣,𝜔) ∝ −Im(
1

ϵ⊥
)  (28) 

 
which provides a strong contribution to bulk loss at LO energy (see Supplementary Figure 2a) where 
Re(𝜖⊥) = 0. This result is identical to that obtained for isotropic systems (see Supplementary Figure 2e), 
such as metals or polar crystals3. However, in contrast to isotropic materials, we also see a contribution 

to 𝑃bulk at energies throughout the whole Reststrahlen band coming from low momenta (𝑞 < 105cm−1 
in Supplementary Figure 2a). This can be explained by the presence of a pole on the real q-axis in 𝑃bulk 
for 𝜖⊥𝜖|| < 0 [meaning real parts, see Eq. (28)]. This pole can be associated with an excitation of the 

volume polariton mode in unbounded (bulk) hyperbolic media. Such volume polaritons are not 
supported in isotropic media (no real poles for 𝜖⊥𝜖|| > 0) and therefore 𝑃bulk does not show the 

corresponding loss (Supplementary Figure 2e). 
 
The excitation of the bulk polariton results in a non-Lorentzian shape of the bulk loss peak, 𝛤bulk(𝜔) 
(blue curve in Supplementary Figure 2d). To exemplify this behavior, we carry out the momentum 
integral in 𝛤bulk(𝜔) analytically and obtain: 
 

𝛤bulk(𝜔) = −
𝑑𝑒2

(2𝜋)2ℏ𝑣2𝜖0
Im [

1

𝜖⊥
ln (

𝑞c
2𝑣2𝜖⊥

𝜔2𝜖||
+ 1)].  (29) 

 
We can see that the asymmetry of the bulk loss in anisotropic materials stems from the logarithmic term 
in the right hand side of Eq. (29) and is more pronounced for small cutoff apertures. 
 
Similarly to the bulk loss, we can obtain a crude approximation for 𝑃begr(𝑞, 𝜔) by assuming that 𝑞 → ∞, 

resulting in 
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𝑃begr (𝑞 ≫
𝜔

𝑣
, 𝜔) ≈ −𝑃bulk(𝑞 ≫

𝜔

𝑣
, 𝜔) ∝ Im(

1

ϵ⊥
),  (30) 

 
which explains the near complete cancelation of the bulk loss in 𝛤(𝜔) (depicted in Supplementary 
Figure 2d) in anisotropic (as well as isotropic materials) materials. 
 
 
Supplementary Note 5: Retarded solution 
 
To obtain the retarded solution for 𝐄ind, we have to solve the electric field using full set of the Maxwell’s 
equations. By eliminating magnetic field, we obtain the wave equation for the total electric field, 𝐄(𝐫, 𝑡), 
in the anisotropic system: 
 

𝛁(𝛁 ⋅ 𝐄) − ∇2𝐄 = −𝜇0 (
𝜕𝐉f

𝜕𝑡
+ 𝜖0

𝜕2(�̂�𝐄)

𝜕𝑡2 ),  (31) 

 
where 𝐉f = 𝐯𝜌f = �̂�𝑣(−𝑒𝛿[𝐫 − 𝐫t(𝑡)]) is the current that corresponds to the electron moving along the 
𝑧 axis. Similarly to the non-retarded case, we utilize the Fourier transform and solve for the electric field 
separately outside and inside the anisotropic slab. Components of the field (parallel to the 𝑧 axis and the 
radial component) read: 
 

𝐸𝑧,1 =
𝑖𝑞

𝛼0
𝐵1,ret exp(−𝛼0𝑧) + (1 −

𝑞2

𝜔2

𝑣2+𝛼0
2
)

i𝑒

𝜖0𝜔
exp (

i𝜔𝑧

𝑣
) ,  (32) 

 

𝐸𝑅,1 = 𝐵1,ret exp(−𝛼0𝑧) +
i𝑞𝑒

𝜖0𝑣(
𝜔2

𝑣2 +𝛼0
2)

exp (
i𝜔𝑧

𝑣
) ,  (33) 

 

𝐸𝑧,2 = −
i𝑞

𝛼

𝜖⊥

𝜖||
(𝐴2,ret exp(𝛼𝑧) − 𝐵2,ret exp(−𝛼𝑧))+(1 −

𝜖⊥

𝜖||

𝑞2

𝜔2

𝑣2 +𝛼0
2
)

i𝑒

𝜖0𝜔𝜖||
exp (

i𝜔𝑧

𝑣
) ,  (34) 

 

𝐸𝑅,2 = 𝐴2,ret exp(𝛼𝑧) + 𝐵2,ret exp(−𝛼𝑧)+
iq𝑒

𝜖0𝑣𝜖||(
𝜔2

𝑣2 +𝛼2)
exp (

i𝜔𝑧

𝑣
) ,  (35) 

 

𝐸𝑧,3 = −
i𝑞

𝛼0
𝐴3,ret exp(𝛼0𝑧) + (1 −

𝑞2

𝜔2

𝑣2 +𝛼0
2
)

i𝑒

𝜖0𝜔
exp (

i𝜔𝑧

𝑣
) ,  (36) 

 

𝐸𝑅,3 = 𝐴3,ret exp(𝛼0𝑧) +
iq𝑒

𝜖0𝑣(
𝜔2

𝑣2 +𝛼0
2)

exp (
i𝜔𝑧

𝑣
) ,  (37) 

 
where we denote 
 

𝛼2 =
𝜖⊥

𝜖||
𝑞2 −

𝜔2

𝑐2 𝜖⊥,        𝛼0
2 = 𝑞2 −

𝜔2

𝑐2 .  (38) 

 
The retarded coefficients are again found from the boundary conditions, now for the field components. 
We require continuity of the radial component of the electric field and the normal component of the 
dielectric displacement at the interfaces: 
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𝐸𝑅,1|𝑧=
𝑑

2

= 𝐸𝑅,2|𝑧=
𝑑

2

,      𝐸𝑅,2|𝑧=−
𝑑

2

= 𝐸𝑅,3|𝑧=−
𝑑

2

,  (39) 

 

𝐸𝑧,1|𝑧=
𝑑

2

= 𝜖||𝐸𝑧,2|𝑧=
𝑑

2

,      𝜖||𝐸𝑧,2|𝑧=−
𝑑

2

= 𝐸𝑧,3|𝑧=−
𝑑

2

.  (40) 

 
The final expressions for the retarded probabilities also split into three contributions: 
 

𝑃guid,ret(𝑞, 𝜔) =
𝑒𝑞

2𝜋2ℏ𝜔
Re [∫ d𝑧 𝐸𝑧,1(𝑞, 𝑧, 𝜔) exp (

−i𝜔𝑧

𝑣
) 

−𝑑/2

−∞
+ ∫ d𝑧 𝐸𝑧,3(𝑞, 𝑧, 𝜔) exp (

−i𝜔𝑧

𝑣
) 

∞

𝑑/2
] =

𝑒𝑞

2𝜋2ℏ𝜔
Im [

𝑞𝑣

𝛼0
(𝐴3,ret

exp[−(𝛼0−i𝜔/𝑣)𝑑/2]

𝛼0𝑣−iω
− 𝐵1,ret

exp[−(−𝛼0+i𝜔/𝑣)𝑑/2]

𝛼0𝑣+iω 
)],  (41) 

 

𝑃in,ret(𝑞, 𝜔) =
𝑒𝑞

2𝜋2ℏ𝜔
Re [∫ d𝑧 𝐸𝑧,2(𝑞, 𝑧, 𝜔)exp (

−i𝜔𝑧

𝑣
) 

𝑑/2

−𝑑/2
] = 𝑃begr,ret(𝑞, 𝜔) + 𝑃bulk,ret(𝑞, 𝜔),  (42) 

 
where 
 

𝑃begr,ret(𝑞, 𝜔) =
𝑒𝑞

2𝜋2ℏ𝜔
 Im [

2𝑣𝑞

𝛼

𝜖⊥

𝜖||
(

𝐴2,ret sinh(
𝛼𝑑

2
−

i𝑑𝜔

2𝑣
)

𝛼𝑣−i𝜔
−

𝐵2,ret sinh(
𝛼𝑑

2
+

i𝑑𝜔

2𝑣
)

𝛼𝑣+i𝜔
)],  (43) 

 

𝑃bulk,ret(𝑞, 𝜔) =
𝑒𝑞

2𝜋2ℏ𝜔
 

𝑒𝑑

 𝜖0𝜔
Im [(1 −

𝑞2

𝜔2

𝑣2 +𝛼0
2
) −

1

𝜖||
 (1 −

𝜖⊥

𝜖||

𝑞2

𝜔2

𝑣2 +𝛼2
)].  (44) 

  
The retarded coefficients 𝐴𝑘,ret and 𝐵𝑘,ret are obtained from Eqs. (39-40). In Supplementary Figure 5 we 

show the influence of retardation both in anisotropic and isotropic case. We see that the retarded 
spectra are slightly redshifted, as expected, and also exhibit a feature below TO energy, which is related 
to Čerenkov radiation2. 
 
 
Supplementary Note 6: Influence of the substrate 
 
To evaluate the influence of the substrate on the EEL spectra of h-BN, we repeated the non-retarded 
calculation described in the Supplementary Note 2 for a two-layer system, consisting of an isotropic 
substrate and an anisotropic layer. In Supplementary Figure 6 we compare spectra with and without the 
substrate. We considered a 30 nm thick layer and a 60 keV electron beam. The substrate is a 15 nm 
membrane characterized by a dielectric constant ϵsub = 4, which is the permittivity of silicon nitride.10 
We see that including the substrate causes a small red-shift ~0.5 meV of the main energy loss peak due 
HPhP excitation and a slight intensity reduction of the bulk loss peak at LO. 
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